THIS STATEMENT
\S AL\E.

IN FACT, LYWG.

Debugging as
Hypothesis Testing

THAT'S NOT THE POINT
OF TUE PARADOY,
AND YOU KNOW IT.

SORRY,
NO TIME FOR
NON-EMPI\RICAL
CHIT-CHAT. T

WHY DOES BECAUSE ITS COLD. ICE WANTS [1S THAT | LOOK (T UP AND

\CE FLOAT ? TO GET WARM, SO \T QOES

TO THE TOP OF L\QUIDS N

ORDER TO BE NEARER TO
THE SUN.

Smfc-comicS.com

The Story So Far ...

*Quality assurance is critical to software engineering.
« Static and dynamic QA approaches are common

eDefect reports are tracked and assigned to developers for
resolution

*Modern software is so huge that simple debugging
approaches do not work

*How should we intelligently and scalably approach
debugging?

One-Slide Summary

*Delta debugging is an automated debugging approach that
fiﬂcds a minimal interesting subset of a given set. It is very
efficient.

*Delta debugging is based on divide-and-conquer and relies
heavilz on critical assumptions (monotonicity,
unambiguity, and consistency).

*It can be used to find which code changes cause a bug, to
minimize failure-inducing inputs, and even to find harmful
thread schedules.

Debugging Case Study

*Consider this deployment pipeline: Git Server to Jenkins to
GlassFish application server

* You have a known-valid test input (NetBeans git commit) that leads
to an incorrect WAR file

 What would you do to determine which pipeline stage has the bug?

Git Server Jenkins
NetBeans Git GUI Jenkins Jenkins GlassFish
—> — - i » R A > 5 i —> ;
Git Commit Git Push EosE Recene Emote fcces Build Job Deploy Job WAR file

Hook API

Real Life Motivation

*Mozilla developers had a large number of open bug reports
in the queue that were not even simplified

*The Mozilla engineers “faced imminent doom”

*Netscape product management sent out the Mozilla
Bug-A-Thon call for volunteers: people who would help
simplify bug reports.

e Simplify — turn bug reports into minimal test cases, where each part
of the input matters

https://wwwe-archive.mozilla.org/newlayout/bugathon.html

https://www-archive.mozilla.org/newlayout/bugathon.html

Minimizing a Mozilla Bug

*\We want something that can
simplify this large HTML
input to just “<SELECT>"
which causes the crash

Each character in “SELECT” is
relevant (see 20-26)

O 00 -3 N U A W N -

L
W N - O

<SELECT _NAME="priority" MULTIPLE_SIZE=7> X
<SELECT _NAME="priority" _MULTIPLE_SIZE=7> v
<SELECT, NAME="priority" MULTIPLE SIZE=7> ¢
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v
<SELECT_NAME="priority" _MULTIPLE_SIZE=7> X
<SELECT, NAME="priority" MULTIPLE SIZE=7> X
<SELECT,Z NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" _MULTIPLE_SIZE=7> v
<SELECT NAME="priority" MULTIPLE_SIZE=7> v/
<SELECT NAME="priority" MULTIPLE_SIZE=7> X
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT, NAME="priority" MULTIPLE _SIZE=7> ¢/
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v/
<SELECT, NAME="priority" MULTIPLE SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" _MULTIPLE_SIZE=7> X
<SELECT _NAME="priority" MULTIPLE_SIZE=7> X
<SELECT, NAME="priority" MULTIPLE SIZE=7> X
<SELECT NAME="priority" MULTIPLE _SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> v
<SELECT, NAME="priority",K MULTIPLE_SIZE=7> v
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT, NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT NAME="priority" MULTIPLE SIZE=7> ¢
<SELECT NAME="priority" MULTIPLE _SIZE=7> X

Often people who encounter a bug spend a lot of time

investigating which changes to the input file will make the bug
go away and which changes will not affect it.

— Richard Stallman, Using and Porting GNU CC

THATS WHY EVENTS ARE 5 WHAT
ARE You)

NRITING?

WE DONT UNDERSTAND HISTORY 1S THE FICTION
WE INVENT TO PERSUADE | ALWAYS REINTERPRETED

WHAT REALY CAUSES |
EVENTS TO HAPPEN . /' | | OURSELVES THAT EVENTS | WHEN VALUES CHANGE.
\‘_,/ ARE KMOWARLE AND THAT | WE NEED NEW VERSIONS

LIFE HAS ORDER| OF HISTORY TO ALLOW FOR
AND DIRECTION, | QUR CURRENT PREIJUNMCES.
\
: 090

A REVISIONIST
AUTO BIOGRAPRY .

Delta Debugging

*Three Problems: One Common Approach
* Simplifying Failure-Inducing Input
* |solating Failure-Inducing Thread Schedules
* |dentifying Failure-Inducing Code Changes

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIONAL

THIS DESIGN WILL
NEVER WORK IN

THE REAL WORLD. UNINFORMED

CRITICISMS.

o9 ©2008Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®aol.com

=]
o

Failure-Inducing Input

*Having a test input may not be enough

* Even if you know the suspicious code, the input may be too large to
step through

*This HTML input makes a version of Mozilla crash. Which
portion is relevant?

<td align=left valign=top>

<SELECT NAME="op.sys" MULTIPLE SIZE=7>

<OPTION VALUE="All">Al11<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<0OPTION VALUE="Mac System 8.6">Mac System B8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">0penBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="0S/2">0S/2<OPTION
VALUE="0SF/1">0SF/1<OPTION VALUE="Solaris">Solaris<OPTION VALUE="SunO0S">SunOS<OPTION VALUE="other">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>

<td align=left valign=top>

<SELECT NAME="bug.severity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION

VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement'">enhancement</SELECT>
</tr>

</table>

Thread Scheduling

*Multithreaded programs can be non-deterministic
 Can we find simple, bug-inducing thread schedules?

Schedule Thread A Thread B Schedule Thread A Thread B
open("” .htpasswd") open(".htpasswd")
read(...) open(" .htpasswd")
modify(...) read(...)
write(...) read(...)
close(...) modify(...)

open(".htpasswd") write(...)

gﬁmgﬁ read(...) close(...)
modify(...) modify(...)
write(...) write(...)
close(...) close(...)

v X 10

Code Changes

*A new version of GDB has a Ul bug
 The old version does not have that bug

«178,000 lines of code have been modified between the two
versions

* Where is the bug?

 These days: continuous integration testing helps
e ... butdoes not totally solve this. Why?

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infemd.c
1239¢1278

< "Set arguments to give program being debugged when it is started.\n

> "Set argument list to give program being debugged when it 1s started.'n

11

What is a Difference?

*Debugging deals with “a large number of different things”

*\With respect to debugging, a difference is a change (in the
program configuration or state) that may lead to alternate

observations

Difference in the input: different character or bit in the input stream
Difference in thread schedule: difference in the time before a given
thread preemption is performed

Difference in code: different statements or expressions in two
versions of a program

Difference in program state: different values of internal variables

Unified Solution

* Abstract Debugging Problem:

* Find which part of something (= which input, which change, etc.)
determines the failure

* “Find the smallest subset of a given set that is still interesting”

*Divide and Conquer

* Applied to: working and failing inputs, code versions, thread
schedules, program states, etc.

13

Yesterday, My Program Worked
Today, It Does Not

v

s

Yesterday

= ven =b
. —

n changes

*\We will iteratively

 Hypothesize that a small subset is interesting
Example: change set {1,3,8} causes the bug

* Run tests to falsify that hypothesis — how?

Today

14

Delta Debugging (Interface)

eGGiven

» asetC={c, ..., c }(of changes)
* afunction Interesting : a set of changes — Yes or No
* |nteresting(C) = Yes, Interesting({}) = No

* |nteresting is monotonic, unambiguous and consistent (more on
these later)

*The delta debugging algorithm returns a minimal
“Interesting” subset M of C:

* [nteresting(M) = Yes
e Forall min M, Interesting(M \ {m}) = No

15

Example Use of Delta Debugging

v =2 = wie = = X
—_
Yesterday n changes Today

*C = the set of n changes

*|Interesting(X) = Apply the changes in X to Yesterday's version and
compile. Run the result on the test.
o If it fails, return “Yes” (X is an interesting failure-inducing change set),

* otherwise return “No” (X is too small and does not induce the failure)

Naive Approach

*\We could just try all subsets of C to find the smallest one
that is Interesting

* Problem: if |C| = N, this takes 2" time
* Recall: real-world software is huge

*\We want a polynomial-time solution

* |deally one that is more like log(N)
 Orwe'll loop “forever”

Every Da ; 1s
ety

gL 11C game

17

Algorithm Candidate

/* Precondition: Interesting({c, ... c }) = Yes */
DD({Cl' ceay Cn}) =
if n=1then return {c_}
letP1=1c, ... c]
let P2 = {Cn/2+1’ - Cn}
if Interesting(P1) = Yes

So far, this is just binary search!

then return DD(P1) It won't work if you need a big subset
(with >1 elements) to be Interesting.
else return DD(P2)

Useful Assumptions

*Any subset of changes may be Interesting
* Not just singleton subsets of size 1 (cf. bsearch)

*Interesting is Monotonic
* |nteresting(X) — Interesting(X u{c})

*Interesting is Unambiguous
* |nteresting(X) & Interesting(Y) — Interesting(X nY)

*Interesting is Consistent

* |nteresting(X) = Yes or Interesting(X) = No
* (Some formulations: Interesting(X) = Unknown)

19

Interesting(P2)

Delta Debugging Insights Yes No
*Basic Binary Search 2 Yes This Here
e Divide Cinto P1 and P2 *5
 |f Interesting(P1) = Yes then recurse on P1 s No Here That
* If Interesting(P2) = Yes then recurse on P2 =

* At most one case can apply (by Unambiguous)

*By Consistency, the only other possibility is

e (Interesting(P1) = No) and (Interesting(P2) = No)
 What happens in such a case?

Interference:
Interesting(P1) = No and Interesting(P2) = No

*By Monotonicity
* If Interesting(P1) = No and Interesting(P2) = No
 Then no subset of P1 alone or subset of P2 alone is Interesting

*So the Interesting subset must use a combination of
elements from P1 and P2

*In Delta Debugging, this is called interference
* Basic binary search does not have to contend with this issue

Interference Insight

(hardest part of this lecture?)

D1}

D2

Consider P1 P1

* Find a minimal subset D2 of P2
e Such that Interesting(P1 uD2) = Yes

Consider P2

* Find a minimal subset D1 of P1
e Such that Interesting(P2uD1) = Yes

*Then by Unambiguous

* |nteresting((P1uD2) n(P2uD1)) =
Interesting(D1uD2) is also minimal

P2

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

Example: Use DD to find the smallest
interesting subset of {1, ..., 8}

What do you think DD will do here?
List the first three steps.

31

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

1234
56738

T

First Step:
Partition C = {1, ..., 8} into
P1={1, .., 4} and P2 = {5, ..., 8}

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

1234 2?7
567 8 7?72

!

Second Step:
Test P1 and
P2

Example: {3,6} Is Smallest Interesting Subset
.., 8}

of {1, .

1234

No D1

D2

567 8 No p1

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

P2

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?
1234 No
56 7 8 No

™

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No

12 567 8 ???

™

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No

12 56 7 8 No

™

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?
1234 No
56 7 8 No
12 56 7 8 No
34|56 7 8 7?7

\ Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?
1234 No
56 7 8 No
1 2 56 7 8 No
3 415 6 7 8 Yes

\ Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?
1234 No
56 7 8 No
1 2 56 7 8 No
3 415 6 7 8 Yes

\ Interference! Sub-Step:
Find minimal subset D1 of P1 Are we done?
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No
1 2 56 7 8 No

34|56 7 8 Yes
3 567 87?7

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?
1234 No
56 7 8 No
1 2 56 7 8 No
3415 6 7 8 Yes
3 |56 7 8 Yes

D1 = {3}

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No

‘ 3 ‘5 6 7 8 Yes Just one half.
Need second half!

D1 = {3}

Example: {3,6} Is Smallest Interesting Subset

of {1, .
1234

1234

.., 8}

Interesting?

No
No

D1 = {3}

Now find D2!

44

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8|Interesting?
12314 No
5 6 7 8/No D1 =135
Now find D2!

123 4(56 27

45

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8|Interesting?
12314 No
5 6 7 8/No D1 =135
Now find D2!

1 2 3 4|56 Yes

What’s next?

46

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

5 6 7 8]|Interesting?
No

56 7 8|No D1 = {3}
D2 = {6}

123
123

& |b

1 2 34|56 Yes

1 2 3 415 No
12 34 6 Yes

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

123456 7 8 Interesting?

12 34 No D1 = {3}
56 7 8 No D2 = {6

Final Answer:
3 5678 Yes How to combine D1, D2?

1 2 3 4 6 Yes

48

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}
123456 7 8 Interesting?
12 34 No
56 7 8 No
1 2 56 7 8 No
3456 7 8 Yes
3 56 7 8 Yes
1 23 456 Yes
1 2 3 45 No
1 234 6 Yes

D1 = {3}
D2 = {6}

Final Answer:
{3, 65

Delta Debugging Algorithm

Initially, empty set; but during run, not empty

/ Initially, entire set; but during run, a subset
DD(P, {c,, ﬁ =

Precondition: P is not interesting, but P U {cl, e, cn} is

it n=1then return {C1} Postcondition: minimal subset of {c, ..., ¢ } such that
et P1 = {Cl’ Cn/z} P U this subset” is interesting

et P2 = {cn/2+1, . cn}
if Interesting(PU P1) = Yes then return DD(P, P1)

if Interesting(P U P2) = Yes then return DD(P, P2)
else return DD(PUP2, P1)uDD(P uP1, P2)

Algorithmic Complexity

*|f a single change induces the failure
DD is logarithmic: 2 * log |C]|
e Why?

*Otherwise, DD is linear

* Assuming constant time per “Interesting” check
e |s this realistic? (cf. “AOTBE”)

*[f Interesting can return Unknown
e DD is quadratic: |C|%+ 3|C]
 If all tests are Unknown except last one (unlikely)

Questioning Assumptions

(assumptions are restated here for convenience)

*All three key assumptions are questionable

*Interesting is Monotonic
* Interesting(X) — Interesting(Xu {c})

*Interesting is Unambiguous
* Interesting(X) & Interesting(Y) — Interesting(XnNY)

*Interesting is Consistent

* Interesting(X) = Yes or Interesting(X) = No
* (Some formulations: Interesting(X) = Unknown)

52

Not Monotonic

‘ ‘ - - - -
vV I U \J

;. \ A N \J

What if the world is not monotonic?
* For example, Interesting({1,2}) = Yes but Interesting({1,2,3,4}) = No

*Then DD may still find an Interesting subset
 Thought questions: Will it be minimal? How long will it take?

Ambiguity

(a 481 student found this counterexample!)

*\What if the world is ambiguous?
*Then DD (as presented here) may not find an Interesting subset

*Hint: trace DD on Interesting({2, 8}) = yes, Interesting({3, 6}) = yes,
but Interesting({2, 8} n {3, 6}) = no.
DD returns {2,6} :-(. —

m/legal/sla/

@ (" SHOW_DETAILS_TITLE | ~ NOT_NOW_TITLE) (INSTALL_TITLE)

Inconsistency

e What if the world is not consistent?

*Example: we are minimizing changes to a program to find
patches that make it crash

Some subsets may not build or run!

* Integration Failure: a change may depend on earlier changes

e Construction failure: some subsets may yield programs with parse
errors or type checking errors (cf. HW3!)

* Execution failure: program executes strangely or does not terminate,
test outcome is unresolved

Delta Debugging Thread Schedules

*DejaVu tool by IBM, CHESS by Microsoft, etc.
*The thread schedule becomes part of the input

*\We can control when the scheduler preempts one thread

replay

Differences in Thread Scheduling

eStarting point
* Passing run
* Failing run
Differences (for t1)
 T1 occurs in passing run at time 254
 T1 occurs in failing run at time 278
v

~.
-~
-
-~
~
-~
e
-~

Differences in Thread Scheduling

*\We can build new test cases by mixing the two schedules to
isolate the relevant differences

!
\4
—_— P
v X

58

Does It Work?

*Test #205 of SPEC JVM98 Java Test Suite

 Multi-threaded raytracer program
 Simple race condition

* Generate random schedules to find a passing schedule and a failing
schedule (to get started)

*Differences between passing and failing

e 3,842,577,240 differences (!)
* Each difference moves a thread switch time by +1 or -1

DD Isolates One Difference
After 50 Probes (< 30 minutes)

Delta Debugging Log

fe+14 ¢ T
3 CPASS '"e——
cfail sensnns
o
1e+13 |2
3 i“-
= -
o Sus
8
fe+12 | :
g
Maany :
T
a1 1]
1e+11 | pe— 1 1 1 1 | 1 1 I
0 5 10 15 20 25 30 35 40 45 50

Tests executed

60

Pin-Pointing The Failure

*The failure occurs iff thread switch #33 occurs at yield point
59,772,127 (line 91) instead of 59,772,126 (line 82) — race
on which variable?

25 public class Scene { ...
44 private static int ScenesLoaded = 0;
45 (more methods...)
81 private
82 int LoadScene(String filename) {
84 int Ql.d.Sgen.esLoaded = ScenesLoaded; should be
85 (more initializations. . .) e
91 infile = new DataInputStream(...); C”t.ma,&
92 (more code. . .) Section
130 ScenesLoaded = OldScenesLoaded + 1; but is not
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");

132
134
135
733 3}

61

Minimizing Input

*GCC version 2.95.2 on x86/Linux
with certain optimizations crashed
on a legitimate C program

 Note: GCC crashes, not the program!

double mult(double z[], int n)

{

int

}

311 rive b

int j;

for (j= 0; j< m; j++) {
i= i+j+i;
z[i]=z[1]1*(z[0]+0);

}

return z(n];

copy(double to[], double from[], int count)

int n= (count+7)/8;
switch (count%8) do {

case 0: xto++ = xfrom++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = xfrom++;
case 4: *to++ = *from++;
case 3: *to++ = xfrom++;
case 2: *to++ = *from++;
case 1: xto++ = xfrom++;

} while (-—n > 0);
return (int)mult(to,2);

int main(int argc, char *argv[])

|

double x[20], y[20];
double *px= Xx;

while (px < x + 20)
px++ = (px-x)(20+1.0);

return copy(y,x,20);

Figure 4: A program that crashes GCC-2.95.2.

62

Delta Debugging to the Rescue

*With 731 probes (< 60 seconds), minimized to:

t(double z[], int n) {
int 1, j;

for (;;j++) { i=i+j+1; z[il=z[i]*(z[0]+0);

return z[n]; }

*GCC has many options X

—fforce-mem

* Run DD again to find which %, uine

dare re | evant —fkeep-static-consts
—fstrength-reduce

—fese-skip-blocks
—fgcse
—fschedule-insns2
—fcaller-saves

—fmove-all-movables

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/hdd.pdf fstrict-aliasing

}

—fno-default-inline
—fforce-addr
—finline-functions
—fno-function-cse
—fthread-jumps
—frerun-cse-after-loop
—fexpensive-optimizations
—ffunction-sections
—funroll-loops
—freduce-all-givs

—fno-defer-pop
—fomit-frame-pointer
—fkeep-inline-functions
—ffast-math
—fese-follow-jumps
—frerun-loop-opt
—fschedule-insns
—fdata-sections
—funroll-all-loops
—fno-peephole

Go Try It Out: Eclipse Integration

Automated Debugging in Eclipse

We realized two Eclipse plug-ins that automatically determine why your program fails:

¢ in the input and
e in the program history.

These plug-ins integrate with JUnit tests: As soon as a test fails, they automatically determine the
failure cause. You don't even have to press a button—just wait for the diagnosis.

DDinput: Failure-Inducing Input
Find out which part of the input causes your program to fail:

The program fails when the input contains <SELECT=.

This plug-in applies Delta Debugging to program inputs, as described in Simplifying and Isolating
Failure-Inducing Input.

Available for download.

DDchange: Failure-Inducing Changes

Find out which change causes your program to fail:
The change in Line 45 makes the program fail.

This plug-in applies Delta Debugging to program changes, as described in Yesterday, my program
worked. Today, it does not. Why?.

Available for download.

Questions?

*HW4 is due Wed

*.. and consider starting
to work on HW5 (DD)!

u)/ 1}(?‘/ b

om % NOVEMBER

“ie) il e

- l&;\ -

65

