
Fault Localization and Profiling

The Story So Far …

•Quality assurance is critical to software engineering.
• Static and dynamic QA approaches are common

•Defect reports are tracked from creation to resolution

•Some are assigned to developers for resolution (triage)

•How do we know which part of a program to change to
repair a bug or improve a program?

2

One-Slide Summary

•A debugger helps to detect the source of a program error by
single-stepping through the program and inspecting variable
values.

•Fault localization is the task of identifying lines implicated in a
bug. Humans are better at localizing some types of bugs than
others.

•Automatic tools can help with the dynamic analyses of fault
localization and profiling.

•Care must be taken when evaluating such tools (and their
assumptions) for real-world use.

3

Outline

•Software Scales

•Manual Debuggers

•Human Study Results

•Automatic Tools

•Profilers

•Are Tools Helping?

4

5

A lot of code. A lot of defects.

Which of these is photoshopped?

6

Bucket-Wheel Excavators

•Heaviest land vehicles
• ~14,000 tons
• (avg USA car: 2 tons)

• Mobile strip-mining

7

Modern Software Is Huge

•“Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's a
long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

•Who cares?
• Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases
• Techniques from the 1980s or your habits from classes

8

• How many lines of code? Guess??
• iPhone app
• Facebook
• Chrome/Firefox
• Microsoft Office
• Car Software
• Space Shuttle

9

Example Programs: < 1MLOC

•libpng: 85,000 jfreechart: 300,000

10

x 100,000

Example Programs: 1-10 MLOC

11

Example Programs: 25 – 50 MLOC

12

Example Programs: 50 – 100 MLOC

13

Example Programs: 0.1 – 2.0BLOC

14

Humans Are Poor At Comprehending Large Scales

•libpng 85 000

•google 2 000 000 000

•Imagine that there is a bug somewhere, anywhere, in libpng

•You can find it in a minute!

•At that same rate, it will take you more than two weeks to
find it in all of google
• A one-hour bug on libpng is three years on google
• Unless we do things differently …

15

Fault Localization

•Fault localization is the task of identifying source code
regions implicated in a bug
• “This regression test is failing. Which lines should we change to fix

things?”

•Answer is not unique: there are often many places to fix a bug
• Example: check for null at caller or callee?

•Debugging includes fault localization

•Answer may take the form of a list (e.g., of lines) ranked by
suspiciousness

16

What is a Debugger?

•“A software tool that is used to detect the source of
program or script errors, by performing step-by-step
execution of application code and viewing the content of
code variables.”

- Microsoft Developer Network

17

Debuggers

•Can operate on source code or assembly code

•Inspect the values of registers, memory

•Key Features (we’ll explain all of them)

• Attach to process

• Single-stepping

• Breakpoints

• Conditional Breakpoints

• Watchpoints

18

Signals

•A signal is a notification sent to a process about an event:

• User pressed Ctrl-C (or did kill %pid)
• Or asked the Windows Task Manager to terminate it

• Exceptions (divide by zero, null pointer)

• From the OS (SIGPIPE)

•You can install a signal handler – a procedure that will be
executed when the signal occurs.

19

Signal Example

•What does this program print?

20

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",

global);
 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

Attaching A Debugger

•Requires operating system support

•There is a special system call that allows one process to act
as a debugger for a target

• What are the security concerns?

•Once this is done, the debugger can basically “catch signals”
delivered to the target

• This isn’t exactly what happens, but it’s a good explanation …

21

Building a Debugger

•We can then get breakpoints and
interactive debugging

• Attach to target

• Set up signal handler

• Add in exception-causing instructions

• Inspect globals, etc.

22

#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

Advanced Breakpoints

• Optimization: hardware breakpoints

• Special registers (a few of them): if PC value = HBP register value, signal an exception

• Faster than software, works on ROMs, only limited number of breakpoints, etc.

• Feature: conditional breakpoint: “break at instruction X if some_variable =
some_value”

• As before, but signal handler checks to see if some_variable = some_value

• If so, present interactive debugging prompt

• If not, return to program immediately

• Is this fast or slow?

24

Single-Stepping

•Debuggers also allow you to advance through code one
instruction at a time

•To implement this, put a breakpoint at the first instruction
(= at program start)

•The “single step” or “next” interactive command is equal to:

• Put a breakpoint at the next instruction

• Resume execution

• (No, really.)

25

Watchpoints

•You want to know when a variable changes

•A watchpoint is like a breakpoint, but it stops execution
after any instruction changes the value at location L

•How could we implement this?

26

Watchpoint Implementation

•Software Watchpoints

• Put a breakpoint at every instruction (ouch!)

• Check the current value of L against a stored value

• If different, give interactive debugging prompt

• If not, set next breakpoint and continue (single-step)

•Hardware Watchpoints

• Special register holds L: if the value at address L ever changes, the
CPU raises an exception

27

Psychology: Reactions

•You are invited to participate in a group discussion of “personal
problems”. Because of the sensitive nature of the discussion, it
takes place over an intercom. During the discussion, you hear:
• “I-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-er-er

give me a little-er-give me a little help here
because-er-I-er-I’m-er-erh-h-having a-a-a real problem-er-right now and
I-er-if somebody could help me out it would-it would-er-er s-s-sure be-sure
be good . . . because-there-er-er-a cause I-er-I-uh-I’ve got a-a one of
the-er-sei er-er-things coming on and-and-and I could really-er-use some
help so if somebody would-er-give me a little h-help-uh-er-er-er-er-er
c-could somebody-er-er-help-er-uh-uh-uh (choking sounds). . . . I’m gonna
die-er-er-I’m . . . gonna die-er-help-er-er-seizure-er-[chokes, then quiet].”

29

Psychology: Reactions

•The more people in the
discussion, the longer it takes
anyone to take action

•Gender (of you or others) had no
effect

30

Bystander Effect

•“It is our impression that nonintervening subjects not
decided not to respond. Rather they were still in a state of
indecision and conflict concerning whether to respond or
not. The emotional behavior of these nonresponding
subjects was a sign of their continuing conflict ...”

•Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

• [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

31

Bystander Effect

• [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

•Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

32

Human Fault Localization

• OK, so humans have debuggers

• Are humans any good at debugging?

• Not all bugs are equally easy to find

• Not all programs are equally easy to debug

33

Find The Bug
(Towers of Hanoi)
•Over 53% of participants
(seniors) could find the bug in
about 3 minutes

•Note: conditional branches,
recursive calls, rich
comments, variable names

34

Find The Bug 2

•Only 33% could locate the bug

•Note: shorter, simpler
identifiers, simpler control
flow, not as abstract

35

Human Study

•Participants (n=65, half with >4 years of experience) were
shown snippets of textbook
• Defects seeded based on 100 consecutive bug fixes from the Mozilla

bug repository

•Double experimental control
• Quicksort in Textbook A vs. Textbook B has the same complexity

(differs only in style)
• Bubblesort in Textbook A vs. AVL Tree in Textbook A differ in

complexity (have same presentation style)
• [Z. Fry et al.: A Human Study of Fault Localization Accuracy. International Conference on Software

Maintenance (ICSM) 2010]

36

What Do You Think?

•Rank these: which of these bugs is easiest for humans to
find?
• Extra Assignment
• Missing Statement
• Extra Conditional
• Calling Wrong Method
• Extra Statement

37

38

Fa
u

lt
 lo

ca
liz

at
io

n
 a

cc
u

ra
cy

Tool Support for Fault Localization

•A spectrum-based fault localization tool uses a dynamic
analysis to rank suspicious statements implicated in a fault
by comparing the statements covered on failing tests to the
statements covered on passing tests

•Basic idea:
• Instrument the program for coverage (put print statements

everywhere)
• Run separately on normal inputs and bug-inducing inputs
• Compute the set difference!

39

Fault Localization Example

•Consider this simple buggy program:

40

Coverage-Based Fault Localization

Statement 3,3,5 1,2,3 1,3,2 3,2,1 5,5,5 2,1,3
int m;
m = z;
if (y < z)
if (x < y)
m = y;
else if (x<z)
m = y; // bug
else
if (x > y)
m = y;
else if (x>z)
m = x;
return m;

Pass Pass Pass Pass Pass Fail 41

Input (x, y, z)

Insight: Print-Statement Debugging

•If you do not execute X but you do observe the bug, X
cannot be related to that bug

•If Y is primarily executed when you observe the bug, it is
more likely to be implicated than Z which is primarily
executed when you do not observe the bug

•Suspiciousness Ranking

susp(s) = fail(s) / total_fail

 fail(s)/total_fail + pass(s)/total_pass

42[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

Fault Localization Ranking

Statement 3,3,5 1,2,3 3,2,1 3,2,1 5,5,5 2,1,3 susp(s)
int m; 0.5
m = z; 0.5
if (y < z) 0.5
if (x < y) 0.63
m = y; 0
else if (x<z) 0.71
m = y; // bug 0.83
else 0
if (x > y) 0
m = y; 0
else if (x>z) 0
m = x; 0
return m; 0.5

Pass Pass Pass Pass Pass Fail 43

Profiling

•A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

• A flat profile computes the average call times for
functions but does not break times down based on
context

• A call-graph profile computes call times for functions and
also the call-chains involved

44

Event-Based Profiling

•Interpreted languages provide special hooks for profiling

• Java: JVM-Profile Interface, JVM API

• Python: sys.set_profile() module

• Ruby: profile.rb, etc.

•You register a function that will get called whenever the
target program calls a method, loads a class, allocates an
object, etc.
• cf. “signal handler”

45

JVM Profiling Interface

•VM notifies profiler agent of various events (heap
allocation, thread start, method invocation, etc.)

•Profiler agent issues control commands to the JVM and
communicates with a GUI

46

Statistical Profiling

•You can arrange for the operating system to send you a
signal (just like before) every X seconds (see alarm(2))

•In the signal handler you determine the value of the target
program counter

• And append it to a growing list file

• This is sampling

•Later, you use debug information from the compiler to map
the PC values to procedure names

• Sum up to get amount of time in each procedure
47

Sampling Analysis

•Advantages

• Simple and cheap – the instrumentation is unlikely to disturb the program

• No big slowdown

•Disadvantages

• Can completely miss periodic behavior (e.g., you sample every k seconds
but do a network send at times 0.5 + nk seconds)

• High error rate: if a value is n times the sampling period, the expected
error in it is sqrt(n) sampling periods

•Read the gprof paper

48

Real-World Tool Utility

•Human study of 34 graduate students

•Given Tarantula (as a friendly plugin for Eclipse) and asked
to complete two debugging tasks
• Tetris: square block rotation bug
• NanoXML: parsing library exception

•Hypotheses:
• Tools will help us debug faster
• Tools help more on harder problems

50[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers? ISSTA '11.]

Results

•Experts Are Faster When Using Tools
• Over all participants, tools did not help
• Top-third of participants went from 14m:28s to 8:51 with tool

support (for Tetris, p < 0.05)

•Tools Did Not Help With Harder Tasks

•Changes In Rank Did Not Matter
• (Rank) 7 → 35 in Tetris, 83 → 16 in NanoXML
• Why is this so crucial here?

51

Explanations

•“Based on this data, we have determined that programmers
do not visit each statement in a linear fashion.”

•“If the faulty nature of a statement were apparent to the
developers by just looking at it, tool usage should stop as
soon as they get to that statement in the list.”
• “participants, on average, spent another ten minutes using the tool

after they first examined the faulty statement. That is, participants
spent (or wasted) on average 61% of their time continuing to inspect
statements with the tool after they had already encountered the
fault.”

52

Implications

•You are a Software Engineering manager

•Making a process decision: do we purchase, train on, and
deploy Tarantula?

•Tarantula claims: this tool will correctly rank buggy
statements near the top of the list
• This is almost a red herring!
• You must examine the “end-to-end” performance

•So fault localization tools are worthless?

53

Nuanced Example

•Suppose you have three devs: A, B and C
• Expert, Medium, Novice

•Tarantula makes A, the expert, 39% faster
• But makes everything 13% slower (training, overhead, whatever)

•If everything is equal, net gain = 0 (as in study)

•But suppose A is 25x faster than C (productivity later)
• A=25, B=13, C=1 → in this world your team, overall, is 8.7% faster

with Tarantula

54

Questions?

•Exam 1 (Friday)

•Enjoy the break!

•HW4 (due after break): CodeSonar

55

