\WMBGINE "TRUTH \S A SPHERE:

THE SPUERE

Static and

Dataflow
Analysis

THE SPUERE
\S ALL

(two-part lecture)

Foo(ptr, x) {
if (x > 10) A
deref ptr
)

Foo(ptr, X, vy, z, ..) {
if (x > 10) A
deref ptr
}

The Story So Far ...

*Quality assurance is critical to software engineering.

*Testing is the most common dynamic approach to QA.
* But: race conditions, information flow, profiling ...

*Code review and code inspection are the most common
static approaches to QA.

*\What other static analyses are commonly used and how do
they work?

One-Slide Summary

eStatic analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

* TL;DR analyses of code (i.e., not runtime)

eDataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

Fundamental Concepts

e Abstraction

* Capture semantically-relevant details
* Elide other details
 Handle “I don't know”: think about developers

*Programs As Data

* Programs are just trees, graphs or strings

 And we know how to analyze and manipulate those (e.g., visit every
node in a graph)

goto fail;

Why care about static analysis?

“Unimportant” SSL Example

static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
SSLBuffer signedParams,
uint8_t *signature,

UInt16 signaturelLen) {
0OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head * sh,
int b_size) {

struct buffer_head *bh;

unsigned long flags;

save_flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer_pool) == NULL)

return NULL;

sh->buffer_pool = bh -> b_next;

bh->b_size = b_size;

restore_flags(flags); // enables interrupts

return bh;

Could We Have Found Them? (Testing?)

* How often would those bugs trigger?

*Linux example:

 What happens if you return from a device driver with interrupts disabled?

e Consider: that's just one function
... in a 2,000 LOC file

... in a 60,000 LOC module

... in the Linux kernel

*Some defects are very difficult to find via testing or manual
Inspection

CNET » News » Security & Privacy » Klocwork: Our source code analyzer caught Apple's '...

Klocwork: Our source code
analyzer caught Apple's
'gotofail' bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

g by Declan McCullagh | February 28,2014 1:13 PM PST
K

4 - W Follow

ﬁ s7 | [223 m 23 | [841|{5 More + Comments ~| 25

UNSLALM CEIN (Warmngl Mot sviormat o

» N SecueTranspon :

<, Saeais S 62 if ((err « Reodyosh(&SSLHashSHAL, Bhast(tx)) !« @) O

» [N secorerramponts + b 624 goto foll; @ 3 -

> [N SecureTrasspontfriv s { Af ((err = SSLHoshSHAL update(Bhash(tx, EclientRandom)) != @) V- © Jheriliobstisniwerkipacaiosx-109
< goto foll; © wieyExchasge < 612 The code s |
» (2 wiSCatoutsc [1f ((err = SSLHoshSHAL . updote(Bhash(tx, &serverfondom)) != @)

» 0 ssTRecoreCalionts .« 624 goto fall; -

P W MNesage © 629 - - =]

. eonsaa s if (::; mﬁ){.w.mtc{mu. &signedfarams)) = @) 5

ey 631 goto “W Apple, we need to talk

» N s Buidlagy h 37 Coden srenachabie LFiral (BhashCx, ShashOut)) 1« q -

»

0 ¢
6 ssCennc goto foil; Carrent staten: Analyze
» 2 wChageCipherc . "

» (1 s5iCipherSpecs. € err = sslRowerify(ctx,
T nwosmreat Static code analysis wins! Ctx->peerPubkey,

» [ssiCostent c
¥ o ssiContexth

» 4 ssCrymroc @& oowork Issues 32 [ocwerk Log Console orenreis 4% Temn
»)

> ::;N:-:- Fiter manched 1 of 4 Bsues. Crouped by Diveciiry, serted by Description. then by Resource.

> j: WL Oescrotmn Tanonarmy Rescurce LOCaton Seventy

» (N ss0gesta h ¥ L JUsery/iedeistein/werkoapace fosx- 1 0.9/ Securiny - 5547 1 A0security_ i/

» (4 ssbandrhake < 1 UNREACH CEN: Code i usreachable CandCos slleybnchanges 632 Warring (1)

Py sshundihaee v

» L6 sshandshasel nish ¢
» L0 s undihaketielio ¢
» L0 swepchain g

» o ssepchuin b

» o sXeyEachange ¢

Wetalye Soart bnsert 63260 ® -

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's
product would have nabbed the "goto fail" bug.

(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users
vulnerable to Internet attacks until the company finally fixed it Tuesday.

Featured Posts

Google unveils Androi
wearables
Internet & Media

Motorol:
powere(
Internet

0K, Gla
inmy fa
Cutting E

Apple if
product
Apple

QUM iPad wit
M comeba
Apple
Most Popular

Giant 3[
house
6k Facel

Exclusiv
Doeschi
716 Twe

Google'
-‘ four can
= 771 Goc

Connect With CNET

Facebook
Like Us

BYE A s

11

Many Interesting Defects

e...are on uncommon or difficult-to-exercise execution
paths

 Thus itis hard to find them via testing

*Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

*\We want to learn about “all possible runs” of the program
for particular properties

* Without actually running the program!
 Bonus: we don't need test cases!

Static Analyses Often Focus On

*Defects that result from inconsistently following simple,
mechanical design rules

Security: buffer overruns, input validation
Memory safety: null pointers, initialized data
Resource leaks: memory, OS resources

API Protocols: device drivers, GUIl frameworks
Exceptions: arithmetic, library, user-defined
Encapsulation: internal data, private functions
Data races (again!): two threads, one variable

G | Am Devioper

Knock knock
Race condition
Who's there?

2,504 1,013 C%D.Y@)Ol

How And Where Should We Focus?

! L, = 3
e 1) " \ b’ g £
7 ; s 8% L 4L = 2
N I 7 P TS 5 - -
3 ' Ly A s 1 e ’
2 2

w4
et)] !
. i A A Y
. - - ™] '-“.l - ,‘
[1 5 A o)
; -£ 7 \’ ‘ ‘“' _J !
o ’) L]
L4 aA 321 HANDFORD
t‘ \ \
- 4 - e g LW

~
3 [g <
£ 58
p
.

4 -

14

Static Analysis

eStatic analysis is the systematic examination of an
abstraction of program state space

e Static analyses do not execute the program!

*An abstraction is a selective representation of the program
that is simpler to analyze

* Abstractions have fewer states to explore

*Analyses check if a particular property holds

* Liveness: “some good thing eventually happens”
« Safety: “some bad thing never happens”

Syntactic Analysis Example

*Find every instance of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

}

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

¥

}

* What could go wrong? First attempt:
grep logger\.debug -r source dir

16

} ‘V TR
. (M &9/ 5 +
< % = D8
z o pw [= 4
) A

Abstraction: Abstract Syntax Tree

*An AST is a tree representation of the syntactic structure of
source code

* Parsers convert concrete syntax into abstract syntax

*Records only semantically-relevant information
e Abstracts away (, etc. Example: 5 + (2 + 3)

+

*AST captures program structure

17

Programs As Data

*“crep” approach: treat program as string
*AST approach: treat program as tree

*The notion of treating a program as data is fundamental
* Recall from 370: instructions are input to a CPU
e Writing different instructions causes different execution
*|t relates to the notion of a Universal Turing Machine.

* Finite state controller and initial tape represented with a string
e Can be placed as tape input to another TM

Dataflow Analysis

eDataflow analysis is a technique for gathering information
about the possible set of values calculated at various points
In @ program

*\We first abstract the program to an AST or CFG

*\We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

*\We finally give rules for computing those abstract values
 Dataflow analyses take programs as input

Two Exemplar Analyses

*Definite Null Dereference

* “Whenever execution reaches *ptr at program location L, ptr will be
NULL”

ePotential Secure Information Leak

 “We read in a secret string at location L, but there is a possible future
public use of it”

WELL THERE'S YOUR
PROBLEM 20

Discussion

*These analyses are not trivial to check

*“Whenever execution reaches” — “all paths” — includes
paths around loops and through branches of conditionals

*\We will use (global) dataflow analysis to learn about the
program

* Global = an analysis of the entire method body, not just one { block }

21

Analysis Example

*|s ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

/\

ptr =

0; X =2

*

3;

\/

print (ptr->data) ;

22

Correctness

*To determine that a use of x is always null, we must know

this correctness condition:

*On every path to the use of x,
the last assignment to x is x :=0 **

Test:

1. What important event tock
place on December 16, 17737

I do Not BELIEVE IN LiNEaR
TIME. THERE 1S No Pas+ and
futuRE: qlL |S ONE, aNd
EXiSTENCE IN tHE YEMPoRal SENSE
15 ILLUSeRY, THiS QUESHON,
HEREFORE, 15 MEAN|NGLESS and
MPOSSIBLE O ANSWER.

\\\/%

U /
: —

WWEN IN DQUBT,
DENY ALL TERMS
AND DEFINITIONS .

23

Analysis Example Revisited

*|s ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

print (ptr->data) ;

24

Static Dataflow Analysis

*Static dataflow analyses share several traits:

 The analysis depends on knowing a property P at a particular point in
program execution

* Proving P at any point requires knowledge of the entire method body
 Property P is typically undecidable!

\ Word cannot edit the Unknown.
&L/S"“

—ox—)

25

Undecidability of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of a
program are undecidable:

* Does the program halt on all (some) inputs?
e This is called the halting problem

* |s the result of a function F always positive?
* Assume we can answer this question precisely
* Oops: We can now solve the halting problem.

* Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

* Contradiction! (.

NS

static int IsNegative(float arg)
{
char*p = (char*) malloc(20);
sprintf (p, "%E", arg);

return p[(0]=="'-";
1

Undecidability of Program Properties

*So, if interesting properties are
static . wih Somels
out, what can we do? . i 7

*Syntactic properties are decidable!

ao_ 7

* e.g., How many occurrences of “x” are
there?

*Programs without looping are also
decidable!

Looping

* Almost every important program has a loop
e Often based on user input

*An algorithm always terminates

*So a dataflow analysis algorithm must terminate even if the
input program loops

*This is one source of imprecision

 Suppose you dereference the null pointer on the 500" iteration but
we only analyze 499 iterations

28

Conservative Program Analyses

*\We cannot tell for sure that ptr is always null
 So how can we carry out any sort of analysis?

|t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

e P is definitely true
e Don’tknow if P is true

30

Conservative Program Analyses

*|t is always correct to say “don’t know”
 We try to say don’t know as rarely as possible

*All program analyses are conservative

*Must think about your software engineering process
* Bug finding analysis for developers?
They hate “false positives”, so if we don't know, stay silent.

* Bug finding analysis for airplane autopilot?
Safety is critical, so if we don't know, give a warning.

Definitely Null Analysis

*|s ptr always null when it is dereferenced?

ptr = new AVL (),

ptr = 0;
if (B > 0)

N

if (B > 0)
ptr = 0; X =2 * 3;

foo = myAVL; ptr = 0;

~.

print (ptr->data);

~.

print (ptr->data) ;

32

Definitely Null Analysis

*|s ptr always null when it is dereferenced?

ptr = new AVL (),

1if (B > 0)

N\

ptr = 0; X =2 * 3;

print (ptr-

print (ptr->data) ;

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptr is ptr :=0 **

34

Definitely Null Information

*\We can warn about definitely null pointers at any point

where ** holds

*Consider the case of computing ** for a single variable ptr

at all program points
*\/alid points cannot hide!

*\We will find you!

* (sometimes)

| don’t know for sure if ' you exist, but

| might find you without overclaiming
knowledge of your existence, and'l
acnkowledge that | occasionally produce
false positives and negatives

35

Definitely Null Analysis (Cont.)

*To make the problem precise, we associate one of the
following values with ptr at every program point

e Recall: abstraction and property

value interpretation

1 This statement is
(called Bottom) not reachable

C X = constant c

T Don’t know if X is a
(called Top) constant

Example

Let's fill in these blanks now.

«— X-=
X:=3 < X-
B>0
X;/-\X:
N Y=Z+W Yi=0
= —>
X:=4 = X-=
X = e X =
A:i=2*X

Recall: L = not reachable, ¢ = constant, T = don't know.

37

Example Answers

X

X =
B>0

X-V\X:S

3 >

Y=Z+W

38

Using Abstract Information

*Given analysis information (and a policy about false

positives/negatives), it is easy to decide whether or not to
Issue a warning

 Simply inspect the x = ? associated with a statement using x
* If xis the constant 0 at that point, issue a warning!

*But how can an algorithm compute x = ?

The Idea

*The analysis of a complicated program can be expressed as
a combination of simple rules relating the change in
information between adjacent statements

SMETIMES T FEEL LIKE QUR || WELL, THOREN SAYS, "SIMALIFY,
LIFE HAS GOTTEN TOO QOMAL-] | SIMPLIFY.” MANBE WE NEED
CATED.. THAT WEVE ACCUMAATED | | T DO THAT, X,

45

Explanation

*The idea is to “push” or “transfer” information from one
statement to the next

*For each statement s, we compute information about the
value of x immediately before and after s

*C. (x,s) = value of x before s

*C_ (%) = value of x after s

Transfer Functions

*Define a transfer function that transfers information from
one statement to another

47

Rule 1

. Cout(x, X :=c)=c if cis aconstant

48

Rule 2

*C_(x,;s)=L ifC (x,s)=1

Recall: L = “unreachable code”

49

Rule 3

*C_(x,x:=1(..))=T

This is a conservative approximation! It might be possible to figure out
that f(...) always returns 0, but we won't even try!

50

Rule 4

* Coilx,yi=.)=C (x,y:=..) ifx#y

51

The Other Half

*Rules 1-4 relate the in of a statement to the out of the same
statement

* they propagate information across statements

*Now we need rules relating the out of one statement to the
in of the successor statement

* to propagate information forward along paths

*In the following rules, let statement s have immediate
predecessor statements p_,...,p_

Rule 5

*if C_ (X, p.)=Tforsomei, thenC (x,s)=T

53

Rule 6

if Coue(X, p;) =c and C,(x, p)=d and d#c ,thenC, (x,s)=T

54

Rule 7

if C_(x,p)=c or L foralli,then C (x,s)=c

55

Rule 8

ifC_(x,p)=1 foralli,thenC (x,s)= 1

56

Static Analysis Algorithm

e For every entry s to the program, set
C (x,s)=T

SetC (x,s)=C_ (x s)= L everywhere else

out

e Repeat until all points satisfy 1-8:

* Pick s not satisfying 1-8 and update using the appropriate rule

57

\WMBGINE "TRUTH \S A SPHERE:

TUE SPUERE THE GPUERE
\S PLL \S ALV
Static and
Dataflow
Analysis

THE SPUERE
\S ALL

(two-part lecture)

“Static” means?

Programs as ?

Abstraction: what are special abstract values?

What is a “manual static analysis”?

The Idea

*The analysis of a complicated program can be expressed as
a combination of simple rules relating the change in
information between adjacent statements

SMETIMES T FEEL LIKE QUR || WELL, THOREN SAYS, "SIMALIFY,
LIFE HAS GOTTEN TOO QOMAL-] | SIMPLIFY.” MANBE WE NEED
CATED.. THAT WEVE ACCUMAATED | | T DO THAT, X,

60

Explanation

*The idea is to “push” or “transfer” information from one
statement to the next

*For each statement s, we compute information about the
value of x immediately before and after s

*C. (x,s) = value of x before s

*C_.(x,s) = value of x after s

Transfer Functions

*Define a transfer function that transfers information from
one statement to another

62

Rule 1

. Cout(x, X :=c)=c if cis aconstant

63

Rule 2

*C_ (x,;s)=L ifC (x,s)=1

Recall: L = “unreachable
code’

64

Rule 3

e C (x,x:=1(...))=T

out

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

65

Rule 4

* C i, yi=.)=C (x,y:=..) ifx#y

66

The Other Half

*Rules 1-4 relate the in of a statement to the out of the same
statement

* they propagate information across statements

*Now we need rules relating the out of one statement to the
in of the successor statement

* to propagate information forward along paths

*In the following rules, let statement s have immediate
predecessor statements p_,...,p_

Rule 5

*if C_ (X, p.)=Tforsomei, thenC (x,s)=T

68

Rule 6

if Coue(X, p;) =c and C,(x, p)=d and d#c ,thenC, (x,s)=T

69

Rule 7

if C_(x,p)=c or L foralli,then C (x,s)=c

70

Rule 8

ifC_(x,p)=1 foralli,thenC (x,s)= 1

71

Static Analysis Algorithm

e For every entry s to the program, set
C (x,s)=T

SetC (x,s)=C_ (x s)= L everywhere else

out

e Repeat until all points satisfy 1-8:

* Pick s not satisfying 1-8 and update using the appropriate rule

72

The Value L

*To understand why we need 1., look at a loop

« X=T
X:=3 < X=3
B>0
XV\X:3
Y=Z+W Yi=0
ng_)\/
Ai=2*X

A<B

The Value L

*To understand why we need 1., look at a loop

X=3 —>

Y=Z+W

X=3 —

«— X=T

X :=3
B>0

e X=3

Az2*X
A<B

74

The Value L

*To understand why we need 1., look at a loop

«— X=T

X :=3
B>0

e X=3

XV\X:3

Y=Z+W

<« X=V??
X-M;

Yi=0

Az2*X
A<B

« X =272

75

The Value L (Cont.)

*Because of cycles, all points must have values at all times
during the analysis

Intuitively, assigning some initial value allows the analysis to
break cycles

*The initial value L means “we have not yet analyzed
control reaching this point”

77

Another Example

X:=3 Analyze the value of X ...

79

Another Example: Answer

-« X=T
Xi=3 (—X:}<3

(—X:})<4

Must continue
until all rules
are satisfied !

80

Orderings

*\We can simplify the presentation of the analysis by ordering
the values

L < ¢c < T

*Making a picture with “lower” values drawn lower, we get
T

-1 0 1

This is called a “lattice 1

81

Orderings (Cont.)

T is the greatest value, L is the least

* All constants are in between and incomparable

* (with respect to this analysis)

*Let Jub be the least-upper bound in this ordering
e cf. “least common ancestor” in Java/C++

*Rules 5-8 can be written using lub:

°C (x,s)=lub{C_ (x, p) | pis a predecessor of s }

82

Termination

*Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

*The use of lub explains why the algorithm terminates
* Values start as L and only increase

1 can change to a constant, and a constant to
e Thus, C (x, s) can change at most twice

Number Crunching

*The algorithm is polynomial in program size:
*Number of steps =
*Number of C_(....) values changed * 2 =

*(Number of program statements)? * 2

84

“Potential Secure Information Leak” Analysis

*Could sensitive information possibly reach an insecure use?

str := get password()

If B >0

/\

str := sanitize(str) Y :=0

_>/

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

90

Live and Dead X =3

*The first value of x is dead (never used)

*The second value of x is live (may be used)

*Liveness IS an important concept

 We can generalize it to reason about “potential secure information
leaks”

91

Sensitive Information

*A variable x at stmt s is a possible sensitive (high-security)
information leak if

* There exists a statement s’ that uses x
* Thereis a path fromstos’

* That path has no intervening low-security assignment to x

Chronicle.com - Today's News =1

[+] Textbook Sales Drop, and University Presses Search for
Reasons Why

[+] Students Flock to Web Sites Offering Pirated Textbooks

bok: Stiids Caver Proc

92

Computing Potential Leaks

*\We can express the high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

*In this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value

 We have abstracted away the value

*This time we will start at the public display of information
and work backwards

Secure Information Flow Rule 1

l <« X = true

display (x)

(—X:?

H. (x, s) = true if s displays x publicly
true means “if this ends up being a secret variable

then we have a bug!”

94

Secure Information Flow Rule 2

l <«— X = false

X := sanitize (x)

(—X:?

H. (x, x :=e) = false

(any subsequent use is safe)

Secure Information Flow Rule 3

. Hm(x, S) = Hout(x, s) if s does not refer to x

96

Secure Information Flow Rule 4

P

mwue

X=72? X=72? X = true X=2?

*H_..(x, p) = V{H. (x, s) | sasuccessor of p }

(if there is even one way to potentially have a leak, we potentially have a leak!)

97

Secure Information Flow Rule 5 (Bonus!)

l <« Y-a

X =y

<_X:a

*H (y,x:=y)=H__ (x,x:=y)
(To see why, imagine the next statement is

display(x). Do we care about y above?)

Algorithm

eletall H (...) = false initially

e Repeat process until all statements s satisfy rules 1-4 :

* Pick s where one of 1-4 does not hold and update using
the appropriate rule

Secure Information Flow Example

X := passwd()

<«—|H(X) = false
X := sanitize (X)

<«—|H(X) = false
B >0

H(X) = fGV\FI(X) = false

<—H(X) = false

Y :=Z + W Y :=0
H(X):M):f Ise
<«— H(X) = falge

display (X)

X := passwd()
<« H(

A<B

<«—H(X) = false

100

Secure Information Flow Example

X := passwd()

<«—|H(X) = false
X := sanitize (X)

<«—|H(X) = false
B >0

H(X) = fGV\FI(X) = false

<—H(X) = false

Y :=Z + W Y :=0
H(X):M):f Ise
<«— H(X) = TRUE

display (X)

X := passwd()
<« H(

A<B

<«—H(X) = false

102

Secure Information Flow Example

X := passwd()

<«—|H(X) = false
X := sanitize (X)

<—H(X) = TRUE
B >0

H(X) = T,V\(_H(x) = TRUE

<—H(X) = TRUE

Y (=2 + W Y :=0
FKXO::;;;]E:;h\\\\ﬁsuk/////<¢:1&;0:: UE
<« H(X) = TRYE

display (X)

X := passwd()
<« H(

A<B

<« H(X) = TRUE

103

Secure Information Flow Example

X := passwd()

/\@Héx)ifalse
X := sanitize (X)
No possible leak <« H(X) = TRUE

Starting here B >0
H(X) = TRU/\(_H(X) = TRUE
Y '=Z + W Y := 0 (—H(X):TRUE
FﬂXOzr;;iE;:>\\\\S*“k(////<ﬁfﬁz;): UE
<«— H(X) = TRYE

display (X)
POSSIBLE LEAK

-
From high-security X—=—passwd () | /
value StartingM . e =TRUE

<« H(X) = TRUE

104

Termination

*A value can change from false to true, but not the other
way around

*Each value can change only once, so termination is
guaranteed

*Once the analysis is computed, it is simple to issue a
warning at a particular entry point for sensitive information

Static Analysis Limitations

*\Where might a static analysis go wrong?

*|If | asked you to construct the shortest program you can

that causes one of our static analyses to get the “wrong”

answer, what would you do?

YOU KNOW THIS METAL I SPEND MOSTOF MY LUFE| | BUT TODAY, THE PATTERN

RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | oF LIGHTS 1S AL LRONG!
UTTLE LIGHTS? THE. PATTERN OF LIGHTS OHGOD! TRY
CHANGE HOWEVER I WANT: PRESSING MORE
\ VR, k sooNDs ITSNOT BUTIONS!

(HELPING!

it It 7 22

106

X = new AST()
v = identity(x)
derefy

Static Analysis

*You are asked to design a static analysis to detect bugs
related to file handles

« Afile starts out closed. A call to open() makes it open; open() may
only be called on closed files. read() and write() may only be called on

open files. A call to close() makes a file closed; close may only be
called on open files.

 Reportif a file handle is potentially used incorrectly

*\What abstract information do you track?

*\WWhat do your transfer functions look like?

Abstract Information

e We will keep track of an abstract value for a given file
handle variable

*\alues and Interpretations
T file handle state is unknown

1 haven't reached here yet
closed file handle is closed
open file handle is open

109

“Null Ptr” vs. “File Handles”

*Previously: “null ptr” *Now: “file handles”
l <« ptr=0 l <« f=closed
*ptr read (£f)
™ Report ™ Report
Error! Error!

Y Y

110

Rules: open

1 <« f =closed

open

(£)

Y

<« f=open

1, <«— f=Toropen

111

Rules: close

1 <« f=open

close (f)

Y

<«— f =closed

1, <«— f=Tor closed

close (f)

112

Rules: read/write

*write(f) is identical

l <« f =open 1, <— f =T or closed
read (f) read (f)
<« f =open \ Report
Error!

Y Y

113

Rules: Assighment

114

Rules: Multiple Possibilities

<« f=a
« f=1
(_‘fzb (—f:a
\/(— f=a
« =T <« f=a

115

A Tricky Program

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else:close(f);
} while (b)
open(f);
close(f);

start:

closed

switch (a)

case 1: open(f); read(f); close(f); goto start closed N
default: open(f);: start: open(f)
do { closed 1
write(f) ; closed open(f) L
if (b): read(f); open 1
else: close(f): write(f) close(f)
} while (b) TR L i
open(f); open
. 1
close(f): close(f) read(f)
1
1
1
close(f) open(f)

117

closed

1
1
start: open(f)
1 1
open(f) 1
N 1
write(f) close(f)
read(f) 1
i 1
close(f) read(f) 1
1
1
1
close(f) open(f)

118

closed

closed

closed
closed
start: open(f)
closed open
open(f) open
open . open
write(f) close(f)
read(f) 1
open open
losed
close(f) read(f) close
open
1
1
close(f) open(f)

119

closed

closed

closed
closed
start: open(f)
closed open
open(f) open
open . open
write(f) close(f)
read(f) T
open open
losed
close(f) read(f) close
open
T
1
close(f) open(f)

120

closed

closed

close(f)

closed
closed
start: open(f)

closed open

open(f) !
T

open write(f)

read(f) T
T

open

close(f) read(f)
T
T
T
close(f) open(f)

121

closed

closed

close(f)

closed
closed
start: open(f)

closed open

open(f) !
T

open write(f)

read(f) T
T

open

close(f) =edl]
T
T
T
close(f) open(f)

122

Is There Really A Bug?

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else:close(f);
} while (b)
open(f);
close(f);

Forward vs. Backward Analysis

*\We've seen two kinds of analysis:

*Definitely null (cf. constant propagation) is a forwards
analysis: information is pushed from inputs to outputs

*Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back towards
Inputs

Questions?

*HW?3 is due Tue Feb 21 (everyone gets one-day extension)

*Exam 1 is Friday — details forthcoming

