
Test Suite

Quality

Metrics

1/23/2023 EECS 481 (W23) – Test Quality Metrics 1

Prof. Kochunas

EECS 481 (W23)

One-Slide Summary

1/23/2023 EECS 481 (W23) – Test Quality Metrics 2

• Test suite quality metrics help us decide which suite to
use. Line coverage, the fraction of lines visited when
running a suite, is simple but gives limited confidence.

• Branch coverage, which requires both true and false
values for conditions, is richer (incorporating data values
indirectly).

• Mutation analysis measures the fraction of seeded
defects detected by a suite; it is expensive but effective.

• Beta and A/B testing involve real users and their
experiences.

Outline

1/23/2023 EECS 481 (W23) – Test Quality Metrics 3

• Motivation

• Testing through the Lens of Logic

• Testing through the Lens of Statistics

• Testing through the Lens of Adversity

1/23/2023 EECS 481 (W23) – Test Quality Metrics 4

Learning Objectives: by the end of today’s

lecture you should be able to…
1. (knowledge) describe some test coverage metrics

and their differences

2. (knowledge) explain how mutation testing works

3. (value) good testing/correct testing is REALLY
expensive

The Story so far…

1/23/2023 EECS 481 (W23) – Test Quality Metrics 5

• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if
we plan to use a software development process

• Good planning needs good decision making whichre requires information obtained by
measurements to combat uncertainty and mitigate risk

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive (e.g., 35% of total IT
spending).

• Not testing, or testing badly, is even more expensive

[Capgemini World Quality Report. 2015]

[Minimizing code defects to improve software quality and lower development costs. IBM 2008]

6

Motivation

1/23/2023 EECS 481 (W23) – Test Quality Metrics

Story Time

1/23/2023 EECS 481 (W23) – Test Quality Metrics 7

• Abboty Labs (St. Jude Medical) makes pacemakers

• In 2016, 465,000 of them were discovered to have
security vulnerabilities
“The wireless protocol used for communication
amongst St. Jude Medial Cardiac has serious security
vulnerabilities that make it possible to convert
Merlin@home devices into weapons capable of
disabling therapeutic care and delivering shocks to
patients at distances of 10 feet, a range that could be
extended using off-the-shelf parts to modify
Merlin@home units.”

[https://medsec.com/stj_expert_witness_report.pdf]

https://medsec.com/stj_expert_witness_report.pdf

Turtles All The Way Down

1/23/2023 EECS 481 (W23) – Test Quality Metrics 8

• “The “fix” is not a surgical replacement pacemaker,
but a firmware update that takes about three
minutes to complete and carries “very low risk of
update malfunction;” a very small percentage of
people might experience a “complete loss of device
functionality” during the firmware update. The patch
covers St. Jude Medical’s pacemakers: Accent,
Anthem, Accent MRI, Accent ST, Assurity and
Allure.”

[https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html]

Guiding Narrative

1/23/2023 EECS 481 (W23) – Test Quality Metrics 9

• How should we think
about testing?

• Lens of Logic

• Lens of Statistics

• Lens of Adversity

10

Lens of Logic

1/23/2023 EECS 481 (W23) – Test Quality Metrics

1. Major Premise

2. Minor Premise

3. Conclusion

[https://en.wikipedia.org/wiki/Syllogism]

The Motivation

1/23/2023 EECS 481 (W23) – Test Quality Metrics 11

• If testing is our best way to gain confidence in the
quality of software, but testing is expensive, how can we
ensure that we are testing in an effective manner?

• Informal Desideratum: The program passes the tests if
and only if it does all the right things and none of the
wrong things.

• Pass all tests → program adheres to requirements

• Each failing test → program behaves incorrectly

Intuition (Gedankenexperiment)

1/23/2023 EECS 481 (W23) – Test Quality Metrics 12

• Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on
negative inputs.

• Suppose further that your test suite does not include
any negative inputs.

• Can we conclude
that passing all of
the tests implies
adhering to all of
the requirements?

Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 13

• We desire all of the requirements to be covered
(“checked”) by the test suite.

• For our purposes, X coverage is the degree to
which X is executed/exercised by the test suite.

• Examples:
• Code coverage is the degree to which the source code is

executed by the test suite.
• Statement coverage is the fraction of source statements

that are executed by the test suite.

Do Tests Cover all Requirements?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 14

• In ideal world we would have traceability between
requirements and test cases

• That is, each test case would have an annotation like “a
program that passes this test satisfies requirement X” or
“passing this test gives confidence that a program
adheres to requirement Y”

• Outside of certain industries (e.g. Aerospace, Nuclear
Power), such formal traceability is rare

• e.g. DO-178C and NQA-1

https://en.wikipedia.org/wiki/DO-178C

An Approximation

1/23/2023 EECS 481 (W23) – Test Quality Metrics 15

• We will cover requirements and their elicitation later in
this course (mid-semester)

• But suppose for now you don’t have formal traceability
to your requirements

• So testing that the program does all and only the good
things that it is required to do is not possible (or not
feasible)

• Analogy: “Lie of Omission”
• You see someone spike your friend’s drink at a bar. Are you

obligated to warn your friend?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 16

Aside: Ethics

• It is very tempting to say “yes, you are morally
obligated to warn your friend” (many would agree!)

• However, it can be surprisingly difficult to make a
consistent moral system that requires particular positive
actions, as opposed to just forbidding negative actions

• Cf. “Thou shalt not kill” (Old Testament) or “An it harm none, do
what ye will” (Wiccan Rede) or “Everything which is not
forbidden is allowed” (English Law), etc.

• For more information, take a class on Ethics (normative
ethics from the Philosophy department

Don’t Do Bad Things

1/23/2023 EECS 481 (W23) – Test Quality Metrics 17

• We can at least test that the program does not do
certain bad things

• e.g., “don’t segfault”, “don’t send my password to
Microsoft”, “on this one particular input, don’t get the
wrong answer”

• Not that “I never do bad things” is not the same as “I
always/eventually do good things”

• For more information, take a class on Modal Logic or
read about Liveness vs. Safety properties

Testing to Find Bugs

1/23/2023 EECS 481 (W23) – Test Quality Metrics 18

• So now we want to test to gain confidence that the
program does not do “bad things”

• That is, that the program does not have bugs

• Key Logical Observation: If we never test line X then
testing cannot rule out the present of a bug on line
X

• (You could read line X, but we’re talking about testing.
Later this semester: code review.)

1/23/2023 EECS 481 (W23) – Test Quality Metrics 19

If this seems “too obvious” so far, just wait

…

P → Q

1/23/2023 EECS 481 (W23) – Test Quality Metrics 20

“No test covers X → may have bug in X”

• Note that you could test line X and still have a bug
on line X

• foo(a,b) { return a/b; }
• test: foo(6/2)

• But testing X gives us some small but non-zero
confidence in the correctness of X

“All Other Things Being Equal”

1/23/2023 EECS 481 (W23) – Test Quality Metrics 21

• If test A visits line 1 and 2

• And test B visits lines 1, 2, 3, and 4

• Then, all other things being equal, we prefer test B
• Test A gives some confidence about 1 and 2 and no

confidence (no information) about 3 and 4

• Test B gives some confidence about 1, 2, 3, and 4

• If confidence/info gained per tested line is c>0, test A
gives us 2c+0 and test B gives us 4c.

• Because c>0, we have 4c > 2c. So B > A.

Simplifyng Assumptions

1/23/2023 EECS 481 (W23) – Test Quality Metrics 22

• Assumption 1: We gain the same amount of
confidence (or information) for each visited line.

• Assumption 2: The amount of confidence (or
information) we gain per visited line is positive.

• Assumption 3: …

23

Line Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics

A test suite quality metric

Line Coverage: A Test Suite Quality Metric

1/23/2023 EECS 481 (W23) – Test Quality Metrics 24

• A test suite quality metric or test suite adequacy
criterion assesses the quality of a test suite (with
respect to an external notion of utility) and allows test
suites to be compared.

• Line (or statement) coverage is a test suite quality
metric: it is the number of unique lines (statements)
visited (exercised) by the program when running the test
suite.

• (Informally: visiting more line I better because you no
information about un-visited lines.)

Using Line Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 25

• Given two test suites that both run within your
resource budget (“AOTBE”, etc.) if we can only run
one, we prefer the test suite with higher line
coverage

• Thus coverage is a metric that allows us to
compare two test suites and pick the “better” one

• We use this information to guide decision-making in
a software process (“how should we do testing?”)

Collecting Line Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 26

• At its simplest, this is just print-statement debugging

• Put a print statement before every line of the
program

• Run all the tests, collect all the printed information,
remove duplicates, count.

• Practical concern: the observer effect (from
physics) is the fact that simply observing a situation
or phenomenon necessarily changes that
phenomenon.

Coverage Instrumentation

1/23/2023 EECS 481 (W23) – Test Quality Metrics 27

• Coverage instrumentation modifies a program to
record coverage information in a way that minimizes the
observer effect.

• This can be done at the source or binary level.

• Don’t actually print to stdout/stderr

• Don’t slow things down too much
• Pre-check before printing a duplicate?

• Don’t introduce infinite loops
• Instrument “print” with a call to “print”?

Good News: “Solved” Problem

1/23/2023 EECS 481 (W23) – Test Quality Metrics 28

• This is a well-studied problem and many push-
button solutions exist for various form of coverage

• Either built-in to your IDE or as external tools

• You will use three in the Homework
• Python’s coverage, gcc’s gcov, Java’s cobertura

• For more information on how to write one yourself,
take a (graduate?) PL or Compilers class.

Problems with Line Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 29

• What could go wrong with
line coverage?

• Can you think of situations with
100% line coverage where the
program might still have bugs?

Example Where Statement Coverage is Inadequate

1/23/2023 EECS 481 (W23) – Test Quality Metrics 30

• Cross-site scripting attacks: [2016 Vulnerability Statistics Report, edgescan]

Example Where Statement Coverage is

Inadequate

1/23/2023 EECS 481 (W23) – Test Quality Metrics 31

• Cross-site scripting attacks: [2016 Vulnerability Statistics Report, edgescan]

1/23/2023 EECS 481 (W23) – Test Quality Metrics 32

Data Values and Implicit Control Flow

return a/b

print ptr->fld

if (b != 0)

return a/b;

else

ABORT

if (ptr != NULL)

print ptr->fld

else

ABORT

Intuition

1/23/2023 EECS 481 (W23) – Test Quality Metrics 33

• Many interesting data values cause implicit or explicit
changes of control

• That is, they cause different branches of conditionals to
execute

• Informally, the problem
of ensuring that we
cover interesting data
values may reduce to
the problem of ensuring
that we cover all
branches of conditionals.

Branch Coverage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 34

• Branch coverage is a test suite quality metric that
counts the total number of conditional branches
exercised by that test suite (i.e., if→true and if→false
are counted separately)

• Note that branch coverage can subsume line coverage:
foo(a):

if a > 5:

print “x”

print “y”

Test Suite {foo(7)} has 100% line
coverage but 50% branch coverage.

Test Suite {foo(7),foo(0)} has 100% line
and 100% branch coverage.

Branch vs. Line

1/23/2023 EECS 481 (W23) – Test Quality Metrics 35

• Branch coverage typically gives us more confidence
than line coverage

• Typically, 100% branch coverage implies 100% line
coverage.

• However, branch coverage is “more expensive” in the
sense that tit is harder for a test suite to have high
branch coverage than to have high line coverage

• Note: quality isn’t really “more expensive”, you were just
fooling yourself before by thinking line coverage was OK.
Being correct is expensive.

Other Flavors

1/23/2023 EECS 481 (W23) – Test Quality Metrics 36

• Function Coverage: what fraction of functions have
been called?

• Condition Coverage: what fraction of Boolean
subexpressions have been evaluated to both true and
false (e.g., on another run)?

• Comparing this to branch coverage is a not-uncommon test
question …

• Modified Condition / Decision Coverage: function
coverage + branch coverage (this is a simplification)

• Used in mission critical (e.g., avionic) software

37

Trivia Break

1/23/2023 EECS 481 (W23) – Test Quality Metrics

1/23/2023 EECS 481 (W23) – Test Quality Metrics 38

Trivia: Statistics
• This English

social reformer
and statistician
(among other
activies, ~1850)
was a pioneer
in the use of
infographics:
the effective
graphical
presentation of
statistical data.

1/23/2023 EECS 481 (W23) – Test Quality Metrics 39

Psychology: Recall

• 120 students (age 18 to 24) were asked to study
prose passages (e.g., 300 words on “Sea Otters”)
and also do math problems.

• Group 1: Read for 7m, math for 2m, reread for 7m, math
for 5m

• Group 2: Read for 7m, math for 2m, test for 10 min, math
for 5m

• Both groups: later → test for 10 minutes

• Which group did better? By how much?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 40

Psychology: Recall

1/23/2023 EECS 481 (W23) – Test Quality Metrics 41

Psychology: Testing Effect

• The testing effect: long-term memory is increased
when some of the learning period is devoted to
retrieving the to-be-remembered information through
testing with feedback.

• “They found that re-studying or re-reading memorized
information had no effect, but trying to recall the
information ahd an effect.”

• Implication for SE: Code comprehension
[Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests Improves Long-Term Retention".

Psychological Science. 17 (3): 249–255.]

42

Lens of Statistics

1/23/2023 EECS 481 (W23) – Test Quality Metrics

Alternate View

1/23/2023 EECS 481 (W23) – Test Quality Metrics 43

• The bugs experienced by users are the ones that
matter.

• Dually, bugs never
experienced by users
do not matter.

Positive User View

1/23/2023 EECS 481 (W23) – Test Quality Metrics 44

• Suppose you are writing a point-of-sale cashier
application that makes change for a dollar. Given
any price between 1 and 100 cents, you must
indicate the coins to give out as change.

• e.g., $0.23 → return 3 quarters and 2 pennies

• In this scenario you can exhaustively test all 100
inputs that will occur to real users in the real world

• In some sense, it does not matter if that is 100%
statement or code coverage (e.g., dead code)

Negative User View

1/23/2023 EECS 481 (W23) – Test Quality Metrics 45

• Suppose users will only ever cause lines 1, 2, and 3
of your program to be executed

• Then you do not need to test line 4
• Even if it has a bug, users will never encounter that bug

• Note “will” → this either requires a prediction of the
future or a finite input domain

Testing as Sampling

1/23/2023 EECS 481 (W23) – Test Quality Metrics 46

• If user-experienced bugs are the ones that matter,
testing should be devoted to sampling those inputs
that users will provide

• Two views:
• Sample what users do most commonly

• Sample what causes the most harm if users do it

• Compare:
• Risk = (Prob. Of Event) * (Damage if Event Occurs)

Sampling Error

1/23/2023 EECS 481 (W23) – Test Quality Metrics 47

• In statistics, sampling error is incurred when the
statistical characteristics of a population are
estimated from a subset, or sample, of that
population.

• “Our test suite is a sample of inputs that could occur in
the real world. Our program behaves well on our test
suite.” → later → “Our program behaves badly on some
other untested real input. Sampling error!”

• Testing gives confidence the same way sampling (or
polling) gives confidence.

Sampling Bias

1/23/2023 EECS 481 (W23) – Test Quality Metrics 48

• In statistics, sampling bias is a bias in which a
sample is collected in such a way that some
members of the intended population are less likely
to be included than others.

• Suppose you are conducting a poll to see who will win the
next election, but you only poll republicans.

• Suppose you are creating tests to see if your program will
crash, but you only poll nice, small, inputs.

Solution?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 49

• There are a number of well-established sampling
techniques in the field of statistics to help address
such biases

• They often require knowing something about the
distribution of the full population from which you want to
sample a subpopulation

• The basic problem in SE is that the underlying
distribution of real user inputs is not known.

Beta Testing

1/23/2023 EECS 481 (W23) – Test Quality Metrics 50

• Alpha testing is testing done by developers.

• Beta testing is testing done by external users (often
using a special beta version of the program).

• Beta testing can be viewed as directly sampling the
space of user inputs.

A/B Testing

1/23/2023 EECS 481 (W23) – Test Quality Metrics 51

• A/B testing involves two
variants of your software,
A and B, which differ only
in one feature. Different
users are shown different
variants and responses
are recorded. It is an
instance of two-sample
statistical hypothesis
testing.

Likely or Damaging?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 52

• Recall two guiding approaches:
• Sample what users will do most commonly
• Sample what will cause the most harm

• The former is sometimes called workload
generation

• Common for databases, webservers, etc.

• The latter often relates to computer security
• Exploit generation, penetration testing, etc.
• Cf. AFL in Homework 2

Non-Security Damage

1/23/2023 EECS 481 (W23) – Test Quality Metrics 53

• For Amazon (etc.), “damaging” is “customer does not
complete the purchase”

[Dobolyi et al. Modeling Consumer-Perceived Web
Application Fault Severities for Testing. ISSTA 2010.]

54

Lens of Adversity

1/23/2023 EECS 481 (W23) – Test Quality Metrics

Finding Bugs

1/23/2023 EECS 481 (W23) – Test Quality Metrics 55

• Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs or bomb-sniffing dogs

• You might hide some truffles and see how many
each pigs finds (etc.)

• The pig that finds more of the hidden truffles in your
backyard is assumed to find more real truffles in the wild

• Now suppose you wanted to evaluate the quality of
two bug-finding test suites …

Mutation Testing

1/23/2023 EECS 481 (W23) – Test Quality Metrics 56

• Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is
related to the number of intentionally-added defects it
finds.

• Informally: “You claim your test
suite is really great at finding
security bugs? Well, I’ll just
intentionally add a bug to my
source code and see if your
test suite finds it!”

Verisimilitude

1/23/2023 EECS 481 (W23) – Test Quality Metrics 57

• In the truffle-pig example, if every truffle I hide in my
back yard is next to a smelly red flower, a pig that
finds them all may not actually do well in the real
world

• The truffle placements I made up were not indicative
of real-world truffles

• Similarly, if I add a bunch of defects to my software
that are not at all the sort of defects real humans
would make, then mutation testing is uninformative

Defect Seeding

1/23/2023 EECS 481 (W23) – Test Quality Metrics 58

• Defect seeding is the process of intentionally
introducing a defect into a program. The defect
introduced is typically intentionally similar to defects
introduced by real developers. The seeding is
typically done by changing the source code.

• For mutation testing, defect seeding is typically
done automatically (given a model of what human
bugs look like)

• You will do this in Homework 3

Mutation Operators

1/23/2023 EECS 481 (W23) – Test Quality Metrics 59

• A mutation operator systematically changes a
program point. In mutation testing, the mutation
operators are modeled on historical human defects.
Example mutations:

• if (a < b) → if (a <= b)
• if (a == b) → if (a != b)
• a = b + c → a = b – c
• f(); g(); → g(); f();
• x = y; → x = z;

Mutant

1/23/2023 EECS 481 (W23) – Test Quality Metrics 60

• A mutant (or variant) is a version of the original
program produced by applying one or more
mutation operators to one or more program
locations. The order of a mutant is the number of
mutation operators applied.

// original

if (a < b):

x = a + b

print(x)

// 2nd-order mutant

if (a <= b):

x = a - b

print(x)

Competent Programmers

1/23/2023 EECS 481 (W23) – Test Quality Metrics 61

• The competent programmer hypothesis holds
that program faults are syntactically small and can
be corrected with a few keystrokes.

• Programmers write programs that are largely
correct. Thus, the mutants simulate the likely effect
of real faults. Therefore, if the test suite is good at
catching the artificial mutants, it will also be good at
catching the unknown but real faults in the program.

1/23/2023 EECS 481 (W23) – Test Quality Metrics 62

Do Humans Really Make Simple Mistakes

Competent?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 63

Is the competent programmer hypothesis true?

Competent?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 64

Is the competent programmer hypothesis true?

• Yes and no.

• It is certainly true that humans often make simple
typos (e.g., + to -)

• But it is also true that some bugs are more complex
than that.

Coupling Effect

1/23/2023 EECS 481 (W23) – Test Quality Metrics 65

• The coupling effect hypothesis holds that
complex faults are “coupled” to simple faults in such
aa way that a test suite that detects all simple faults
in a program will detect a high percentage of the
complex faults.

• Is this true?

• Tests that detect simple mutants were also able to
detect over 99% second- and third-order mutants
historically

Mutation Testing

1/23/2023 EECS 481 (W23) – Test Quality Metrics 66

• A test suite is said to kill (or detect, or reveal) a
mutant if the mutant fails a test that the original
passes.

• Mutation testing (or mutation analysis) of a test
suite proceeds by making a number of mutants and
measuring the fraction of them killed by that test
suite. This fraction is called the mutation adequacy
score (or mutation score).

• A test suite with a higher score is better.

1/23/2023 EECS 481 (W23) – Test Quality Metrics 67

The wording can be tricky, I know…

Mutation Analysis: Pros and Cons

1/23/2023 EECS 481 (W23) – Test Quality Metrics 68

• Has the potential to subsume other test suite adequacy
criteria (it can be very good)

• Which mutation operators do you use?

• Where do you apply them? How often do you apply
them?

• Typically done at random, but how?

• It is very expensive. If you make 1,000 mutants you
must now run your test suite 1,000 times!

• We started by saying testing (1x) was expensive!

Equivalent Mutant Problem

1/23/2023 EECS 481 (W23) – Test Quality Metrics 69

• Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

• The resulting program is a mutant, but it is semantically
equivalent to the original.

• So it will pass and fail all of the tests that the original
passes and fails.

• So it will dilute the mutation score

• Detecting equivalent mutants is a big deal.
How hard is it?

Equivalent Mutant Problem

1/23/2023 EECS 481 (W23) – Test Quality Metrics 70

• Detecting equivalent mutants is a big deal.
How hard is it?

• It is undecidable!

• By direct reduction to the halting problem, or by
Rice’s Theorem

def foo(): # foo halts if and only if

if p1() == p2(): # p1 is equivalent to p2

return 0

foo()

1/23/2023 EECS 481 (W23) – Test Quality Metrics 71

The Story so far…
• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if

we plan to use a software development process

• Good planning needs good decision making whichre requires information obtained by
measurements to combat uncertainty and mitigate risk

• Testing is the most common dynamic technique for software quality assurance
• Testing is very expensive and not testing is even more expensive

• Test suite quality metrics
support informed comparisons
between tests.
• But where do we get one test,

much less many to compare?

1/23/2023 EECS 481 (W23) – Test Quality Metrics 72

Question?
• Lens of Logic: “no visit X → no find bug in X”

• Leads to statement and branch coverage.

• Lens of Statistics: “sample the inputs the users will make”
• Leads to beta testing, A/B testing.

• Lens of Adversity: “poke realistic holes in the program and
see if you find them”

• Leads to mutation testing.

• Don’t neglect HW 1 components
• (1b, 1c, 1d due Wednesday!)

