
Test Suite

Quality

Metrics

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 1

Prof. Kochunas

EECS 481 (W23)

One-Slide Summary

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 2

ÅTest suite quality metrics help us decide which suite to
use. Line coverage, the fraction of lines visited when
running a suite, is simple but gives limited confidence.

ÅBranch coverage, which requires both true and false
values for conditions, is richer (incorporating data values
indirectly).

ÅMutation analysis measures the fraction of seeded
defects detected by a suite; it is expensive but effective.

ÅBeta and A/B testing involve real users and their
experiences.

Outline

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 3

ÅMotivation

ÅTesting through the Lens of Logic

ÅTesting through the Lens of Statistics

ÅTesting through the Lens of Adversity

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 4

Learning Objectives: by the end of todayôs

lecture you should be able toé
1. (knowledge) describe some test coverage metrics

and their differences

2. (knowledge) explain how mutation testing works

3. (value) good testing/correct testing is REALLY
expensive

The Story so faré

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 5

ÅWe want to deliver high-quality software at low cost. We can be more efficient in this endeavor if
we plan to use a software development process

ÅGood planning needs good decision making whichre requires information obtained by
measurements to combat uncertainty and mitigate risk

ÅTesting is the most common dynamic technique for
software quality assurance

ÅTesting is very expensive (e.g., 35% of total IT
spending).

ÅNot testing, or testing badly, is even more expensive

[Capgemini World Quality Report. 2015]

[Minimizing code defects to improve software quality and lower development costs. IBM 2008]

6

Motivation

1/23/2023 EECS 481 (W23) ïTest Quality Metrics

Story Time

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 7

ÅAbboty Labs (St. Jude Medical) makes pacemakers

ÅIn 2016, 465,000 of them were discovered to have
security vulnerabilities
ñThe wireless protocol used for communication
amongst St. Jude Medial Cardiac has serious security
vulnerabilities that make it possible to convert
Merlin@home devices into weapons capable of
disabling therapeutic care and delivering shocks to
patients at distances of 10 feet, a range that could be
extended using off-the-shelf parts to modify
Merlin@home units.ò

[https://medsec.com/stj_expert_witness_report.pdf]

https://medsec.com/stj_expert_witness_report.pdf

Turtles All The Way Down

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 8

ÅñThe ñfixò is not a surgical replacement pacemaker,
but a firmware update that takes about three
minutes to complete and carries ñvery low risk of
update malfunction;ò a very small percentage of
people might experience a ñcomplete loss of device
functionalityò during the firmware update. The patch
covers St. Jude Medicalôs pacemakers: Accent,
Anthem, Accent MRI, Accent ST, Assurity and
Allure.ò

[https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html]

Guiding Narrative

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 9

ÅHow should we think
about testing?
ÅLens of Logic

ÅLens of Statistics

ÅLens of Adversity

10

Lens of Logic

1/23/2023 EECS 481 (W23) ïTest Quality Metrics

1. Major Premise

2. Minor Premise

3. Conclusion

[https://en.wikipedia.org/wiki/Syllogism]

The Motivation

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 11

ÅIf testing is our best way to gain confidence in the
quality of software, but testing is expensive, how can we
ensure that we are testing in an effective manner?

ÅInformal Desideratum: The program passes the tests if
and only if it does all the right things and none of the
wrong things.
ÅPass all tests Ą program adheres to requirements

ÅEach failing test Ą program behaves incorrectly

Intuition (Gedankenexperiment)

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 12

ÅSuppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on
negative inputs.

ÅSuppose further that your test suite does not include
any negative inputs.

ÅCan we conclude
that passing all of
the tests implies
adhering to all of
the requirements?

Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 13

ÅWe desire all of the requirements to be covered
(ñcheckedò) by the test suite.

ÅFor our purposes, X coverage is the degree to
which X is executed/exercised by the test suite.

ÅExamples:
ÅCode coverage is the degree to which the source code is

executed by the test suite.
ÅStatement coverage is the fraction of source statements

that are executed by the test suite.

Do Tests Cover all Requirements?

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 14

ÅIn ideal world we would have traceability between
requirements and test cases

ÅThat is, each test case would have an annotation like ña
program that passes this test satisfies requirement Xò or
ñpassing this test gives confidence that a program
adheres to requirement Yò

ÅOutside of certain industries (e.g. Aerospace, Nuclear
Power), such formal traceability is rare
Åe.g. DO-178C and NQA-1

https://en.wikipedia.org/wiki/DO-178C

An Approximation

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 15

ÅWe will cover requirements and their elicitation later in
this course (mid-semester)

ÅBut suppose for now you donôt have formal traceability
to your requirements

ÅSo testing that the program does all and only the good
things that it is required to do is not possible (or not
feasible)

ÅAnalogy: ñLie of Omissionò
ÅYou see someone spike your friendôs drink at a bar. Are you

obligated to warn your friend?

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 16

Aside: Ethics

ÅIt is very tempting to say ñyes, you are morally
obligatedto warn your friendò (many would agree!)

ÅHowever, it can be surprisingly difficult to make a
consistent moral system that requires particular positive
actions, as opposed to just forbidding negative actions
ÅCf. ñThou shalt not killò (Old Testament) or ñAn it harm none, do
what ye willò (Wiccan Rede) or ñEverything which is not
forbidden is allowedò (English Law), etc.

ÅFor more information, take a class on Ethics (normative
ethics from the Philosophy department

Donôt Do Bad Things

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 17

ÅWe can at least test that the program does not do
certain bad things
Åe.g., ñdonôt segfaultò, ñdonôt send my password to
Microsoftò, ñon this one particular input, donôt get the
wrong answerò

ÅNot that ñI never do bad thingsò is not the same as ñI
always/eventually do good thingsò
ÅFor more information, take a class on Modal Logic or

read about Liveness vs. Safety properties

Testing to Find Bugs

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 18

ÅSo now we want to test to gain confidence that the
program does not do ñbad thingsò

ÅThat is, that the program does not have bugs

ÅKey Logical Observation: If we never test line X then
testing cannot rule out the present of a bug on line
X

Å(You could read line X, but weôre talking about testing.
Later this semester: code review.)

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 19

If this seems ñtoo obviousò so far, just wait

é

P Ą Q

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 20

ñNo test covers X Ąmay have bug in Xò

ÅNote that you could test line X and still have a bug
on line X
Åfoo(a,b) { return a/b; }
Åtest: foo(6/2)

ÅBut testing X gives us some small but non-zero
confidence in the correctness of X

ñAll Other Things Being Equalò

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 21

ÅIf test A visits line 1 and 2

ÅAnd test B visits lines 1, 2, 3, and 4

ÅThen, all other things being equal, we prefer test B
ÅTest A gives some confidence about 1 and 2 and no

confidence (no information) about 3 and 4

ÅTest B gives some confidence about 1, 2, 3, and 4

ÅIf confidence/info gained per tested line is c>0, test A
gives us 2c+0 and test B gives us 4c.
ÅBecause c>0, we have 4c > 2c. So B > A.

Simplifyng Assumptions

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 22

ÅAssumption 1: We gain the same amount of
confidence (or information) for each visited line.

ÅAssumption 2: The amount of confidence (or
information) we gain per visited line is positive.

ÅAssumption 3: é

23

Line Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics

A test suite quality metric

Line Coverage: A Test Suite Quality Metric

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 24

ÅA test suite quality metric or test suite adequacy
criterion assesses the quality of a test suite (with
respect to an external notion of utility) and allows test
suites to be compared.

ÅLine (or statement) coverage is a test suite quality
metric: it is the number of unique lines (statements)
visited (exercised) by the program when running the test
suite.

Å(Informally: visiting more line I better because you no
information about un-visited lines.)

Using Line Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 25

ÅGiven two test suites that both run within your
resource budget (ñAOTBEò, etc.) if we can only run
one, we prefer the test suite with higher line
coverage

ÅThus coverage is a metric that allows us to
compare two test suitesand pick the ñbetterò one

ÅWe use this information to guide decision-making in
a software process (ñhow should we do testing?ò)

Collecting Line Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 26

ÅAt its simplest, this is just print-statement debugging

ÅPut a print statement before every line of the
program
ÅRun all the tests, collect all the printed information,

remove duplicates, count.

ÅPractical concern: the observer effect (from
physics) is the fact that simply observing a situation
or phenomenon necessarily changes that
phenomenon.

Coverage Instrumentation

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 27

ÅCoverage instrumentation modifies a program to
record coverage information in a way that minimizes the
observer effect.
ÅThis can be done at the source or binary level.

ÅDonôt actually print to stdout/stderr

ÅDonôt slow things down too much
ÅPre-check before printing a duplicate?

ÅDonôt introduce infinite loops
ÅInstrument ñprintò with a call to ñprintò?

Good News: ñSolvedò Problem

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 28

ÅThis is a well-studied problem and many push-
button solutions exist for various form of coverage
ÅEither built-in to your IDE or as external tools

ÅYou will use three in the Homework
ÅPythonôs coverage, gccôsgcov, Javaôs cobertura

ÅFor more information on how to write one yourself,
take a (graduate?) PL or Compilers class.

Problems with Line Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 29

ÅWhat could go wrong with
line coverage?

ÅCan you think of situations with
100% line coverage where the
program might still have bugs?

Example Where Statement Coverage is Inadequate

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 30

ÅCross-site scripting attacks: [2016 Vulnerability Statistics Report, edgescan]

Example Where Statement Coverage is

Inadequate

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 31

ÅCross-site scripting attacks: [2016 Vulnerability Statistics Report, edgescan]

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 32

Data Values and Implicit Control Flow

return a/b

print ptr - >fld

if (b != 0)

return a/b;

else

ABORT

if (ptr != NULL)

print ptr - >fld

else

ABORT

Intuition

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 33

ÅMany interesting data values cause implicit or explicit
changes of control
ÅThat is, they cause different branches of conditionals to

execute

ÅInformally, the problem
of ensuring that we
cover interesting data
values may reduce to
the problem of ensuring
that we cover all
branches of conditionals.

Branch Coverage

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 34

ÅBranch coverage is a test suite quality metric that
counts the total number of conditional branches
exercised by that test suite (i.e., ifĄtrue and ifĄfalse
are counted separately)

ÅNote that branch coverage can subsume line coverage:
foo(a):

if a > 5:

print ñxò

print ñyò

Test Suite {foo(7)} has 100% line
coverage but 50% branch coverage.

Test Suite {foo(7),foo(0)} has 100% line
and 100% branch coverage.

Branch vs. Line

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 35

ÅBranch coverage typically gives us more confidence
than line coverage

ÅTypically, 100% branch coverage implies 100% line
coverage.

ÅHowever, branch coverage is ñmore expensiveò in the
sense that tit is harder for a test suite to have high
branch coverage than to have high line coverage
ÅNote: quality isnôt really ñmore expensiveò, you were just

fooling yourself before by thinking line coverage was OK.
Being correct is expensive.

Other Flavors

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 36

ÅFunction Coverage: what fraction of functions have
been called?

ÅCondition Coverage: what fraction of Boolean
subexpressions have been evaluated to both true and
false (e.g., on another run)?
ÅComparing this to branch coverage is a not-uncommon test
question é

ÅModified Condition / Decision Coverage: function
coverage + branch coverage (this is a simplification)
ÅUsed in mission critical (e.g., avionic) software

37

Trivia Break

1/23/2023 EECS 481 (W23) ïTest Quality Metrics

1/23/2023 EECS 481 (W23) ïTest Quality Metrics 38

Trivia: Statistics
ÅThis English

social reformer
and statistician
(among other
activies, ~1850)
was a pioneer
in the use of
infographics:
the effective
graphical
presentation of
statistical data.

