
Debugging as

Hypothesis Testing

The Story So Far …

•Quality assurance is critical to software engineering.
• Static and dynamic QA approaches are common

•Defect reports are tracked and assigned to developers for
resolution

•Modern software is so huge that simple debugging
approaches do not work

•How should we intelligently and scalably approach
debugging?

2

One-Slide Summary

•Delta debugging is an automated debugging approach that
finds a minimal interesting subset of a given set. It is very
efficient.

•Delta debugging is based on divide-and-conquer and relies
heavily on critical assumptions (monotonicity,
unambiguity, and consistency).

•It can be used to find which code changes cause a bug, to
minimize failure-inducing inputs, and even to find harmful
thread schedules.

3

Debugging Case Study

•Consider this deployment pipeline: Git Server to Jenkins to
GlassFish application server
• You have a known-valid test input (NetBeans git commit) that leads

to an incorrect WAR file
• What would you do to determine which pipeline stage has the bug?

4

Real Life Motivation

•Mozilla developers had a large number of open bug reports
in the queue that were not even simplified

•The Mozilla engineers “faced imminent doom”

•Netscape product management sent out the Mozilla
Bug-A-Thon call for volunteers: people who would help
simplify bug reports.
• Simplify → turn bug reports into minimal test cases, where each part

of the input matters
https://www-archive.mozilla.org/newlayout/bugathon.html

5

https://www-archive.mozilla.org/newlayout/bugathon.html

Minimizing a Mozilla Bug

•We want something that can
simplify this large HTML
input to just “<SELECT>”
which causes the crash

•Each character in “SELECT” is
relevant (see 20-26)

6

7

Delta Debugging

•Three Problems: One Common Approach
• Simplifying Failure-Inducing Input
• Isolating Failure-Inducing Thread Schedules
• Identifying Failure-Inducing Code Changes

8

Failure-Inducing Input

•Having a test input may not be enough
• Even if you know the suspicious code, the input may be too large to

step through

•This HTML input makes a version of Mozilla crash. Which
portion is relevant?

9

Thread Scheduling

•Multithreaded programs can be non-deterministic
• Can we find simple, bug-inducing thread schedules?

10

Code Changes

•A new version of GDB has a UI bug
• The old version does not have that bug

•178,000 lines of code have been modified between the two
versions
• Where is the bug?
• These days: continuous integration testing helps
• … but does not totally solve this. Why?

11

What is a Difference?

•Debugging deals with “a large number of different things”

•With respect to debugging, a difference is a change (in the
program configuration or state) that may lead to alternate
observations
• Difference in the input: different character or bit in the input stream
• Difference in thread schedule: difference in the time before a given

thread preemption is performed
• Difference in code: different statements or expressions in two

versions of a program
• Difference in program state: different values of internal variables

12

Unified Solution

•Abstract Debugging Problem:
• Find which part of something (= which input, which change, etc.)

determines the failure
• “Find the smallest subset of a given set that is still interesting”

•Divide and Conquer
• Applied to: working and failing inputs, code versions, thread

schedules, program states, etc.

13

Yesterday, My Program Worked
Today, It Does Not

•We will iteratively
• Hypothesize that a small subset is interesting
• Example: change set {1,3,8} causes the bug

• Run tests to falsify that hypothesis – how?

14

Delta Debugging (Interface)

•Given
• a set C = {c

1
, …, c

n
} (of changes)

• a function Interesting : a set of changes → Yes or No
• Interesting(C) = Yes, Interesting({}) = No
• Interesting is monotonic, unambiguous and consistent (more on

these later)

•The delta debugging algorithm returns a minimal
“Interesting” subset M of C:
• Interesting(M) = Yes
• Forall m in M, Interesting(M \ {m}) = No

15

Example Use of Delta Debugging

•C = the set of n changes

• Interesting(X) = Apply the changes in X to Yesterday's version and
compile. Run the result on the test.
• If it fails, return “Yes” (X is an interesting failure-inducing change set),

• otherwise return “No” (X is too small and does not induce the failure)

16

Naïve Approach

•We could just try all subsets of C to find the smallest one
that is Interesting
• Problem: if |C| = N, this takes 2N time
• Recall: real-world software is huge

•We want a polynomial-time solution
• Ideally one that is more like log(N)
• Or we'll loop “forever”

17

Algorithm Candidate

/* Precondition: Interesting({c
1
 … c

n
}) = Yes */

DD({c
1
, …, c

n
}) =

 if n = 1 then return {c
1
}

 let P1 = {c
1
, … c

n/2
}

 let P2 = {c
n/2+1

, …, c
n
}

 if Interesting(P1) = Yes

 then return DD(P1)

 else return DD(P2)

18

So far, this is just binary search!

It won't work if you need a big subset
(with >1 elements) to be Interesting.

Useful Assumptions

•Any subset of changes may be Interesting
• Not just singleton subsets of size 1 (cf. bsearch)

•Interesting is Monotonic
• Interesting(X) → Interesting(X {c})

•Interesting is Unambiguous
• Interesting(X) & Interesting(Y) → Interesting(X Y)

•Interesting is Consistent
• Interesting(X) = Yes or Interesting(X) = No
• (Some formulations: Interesting(X) = Unknown)

19

U

U

Delta Debugging Insights

•Basic Binary Search
• Divide C into P1 and P2
• If Interesting(P1) = Yes then recurse on P1
• If Interesting(P2) = Yes then recurse on P2

•At most one case can apply (by Unambiguous)

•By Consistency, the only other possibility is
• (Interesting(P1) = No) and (Interesting(P2) = No)
• What happens in such a case?

20

Yes No

Yes This Here

No Here That

Interesting(P2)

In
te
re
st
in
g(
P1

)

Interference:
Interesting(P1) = No and Interesting(P2) = No

•By Monotonicity
• If Interesting(P1) = No and Interesting(P2) = No
• Then no subset of P1 alone or subset of P2 alone is Interesting

•So the Interesting subset must use a combination of
elements from P1 and P2

•In Delta Debugging, this is called interference
• Basic binary search does not have to contend with this issue

21

Interference Insight
(hardest part of this lecture?)

•Consider P1
• Find a minimal subset D2 of P2
• Such that Interesting(P1 D2) = Yes

•Consider P2
• Find a minimal subset D1 of P1
• Such that Interesting(P2 D1) = Yes

•Then by Unambiguous
• Interesting((P1 D2) (P2 D1)) =

 Interesting(D1 D2) is also minimal

22

U

U

U

UU

U

P2P1

D1 D2

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

31

Example: Use DD to find the smallest
interesting subset of {1, …, 8}

What do you think DD will do here?
List the first three steps.

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4

 5 6 7 8

32

First Step:
Partition C = {1, …, 8} into
P1 = {1, …, 4} and P2 = {5, …, 8}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 ???

 5 6 7 8 ???

33

Second Step:
Test P1 and
P2

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

34

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

P2P1

D1 D2

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

35

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 ???

36

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

37

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 ??

38

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

39

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

40

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Are we done?

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 ??

41

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

42
D1 = {3}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

43
D1 = {3}

Just one half.
Need second half!

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

44

D1 = {3}

Now find D2!

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 ??

45

D1 = {3}

Now find D2!

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

46

D1 = {3}

Now find D2!

What’s next?

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

1 2 3 4 5 No

1 2 3 4 6 Yes 47

D1 = {3}
D2 = {6}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

1 2 3 4 5 No

1 2 3 4 6 Yes
48

D1 = {3}
D2 = {6}

Final Answer:
How to combine D1, D2?

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

1 2 3 4 5 No

1 2 3 4 6 Yes
49

D1 = {3}
D2 = {6}

Final Answer:
{3, 6}

Delta Debugging Algorithm

DD(P, {c
1
, …, c

n
}) =

 if n = 1 then return {c
1
}

 let P1 = {c
1
, … c

n/2
}

 let P2 = {c
n/2+1

, …, c
n
}

 if Interesting(P P1) = Yes then return DD(P, P1)

 if Interesting(P P2) = Yes then return DD(P, P2)

 else return DD(P P2, P1) DD(P P1, P2)

50

U

U

U UU

Initially, empty set; but during run, not empty
Initially, entire set; but during run, a subset

Precondition: P is not interesting, but P U {c
1
, …, c

n
} is

Postcondition: minimal subset of {c
1
, …, c

n
} such that

“P U this subset” is interesting

Algorithmic Complexity

•If a single change induces the failure
• DD is logarithmic: 2 * log |C|
• Why?

•Otherwise, DD is linear
• Assuming constant time per “Interesting” check
• Is this realistic? (cf. “AOTBE”)

•If Interesting can return Unknown
• DD is quadratic: |C|2 + 3|C|
• If all tests are Unknown except last one (unlikely)

51

Questioning Assumptions
(assumptions are restated here for convenience)

•All three key assumptions are questionable

•Interesting is Monotonic
• Interesting(X) → Interesting(X {c})

•Interesting is Unambiguous
• Interesting(X) & Interesting(Y) → Interesting(X Y)

•Interesting is Consistent
• Interesting(X) = Yes or Interesting(X) = No
• (Some formulations: Interesting(X) = Unknown)

52

U

U

Not Monotonic

•Montonic: If X is Interesting, any superset of X is interesting

•What if the world is not monotonic?
• For example, Interesting({1,2}) = Yes but Interesting({1,2,3,4}) = No

•Then DD may still find an Interesting subset
• Thought questions: Will it be minimal? How long will it take?

53

Ambiguity
(a 481 student found this counterexample!)

•Unambiguous: the interesting failure is caused by one subset (and
not independently by two disjoint subsets)

•What if the world is ambiguous?

•Then DD (as presented here) may not find an Interesting subset

•Hint: trace DD on Interesting({2, 8}) = yes, Interesting({3, 6}) = yes,
but Interesting({2, 8} {3, 6}) = no.
• DD returns {2,6} :-(.

54

U

Inconsistency

•Consistent: We can evaluate every subset to see if it is
Interesting or not
• What if the world is not consistent?

•Example: we are minimizing changes to a program to find
patches that make it crash
Some subsets may not build or run!
• Integration Failure: a change may depend on earlier changes
• Construction failure: some subsets may yield programs with parse

errors or type checking errors (cf. HW3!)
• Execution failure: program executes strangely or does not terminate,

test outcome is unresolved

55

Delta Debugging Thread Schedules

•DejaVu tool by IBM, CHESS by Microsoft, etc.

•The thread schedule becomes part of the input

•We can control when the scheduler preempts one thread

56

Differences in Thread Scheduling

•Starting point
• Passing run
• Failing run

•Differences (for t1)
• T1 occurs in passing run at time 254
• T1 occurs in failing run at time 278

57

Differences in Thread Scheduling

•We can build new test cases by mixing the two schedules to
isolate the relevant differences

58

Does It Work?

•Test #205 of SPEC JVM98 Java Test Suite
• Multi-threaded raytracer program
• Simple race condition
• Generate random schedules to find a passing schedule and a failing

schedule (to get started)

•Differences between passing and failing
• 3,842,577,240 differences (!)
• Each difference moves a thread switch time by +1 or -1

59

DD Isolates One Difference
After 50 Probes (< 30 minutes)

60

Pin-Pointing The Failure

•The failure occurs iff thread switch #33 occurs at yield point
59,772,127 (line 91) instead of 59,772,126 (line 82) → race
on which variable?

61

should be
“Critical
Section”
but is not

Minimizing Input

•GCC version 2.95.2 on x86/Linux
with certain optimizations crashed
on a legitimate C program
• Note: GCC crashes, not the program!

62

Delta Debugging to the Rescue

•With 731 probes (< 60 seconds), minimized to:

•GCC has many options
• Run DD again to find which

are relevant

63

t(double z[], int n) {
 int i, j;
 for (;;j++) { i=i+j+1; z[i]=z[i]*(z[0]+0); }
 return z[n]; }

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/hdd.pdf

Go Try It Out: Eclipse Integration

64

Questions?

•HW4 is due Wed

•.. and consider starting
to work on HW5 (DD)!

65

