
Code Inspection

and

Code Review

1/30/2023 EECS 481 (W23) – Code Review 1

Prof. Kochunas

EECS 481 (W23)



One-Slide Summary

1/30/2023 EECS 481 (W23) – Code Review 2

• In a code review, another developer examines your 
proposed change and explanation, offers feedback, 
and decides whether to accept it. Modern code
reviews have significant tool support.

• In a (formal) code inspection, a team of 
developers meets and examines existing code, 
following a process to understand it and spot issues.

• Both of these static quality assurance approaches
have costs and benefits.



Outline

1/30/2023 EECS 481 (W23) – Code Review 3

• Motivation

• Code Reviews

• Code Inspections

• Summary and Comparison



1/30/2023 EECS 481 (W23) – Code Review 4

Learning Objectives: by the end of today’s 

lecture you should be able to…
1. (knowledge) explain the differences between a 

code review, and a code inspection.

2. (knowledge/synthesis) explain the factors that go 
into decisions about conducting code 
reviews/inspections

3. (value) believe that we’re on the same team.



The Story so far…

1/30/2023 EECS 481 (W23) – Code Review 5

• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if we plan to use a software development process

• Good planning needs good decision making which requires information obtained by measurements to combat uncertainty and mitigate risk

• Quality assurance is critical to software engineering

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive and not testing is even more expensive

• Test suite quality metrics support informed comparisons
between tests.

• But where do we get tests?

• We can generate some test inputs
and oracles, but testing remains
very expensive

• What about static (“look at the program”)
approaches to QA?



6

Motivation

1/30/2023 EECS 481 (W23) – Code Review

You’re probably smarter
than you think



Intuition

1/30/2023 EECS 481 (W23) – Code Review 7

• “Given enough eyeballs, all bugs are shallow.”
- Linus’s Law

• “Have peers, rather than customers,
find defects.”
-Karl Wiegers



1/30/2023 EECS 481 (W23) – Code Review 8

Example of Both: Twilight

[ http://reasoningwithvampires.tumblr.com/ ]



Why not simply test?

1/30/2023 EECS 481 (W23) – Code Review 9

• Faults can mask other faults at
runtime

• Only completed implementations can
be tested (esp. for scalability or
performance)

• Many quality attributes (e.g., security, compliance 
maintainability) are hard to test

• Non-code artifacts (e.g., design documents) cannot be
tested.



A Second Pair of Eyes

1/30/2023 EECS 481 (W23) – Code Review 10

• Different background, different experience

• No preconceived idea of correctness

• Not biased by “what was intended”

• “Breadth of experience in an individual is essential to
creativity and hence to good engineering. … Collective 
diversity, or diversity of the group – the kind of diversity that 
people usually talk about – just as essential to good 
engineering as individual diversity. … Those differences in 
experience are the “gene pool” from which creativity springs.”

- Bill Wulf, Nat. Academy of Engineering President



What to Examine

1/30/2023 EECS 481 (W23) – Code Review 11

• Code Inspection: Examine Whole Program
• Expensive if the program changes

• Good if a new concern arises

• Code Review: Examine Each Change
• Inductive Argument:

• (if) V(0) is good;
(and if) V(n) is good;
(Therefore) V(n+1) is good

• Bad if the definition of
“good” changes.



Code Inspection Example: It’s a Bug Hunt!

1/30/2023 EECS 481 (W23) – Code Review 12

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1;

}

} else {

days -= 365;

year += 1;

}

}

Participation Check!



Code Inspection Example: It’s a Bug Hunt!

1/30/2023 EECS 481 (W23) – Code Review 13

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1;

}

} else {

days -= 365;

year += 1;

}

}

Participation Check!



1/30/2023 EECS 481 (W23) – Code Review 14



15

Code Review

1/30/2023 EECS 481 (W23) – Code Review



GitHub

1/30/2023 EECS 481 (W23) – Code Review 16

• Pull requests let you tell others about changes you’ve 
pushed to a [Git] repository. Once a pull request is 
opened, you can discuss and review the potential 
changes with collaborators and add follow-up commits 
before the changes are merged into the repository.

• Other contributors can review your proposed changes, 
add review comments, contribute to the pull request 
discussion, and even add commits to the pull request.



1/30/2023 EECS 481 (W23) – Code Review 17



Microsoft (Visual Studio, CodeFlow, etc.)

1/30/2023 EECS 481 (W23) – Code Review 18

• Before you check in your code, you can use Visual 
Studio to ask someone else from your team to 
review it. Your request will show up in the Team 
Explorer, in the “My Work” page.

• (Are you using Git to share your code? If so, then 
use a pull request.)



1/30/2023 EECS 481 (W23) – Code Review 19

Dev #1 Request Review



1/30/2023 EECS 481 (W23) – Code Review 20

Dev #1 – Submit Request to Dev #2



1/30/2023 EECS 481 (W23) – Code Review 21

Dev #2 – See and Accept Request



1/30/2023 EECS 481 (W23) – Code Review 22

Dev #2

View Details



1/30/2023 EECS 481 (W23) – Code Review 23

Dev #2

Suggest

Improvements



Review Policies – Example from Google

1/30/2023 EECS 481 (W23) – Code Review 24

• All change lists (“CLs”) must be reviewed. Period.

• Any CL can be reviewed by an engineer at Google.

• Each directory has a list of owners. At least one reviewer or the author must be 
an owner for each file that was touched in the commit. If the author is not in the 
owners file, the reviewer is expected to pay extra attention to how the code fits in 
to the overall codebase.

• One can enforce that any CLs to that directory are CC’d to a team mailing list.

• Reviews are conducted either by email, or using a web interface called Mondrian.

• In general, the review must have a positive outcome before the change can be 
submitted (enforced by perforce hooks). However, if the author of the changelist
meets the readability and owners checks, they can submit the change “To Be 
Reviewed,” and have a post-hoc review. There is a process which will harass 
reviewers with very annoying emails if they do not promptly review the change.



Google, Facebook

1/30/2023 EECS 481 (W23) – Code Review 25

• “In broad strokes, code review processes in Google and 
Facebook are similar. In both companies it is practically 
required that every change to production code is reviewed by 
at least one team member.

• Google has this readability process where you need to earn
a privilege to commit in a given programming language.
Readability is literally a badge on your profile that the code 
review system checks to see if you can commit the code 
yourself or you need to ask for an extra review for the 
compliance with company-wide language style guides.”

• Marcin Wyszynski 2017, worked at both companies



Tools

1/30/2023 EECS 481 (W23) – Code Review 26

• Google uses Mondrian, an in-house tool
• One of its authors later made

https://www.gerritcodereview.com/
• Reportedly, one of its authors later made

https://reviewable.io/
• Those give a taste of what Mondrian is like

• Facebook uses Phabricator
• Developed in-house, later open-sourced
• https://www.phacility.com

https://www.gerritcodereview.com/
https://reviewable.io/
https://www.phacility.com/


1/30/2023 EECS 481 (W23) – Code Review 27



1/30/2023 EECS 481 (W23) – Code Review 28

Code

Review

Integration

Example

(MediaWiki)



29

Trivia Break

1/30/2023 EECS 481 (W23) – Code Review



1/30/2023 EECS 481 (W23) – Code Review 30

Trivia: Chemistry, Biology

• This English chemist and X-ray crystallographer 
used X-ray diffraction images of DNA, leading to the 
discovery of its double helix structure (see “Photo 
51” below). After dying at age 37 of
cancer, other collaborators on the
work were awarded the Nobel prize.
(controversy: not awarded
posthumously).



1/30/2023 EECS 481 (W23) – Code Review 31

Psychology: Group Decision Making

• 156 students read descriptions of three hypothetical 
candidates for student body president and then met in 
4-person groups to elect a winner

• Each candidate had 16 associated pieces of information
(unambiguously positive, negative, and neutral facts
related to the job)

• Collectively, each 4-person group had all the info

• Individually, each person only had some info

• Candidate A is objectively twice as good as B or C

• Who wins the election?



1/30/2023 EECS 481 (W23) – Code Review 32

• Starting
individual
information
distribution
breakdown
by group
condition:



1/30/2023 EECS 481 (W23) – Code Review 33

Group Decision Making

• “Even though groups could have produced unbiased 
composites of the candidates through discussion, 
they decided in favor of the candidate initially 
preferred by a plurality rather than the most 
favorable candidate. Group members’ pre and post-
discussion recall of candidate attributes indicated 
that discussion tended to perpetuate, not correct, 
members’ distorted pictures of the candidates.”



1/30/2023 EECS 481 (W23) – Code Review 34

Analogy: Gerrymandering



1/30/2023 EECS 481 (W23) – Code Review 35

Group Decision Making

• Implications for SE: Both “formal code inspection” 
and “modern multi-person passaround code review” 
are group decision making tasks.

• Reviewers/inspectors are unlikely to start with
uniformly perfect information and are thus
vulnerable to this bias.

[G. Stasser, W. Titus. Pooling of Unshared Information in Group Decision Making: Biased Information Sampling During 

Discussion. J. of Personality and Social Psychology, 48(6) 1985. ]



1/30/2023 EECS 481 (W23) – Code Review 36

Do Code Reviews Work?



Code Review Goals

1/30/2023 EECS 481 (W23) – Code Review 37

• Finding defects
• Both low-level and high-level issues (requirements/design/code)

• Code improvement
• Readability, formatting, commenting, consistency, dead code 

removal, naming, coding standards

• Identifying alternative solutions

• Knowledge transfer
• Learn about API usage, available libraries, best practices, team 

conventions, system design “tricks”, “developer education” 
(especially for junior developers)

• Collectively called “Tribal Knowledge”



Code Review Goals (cont’d)

1/30/2023 EECS 481 (W23) – Code Review 38

• Team awareness and transparency
• Let others “double check” changes

• Announce changes to specific developers or entire team 
(“FYI”)

• Shared Code ownership
• openness toward critique and changes

• makes developers “less protective” of their code



1/30/2023 EECS 481 (W23) – Code Review 39



Outcomes (200 Microsoft reviews, 570 comments)

1/30/2023 EECS 481 (W23) – Code Review 40

• Most frequent: code improvements
• 58 better coding practices
• 55 removing unused/dead code
• 52 improving readability

• Moderate: defect finding (14%)
• 65 logical issues (“uncomplicated logical errors, e.g., corner cases, 

common configuration values, operator precendence”)
• 6 high-level issues
• 5 security issues
• 3 wrong exception handling

• Rare: knowledge transfer
• 12 pointers to internal/external documentation, etc.



1/30/2023 EECS 481 (W23) – Code Review 41



1/30/2023 EECS 481 (W23) – Code Review 42

Side Quest: Philosophy

• One definition of the source of
unhappiness is unrealized desire

• You are unhappy when you desire
reality (or your experience) to have
property X but it does not

• Buddhism: “craving is the cause of all suffering”

• You can either change what you want
… or try to change reality / your experiences

• Both are usually very difficult!



Expectation/Outcome Mismatch

1/30/2023 EECS 481 (W23) – Code Review 43

• Low quality of code reviews
• Reviewers look for easy errors (formatting issues)

• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change

• Understanding the code and its context

• Feedback channels to ask questions often needed

• No Quality Assurance on the outcome



44

Code

Inspection

1/30/2023 EECS 481 (W23) – Code Review



Formal Code Inspections

1/30/2023 EECS 481 (W23) – Code Review 45

• In a formal code inspection a group of developers 
meets to review code or other artificats

• Popularized by IBM in the 1970s, broadly adopted in the
1980s, subject of much research

• Viewed as the most effective approach to finding 
bugs.

• 60%-90% of bugs were found with inspections

• Very expensive and labor-intensive.



Inspection Team and Roles

1/30/2023 EECS 481 (W23) – Code Review 46

• Typically 4-5 people (at least 3 if “formal”)
• Author

• Inspector(s)
• Find faults and broader issues

• Reader
• Presents the code or documentation at inspection meeting

• Scribe
• Records results

• Moderator
• Manages process, facilitates, reports



1/30/2023 EECS 481 (W23) – Code Review 47

Inspection Process



Inspection Steps

1/30/2023 EECS 481 (W23) – Code Review 48

• Planning (select Moderator)

• Overview (brief) – Author presents context in meeting

• Preparation (1-2h) Every reviewer inspects the code separately

• Meeting (1h)
• Reader presents the code
• All reviewers identify issues
• Meetings only discover issues, do not discuss solution or whether it 

really is an issue

• Rework

• Followup (Verifier checks changes)



Inspection Checklists

1/30/2023 EECS 481 (W23) – Code Review 49

• Reminder of what to look for

• Includes issues detected in the past

• Preferably focus on few important items

• Examples
• Are all variables initialized before use? Are all variables used?
• Is the condition of each if/while statement correct?
• Does each loop terminate?
• Do function parameters have the right types and appear in the right 

order?
• Are linked lists efficiently traversed?
• Is dynamically allocated memory released?



Process Details

1/30/2023 EECS 481 (W23) – Code Review 50

• Authors do not explain or defend the code – not 
objective

• Author .NOT. ANY((/moderator,scribe,reader/))

• Author observes questions and misunderstandings and 
clarifies issues if necessary

• Reader (optional) walks through the code line by line, 
explaining it

• Reading the code aloud requires deeper understanding

• Verbalizes interpretations, thus observing differences in 
interpretation



Social Issues: Egos in Inspections

1/30/2023 EECS 481 (W23) – Code Review 51

• Authors should separate self-worth from code

• Identify defects, not alternatives; do not criticize authors

• Avoid defending code. Avoid discussions of solutions or alternatives

• Reviewers should not “show off” as smarter

• Author decides how to resolve defects.



Social Issues: Inspection Incentives

1/30/2023 EECS 481 (W23) – Code Review 52

• Meetings should
not include management

• Do not use code reviews for
HR evaluations!

• Bad: “finding more than 5 bugs
during inspection counts against
the author”

• Leads to avoidance, fragmented
submission, not pointing out defects,
holding pre-reviews

• Responsibility for quality with authors, not reviewers

• “why fix this, reviewers will find it”

• cf. lecture on Metrics and Incentives



Root Cause Analysis

1/30/2023 EECS 481 (W23) – Code Review 53

• An overarching goal is look beyond the immediate 
puzzle

• Identify way to improve the development process to 
avoid this problem in the future

• Restructure the development process

• Introduce new policies

• Use new development tools, languages, analyses, etc.

• cf. “definition of insanity”



When to Inspect

1/30/2023 EECS 481 (W23) – Code Review 54

• Inspect before milestones

• Incremental inspections during development
• Earlier often better than later: smaller fragments, chance 

to influence further development
• Large code bases can be expensive and frustrating to

review
• Break down, divide and conquer

• Focus on critical components

• Identify defect density in first sessions to guide further need of 
inspections



Guidelines for Inspections

1/30/2023 EECS 481 (W23) – Code Review 55

• Collected over many companies in many projects and experiments

• Several metrics are easily measurable

• Effort, issues found, lines of code inspected, etc.

[ Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18 and papers reviewed therein. ]



1/30/2023 EECS 481 (W23) – Code Review 56

Focus Fatigue

Recommendation:
Do not exceed
60 minute session



1/30/2023 EECS 481 (W23) – Code Review 57

Inspection Speed

Above 400 LOC/h reviews get shallow
Recommendation: Schedule fewer than 400 LOC

for a 1h review session



1/30/2023 EECS 481 (W23) – Code Review 58

Inspection Meeting

Efficacy

Most issues found during preparation, 
not in meeting
Suggested synergy seems to have only 
low impact
Claim: Defects found in meetings 
often more subtle



1/30/2023 EECS 481 (W23) – Code Review 59

Self-Checks

Matter

Authors have
self-checked
documents
before inspection



Inspection Accuracy

1/30/2023 EECS 481 (W23) – Code Review 60

• About 25% of found issues are false positives
• We’ll return to this issue later in the course: it turns out 

humans are not perfect …

• Avoid discussing during meeting

• Confusion during meeting is an indicator that
document could be clearer

• For maintainability, if someone says “I don’t think code 
does X”, it does not actually matter if code does X or not!



1/30/2023 EECS 481 (W23) – Code Review 61



1/30/2023 EECS 481 (W23) – Code Review 62



The Goal Is Not To Be “Right” (cf. “save effort/money”)

1/30/2023 EECS 481 (W23) – Code Review 63

• “A Pyrrhic victory is a victory that inflicts such a 
devastating toll on the victor that it is tantamount to 
defeat. Someone who wins a Pyrrhic victory has 
also taken a heavy toll that negates any true sense 
of achievement or damages long-term progress.”

• Perhaps counter-intuitively, whether you (the code
author) are right or not is usually irrelevant

• “I don’t think X has Y” means “Clarify X’s use of Y”



64

Inspection

vs

Reviews

1/30/2023 EECS 481 (W23) – Code Review



Inspections vs. Reviews: Costs

1/30/2023 EECS 481 (W23) – Code Review 65

• Formal inspections and modern code reviews
• Formal inspections are very expensive (about one

developer-day per session)

• Passaround review is distributed, asynchronous

• Code reviews vs. Testing
• Code reviews claimed to be more cost effective

• Code reviews vs. not finding the bug



Code Review by Formality

1/30/2023 EECS 481 (W23) – Code Review 66

• Ad hoc review

• Passaround (“modern code reviews”)

• Pair programming

• Walkthrough

• Inspection

(When should you use which type?)

More

Formal



1/30/2023 EECS 481 (W23) – Code Review 67

Review Type and Differences

Review Type Planning Preparation Meeting Correction Verification

Formal 
Inspection

Yes Yes Yes Yes Yes

Walkthrough Yes Yes Yes Yes No

Pair 
Programming

Yes No Continuous Yes Yes

Passaround
(modern code 
review)

No Yes Rarely Yes No

Ad Hoc Review No No Yes Yes No



Studies, Claims, Results

1/30/2023 EECS 481 (W23) – Code Review 68

• Raytheon review study
• Reduced “rework” from 41% of costs to 20%

• Reduced integration effort by 80%

• Paulk et al. – costs to fix a space shuttle software
• $1 if found in inspection

• $13 during system test
• $92 after delivery

• IBM – 1h of inspection saves 20h of testing

• R. Grady – efficiency data from HP
• System use 0.21 defects/h
• Black box testing 0.28 defects/h

• White box testing 0.32 defects/h

• Reading/Inspection 1.06 defects/h



1/30/2023 EECS 481 (W23) – Code Review 69

The Story so far…
• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if we plan to use a software development process

• Good planning needs good decision making which requires information obtained by measurements to combat uncertainty and mitigate risk

• Quality assurance is critical to software engineering

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive and not testing is even more expensive

• Test suite quality metrics support informed comparisons
between tests.

• But where do we get tests?

• We can generate some test inputs
and oracles, but testing remains
very expensive

• What about static (“look at the program”)
approaches to QA?



1/30/2023 EECS 481 (W23) – Code Review 70

Questions?

• Homework continues…

• You can ask the course staff about homeworks
“early” (e.g., how to get started, common pitfalls, 
etc.)


