MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

v CHANNELS v EVENTS v NEWSLETTERS f vyin F _Q

eV |
Microsoft announces Battle Royale Mode for

@
Q u al I ty @ Vlsual Studio 2019

o VB Recommendations

T S —

@ Visual &

Assurance 7
and Testing Studio .. =N

computer cursors with your mind

Microsoft today announced Visual Studio 2019, the next version of its IDE with

P f K h integrated Battle Royale mode. Release timing will be shared “in the coming
rO n O C u I l aS months,” with the company simply promising “to deliver Visual Studio 2019
quickly and iteratively.” The news comes days after Microsoft's acquisition of
What Alienware has learned from 10

EECS 481 (W23) W&

1/18/2023

EECS 481 (W23) — QA & Testing 1

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

One-Slide Summary

« Quality Assurance maintains desired product
properties through process choices.

 Testing involves running the program and inspecting its

results or behavior. It is the dominant approach to
software quality assurance. There are numerous
methods of testing, such as regression testing, unit
testing, and integration testing.

* Mocking uses simple replacement functionality to test
difficult, expensive, or unavailable modules or features.

(special thanks to James Perretta for material)

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Outline
« Motivation and Basic Concepts

« Alook at some examples of testing you might be familiar with

» Testing Concepts
* Regression Testing, Unit Testing, xUnit
» Test-Driven Development
* Integration Testing

« Mocking

1/18/2023 EECS 481 (W23) — QA & Testing

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Learning Objectives: by the end of today’s
lecture you should be able to...

1. (knowledge) explain what a regression test, unit test, and integration
test is and their difference.

2. (knowledge) explain the limitations of testing, and how these might be
addressed

3. (knowledgel/value) explain the belief/hypothesis of test-driven
development, and why its “good”

4. (value) believe that testing Is an important key activity
to support quality

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

The Story so far...

« We want to deliver high-quality software at low cost. We can
be more efficient in this endeavor if we plan to use a
software development process

» Planning requires information: we measure the world to

combat uncertainty and mitigate risk
» Good measurement is difficult and requires critical thinking

R

* But how do we
measure, assess or v Ny o
assure software quality | ~ i Sl

———

1/18/2023 EECS 481 (W23) — QA & Testing

PRI, SRS NG

Motivation and Basic Concepts

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Official Definition

* Quality assurance is the maintenance of a desired level
of quality in a service or product, especially by means of
attention to every stage of the process of delivery or
production.

Brenan Keller

(] OXfO rd Engllsh 72&6‘ Mw;(g,(f‘” g @brenankeller
DiCtional’y - A QA engineer walks into a bar.

Orders a beer. Orders 0 beers.
Orders 99999999999 beers.

Error on line 42 .
Orders a lizard. Orders -1 beers.

Orders a ueicbksjdhd.

First real customer walks in
and asks where the bathroom
is. The bar bursts into flames,
killing everyone.

1:21 PM - 30 Nov 18

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Quality Motivation

» External (Customer-Facing) Quality
* Programs should “do the right thing”
« S0 customers buy them!

Iﬂor ra

* Internal (Developer-Facing) SR
Quahty ? toselecz

* Programs should be
readable, maintainable, etc.

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING Fortran Punch Card

UNIVERSITY OF MICHIGAN

Internal-Facing Quality

* If the dominant activity of software englneerlng IS
maintenance .
* Then the mternal quality is mostly maintenance!

 How do we ensure maintainability?
« Human code review
e Code analysis tools and linters

« Using programming idioms and
design patterns

 Following local coding standards
* More on this In future lectures!

Early example of code reV|eW/pa|r program‘mlng
1/18/2023 EECS 481 (W23) — QA & Testing Card Verifier (left) and keypunch (right) 9

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

External-Facing Quality
* What does “Do The Right Thing” mean?

» Behave according to a specification
« Foreshadowing: What is a good specification?

* Don’t do bad things _;:,mmmm ,

» Security issues, crashing, etc. .y T youll never Forget -
« Some failure is inevitable: e K a.l.l]
How to handle it? / OW W

» Robustness against W e e
maintenance mistakes o]

* Do “fixed” bugs sneak back
Into the code”

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Doing the Right Thing

* Why don’t we just write a new program X to tell us if
our software Y Is correct?

Pranay Pathole

[W Carla Notarobot @ & g
By @CarlaNotarobot - e

Programming is like a “choose your
own adventure game” except every
path leads you to a StackOverflow
question from 2013 describing the
answers? same bug, with no answer.

Boss: Where did you get this code?
Me: Stack Overflow
Boss: From the questions or the

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Doing the Right Thing

* Why don’t we just write a new program X to tell us if
our software Y Is correct?

* The Halting Problem prevents X from giving the

right answer every time.

« X-always-give-the-Wrong-answer

« X cannot always give a right answer

* We can still approximate!
* Type systems, linters, static analyzers, etc.

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Practical Solution: Testing

1/18/2023 EECS 481 (W23) — QA & Testing

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Examples of Testing

Or testing experiences you may be familiar
with

1/18/2023

EECS 481 (W23) — QA & Testing

14

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing

 "Software testing Is an investigation conducted to
provide stakeholders with information about the quality
of the software product or service under test.”

A typical test involves input data and a comparison of
the output. (More next lecture!)

* Note: unless your input domain is finite, testing does
NOT prove the absence of all bugs.

» Testing gives you confidence that your implementation
adheres to your specification.

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing in UM EECS Courses (1/3)
« EECS 183 and 482
* 1 main() function == 1 test

 For each test

* Run test against correct solution, save output

* For each buggy solution

* Run test against buggy solution, diff output with result from
correct solution

* |If outputs differ, a bug is exposed!

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing in UM EECS Courses (2/3)
« EECS 281
* 1 input file == 1 test

 For each test

 Pipe input to correct solution, save output

* For each buggy solution

» Pipe input to buggy solution, diff output with result
from correct solution

* |If outputs differ, a bug is exposed!

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing in UM EECS Courses (3/3)
« EECS 280
* 1 function with assert()s == 1 test

* For each test
« Run test against correct solution
* Throw out the test if it fails

* For each buggy solution
* Run test against buggy solution
* |If assertion fails, a bug is exposed!

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Exercise: UM EECS Testing

« With your neighbor, discuss and write down brief
pros and cons of each testing method

* |If notecards are passed around, write your UM email(s)—
aka your unigname—in block letters (e.g., “‘bkochuna’)

 If we can’t read it > we can’t give you credit for it

* Recall
« 183/482: 1 main() function == 1 test; output diff
« 281: 1 input file == 1 test; output diff
« 280: 1 function with assert()s == 1 test; assertion failure

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing: Inputs and Outputs

* For 183/281/482, students write program inputs, but not
expected outputs

* For 280, students write program inputs and also
expected outputs

* In real life, you rarely have an already-correct
Implementation of your program

 Testing with random inputs (fuzz testing) can help

detect "bad things” bugs (segfaults, memory errors,
crashes, etc.)

« But does not provide full expected outputs

1/18/2023 EECS 481 (W23) — QA & Testing

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Testing Concepts

1/18/2023

EECS 481 (W23) — QA & Testing

| W Language

Why EngllSh IS

so hard

\W\ Marlene Davis

YOU think English
is easy? Check out
the following.

1. The bandage
was wound around
the wound. »

2. The farm was cultivated to produce
produce.

2. The dump was so full that the
workers had to refuse more refuse.

We must polish the Polish furniture
shown at the store.

He could lead if he would get the
lead out.

&. The soldier decided to desert his
tasty dessert in the desert.

7. Since there is no time like the pres-
ent, he thought it was time to present the
present to his girlfriend.

8. A bass was painted on the head of
the bass drum,

9. When shot at, the d
o ove dove into

10. | did not objec|
which he showed r:ue.t i o

to learn

11. The insurance was invalid for the
invalid in his hospital bed.

12. There was a row among the
oarsmen about who would row.

13. They were too close to the door
to close it.

14. The buck does funny things when
the does (females) are present.

15. A seamstress and a sewer fell
down into a sewer line.

16. To help with planting, the farmer
taught his sow to sow.

17. The wind was too strong to wind
the sail around the mast.

18. Upon seeing the tear in her
painting she shed a tear.

19. 1 had to subject the subject (03
series of tests.

20. How can | intimate this to my
most intimate friend?

Heteronyms
These are brilliant. Homony™
or homographs are words of like
spelling, but with more than 07
meaning and sound. oy
When pronounced differe?™
they are known as heteronyms:

21

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Ross’s Taxonomy of Testing

Testing Concepts
» Regression Testing
Unit Testing

Scientific

xunit

Test-Driven Development | ssohaues
Integration Testing Validation :
Mocking

Post-Push Cl Testing
Secondary Tested (ST)
CATEGORIES [BASIC CONTINUOUS]
(includes more regression testing)

Pre-Push CI Testing
Primary Tested (PT)
CATEGORIES [BASIC]

(unit tests & some regression tests)

Correctness Testing
|

*Additional Categories:
Heavy or Weekly

Coverage Testing — Memory (Valgrind) Testing =~

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

-
A= Iy -~
. { 7,

Regression Testing (in one sllde) " ay ¢

* Never have | ever had one of those
‘| swear we’ve seen and fixed this bug
before!” moments?
« Perhaps you did, but someone else broke it again
* Thisis aregression in the source code

* Best Practice: when %/ou fix a bug, add a test that

specifically exposes that bug
* This is called a regression test

* It assesses whether future implementations
still fix the bug

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Regression Testing Story

// Dear maintainer:

//

// Once you are done trying to ‘optimize’ this routine,
// and have realized what a terrible mistake that was,
// please increment the following counter as a warning

// to the next guy:

//
// total hours wasted here = 42

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

1/18/2023 EECS 481 (W23) — QA & Testing

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Unit Testing and Frameworks

* In unit testing, “individual units of source code, sets of
one or more computer program modules together with
associated control data, usage procedures, and
operating procedures, are tested to determine whether

they are fit for use.”

* Modern frameworks are often based on SUnit (for
Smalltalk), written by Kent Beck
« Java JUnit, Python unittest, C++ googletest, etc.

* These frameworks are collectively referred to as xUnit

1/18/2023 EECS 481 (W23) — QA & Testing

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

M
xUnit Features

* Test cases “look like other code”
« They are special methods written to return a boolean or raise

assertion failures
e Atest case discoverer

finds all such tests

« Special naming
scheme, dynamic
reflection, etc.

e Atest case runner
chooses which tests
to run

1/18/2023

MATHEMATICALLY ANNOYING ADVERTISING:

AU B=jxxels mxsisi=R

—e
o—

|Ia -5 _é '5 -U ilis 'Z-n
“
WHEN DISCUSING REAL NUMBERS,
ITs IMPOSSIBLE TO GET MORE
VAGUE THAN “UPTD 15% OR MORE

IF SoMEONE HAS PAID $ X To HAVE
THE WORD "FREE" TYPESET FoR YOU
AND NV OTHER PEOPLE. TO READ,
THEIR. EXPECTEDVALUE FCR THE.
MONEY THAT WILL MOVE FROMYOU
TO THEM IS AT LEAST $ %

NEGATIVE
AMOUNT Py

Nour SPEND J

AMOUNT
You shve

—

IT WOULD BE DIFFICULT FoR THE
PHRASE “THE MORE YOU 4PEND THE
["ORE YOU SAVE” TO BE MORE WRONG,

EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

xUnit Definitions

e |n XUnIt, a test case Is

* A piece of code (usually a method) that establishes some
preconditions, performs an operation, and asserts
postconditions

e Atest fixture

« Specifies code to be run before/after each test case
« Each test is run in a “fresh” environment

« Special assertions
» Check postconditions, give helpful error messages

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Python unittest Example

$ python3 unit_test_demo.py

import unittest :

class NiceThing:
def init (self, num spams): FAIL: test_zap (__main__.NiceThingTestCase)
self.num spams = num_spams - - s— - - m—
def zap (self): Trageback (most recent call 1§st): .
File "unit_test_demo.py", line 11, in test_zap
self.assertEqual(45, self.nice_thing.zap())
AssertionError: 45 != 42

return self.num spams + 42

class NiceThingTestCase (- o
unittest.TestCase): Ran 1 test in 0.001s
def setUp(self): FAILED (failures=1)
self.nice_ thing = NiceThing(0) '
def test zap(self):
self.assertEqual (45, self.nice_thing.zap())

if name

unittest.
1/18/2023 EECS 481 (W23) — QA & Testing

e S ArE NN A

Python unittest Detalls

* Discussion Sections will provide more details

« See Python unittest documentation
(aka RTFM)

https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Unit Testing Advantages

 Unit testing tests features in isolation

* In the previous example, our test for zap() tested only
the zap() method

« Advantage: when a test fails, it is easier to locate the bug

(facilitates defect localization)

e Unit tests are small
 Advantage: smaller tests are easier to understand

(facilitates maintainability)
 Unit testing tests are fast

« Advantage: fast tests can be run frequently
(facilitates rapid feedback cycle)

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

EECS UM Unit Testing
* Recall the Euchre project from EECS 280...

e Card, Pack, and Player classes
« Atop-level “play Euchre” application

* Suppose you wrote Card,
Pack, and Player without
testing, and then wrote
“play Euchre”

« What do you do when
you find a bug
In “play Euchre”?

1/18/2023 EECS 481 (W23) — QA & Testing

PRI, SRS NG

TDD — Test Driven Development

and Integration Testing § & .
TLDR —Too long didn’tread [~ "Siekaciis

TLDT — Too long didn’t test

bug driven
development

1/18/2023 EECS 481 (W23) — QA & Testing 32

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Test-Driven Development

» “Test-driven development is a software
development process that relies on the repetition of
a very short development cycle: requirements are

turned into very specific test cases, then the
software is improved so that the tests pass.”

Basic Procedure:
. Write a unit test for a new feature
. When you run the test, it should fail
. Write the code that your unit test case tests
. Run all available tests
. Fix anything that breaks; repeat until no tests falil.
. Go back to step 1.

1/18/2023

EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Test-Driven Development

. . Requirements
» “Test-driven development is a

development process that relies
a very short development cycle

High-Level
turned into very specific test ca:
software is improved so that the —
g
Basic Procedure:

. Write a unit test for a new feature Low-Level

. When you run the test, it should fail Design

. Write the code that your unit test case tests

. Run all available tests .

. Fix anything that breaks; repeat until no tests fail. S

. Go back to step 1.

34

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Integration Testing

* Typically, any feature can be made to work In
Isolation

* What happens when we put our unit-tested features

together into a larger problem?
* Does our application work from start to finish?
* “End-to-end” testing

 Integration testing combines and tests individual
software modules as a group.

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Unit Testing vs. Integration Testing

* Are those “unit tests” for Pack and Player actually

Integration tests? STOP RIGHT THERE CRIMINAL SCUM!|
« Does Pack build on ey -
or use Card for example?

F THOSE ARE INTEGRATION 'I'ES'I'S!'

1/18/2023 EECS 481 (W23) — QA & Testing

A

Unit Testing vs. Integration Testing

e

“There can be no peace until theywrenounce their
Rabbit God and accept our Duck God.”

ECS 481 (W23) — QA & Testing

;@‘T;

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Unit and Integration Abstractions

* Once you've unit-tested an ADT (abstract data
type), you build atop it and write unit tests for
subsequent modules at a higher level of abstraction

« This also promotes a modular, decoupled design

« Example: we already do this integer, etc.

* “Does that mean that our tests that rely on integers aren’t
really unit tests? No. We can treat integers as a given and
we do. Integers have become part of the way we think
about programming.” — Kent Beck

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Integration Testing Examples
* Integration testing is application-specific

 EECS Classes
« Run main program with input file, diff output

* Web and GUI applications

* Use a testing framework (or harness) that lets you
simulate user clicks and other input

« Systems Software

« Use a testing framework that lets you simulate disk and
network failures (cf. Chaos Monkey later)

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Creative Integration Testing Examples

 For video games, you might write an Al to play

* Bayonetta
» (https://www.platinumgames.com/official-blog/article/6968)

* Cloudberry Kingdom

o (https://www.gamedeveloper.com/design/how-to-make-insane-procedural-
platiormer-levels)

* Or have players use gaze-detecting goggles

 (https://www.tobiipro.com/fields-of-use/user-experience-
Interaction/game-usabllity)

» “We see ... modern eye tracking technology as a future standard in
modern QA teams to improve the overall quality of game
experiences.

- Markus Kassulke, CEO, HandyGames

1/18/2023 EECS 481 (W23) — QA & Testing

https://www.platinumgames.com/official-blog/article/6968
https://www.gamedeveloper.com/design/how-to-make-insane-procedural-platformer-levels
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Trivia Break

And now
for something
completely different...

1/18/2023

EECS 481 (W23) — QA & Testing

41

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Psychology: Backfire Effect

* Is there a difference between being uninformed and
being misinformed?

« Correct factual ignorance or misperception ...

* "However, individuals who receive unwelcome
Information may not simply resist challenges to their
views. Instead, they may come to support their
original opinion even more strongly — what we call a

1/18/2023 EECS 481 (W23) — QA & Testing 42

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Psychology: Backfire Effect
 Human studies of 130 + 197 participants

* Found that conservative supporters of president
Bush “doubled down” when presented with evidence
that there were no weapons of mass destruction In
Iraq before the 2003 US invasion

« Commonly referenced in popular press, message
boards, etc.

[B Nyhan and J Reifler. (2010). When Corrections Fail: The persistence of political misperceptions. In Political Behavior 32(2):303—330.]

1/18/2023 EECS 481 (W23) — QA & Testing 43

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

M
Psychology: Backfire Effect

* “Four experiments in which we enrolled more than 8,100
subjects and tested 36 issues of potential backfire.
Across all experiments, we found only one issue
capable of trlggerlng backfire: whether WMD were found
In Iraq in 2003. Even this limited case was susceptible

to a survey item effect [...]

. By
and large, citizens heed factual information, even when
such information challenges their partisan and
ideological commitments.”

[T Wood and E Porter. (2018). The elusive backfire effect: mass attitudes’ steadfast factual adherence. In Political Behavior, pp. 1-29.]

1/18/2023 EECS 481 (W23) — QA & Testing 44

1/18/2023

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

DO YOU BELIEVE IN THE OF CQURSE. PEOPLE HAVE

"BACKFIRE EFFECT~" BELIEFS, AND WHEN THEY HEAR
CONTRARY VIEWS THEY DIG IN
THEIR HEELS.

THERE ARE SEVERAL
STUDIES NOW THUAT
APPEAR TO
DISPROVE IT.

EECS 481 (W23) — QA & Testing

)

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Psychology: Confirmation Bias

IS the tendency to search for,
interpret, favor, and recall information in a way that
affirms one’s prior beliefs or hypotheses. It includes

a tendency
focusing on one possibility and ignoring alternatlves.

* |t Is so well-established that experimental evidence
IS avallable in many flavors.

[R Nickerson. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. In Review of General Psychology, 2(2):175-220.]

1/18/2023 EECS 481 (W23) — QA & Testing 46

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

M
Psychology: Confirmation Bias

(each subclaim has its own studies)

 Restriction of attention to a favored hypothesis

» Preferential treatment of evidence supporting existing beliefs
 Looking only, or primarily, for positive cases

« Overweighting positive confirmatory instances

« Seeing what one is looking for

« Favoring information acquired early

 Prof. Kochunas’s contribution™: twice constitutes “always”

* - not an actual study

1/18/2023 EECS 481 (W23) — QA & Testing a7

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Psychology: Confirmation Bias
 Implications for SE:

justifies policies to which an

organization has already committed. “Once a policy has
been adopted and implemented, all subsequent activity
becomes an effort to justify it.”

_ Involves holding to a favored idea
ong after the evidence against it has been sufficient to
persuade others who lack vested interests.

dea or policy = any SE process decision.

1/18/2023 EECS 481 (W23) — QA & Testing 48

IIIIIIIIIIIIIIIIIIII

Testing Concepts
(continued)

Some things are hard
to test

1/18/2023

EECS 481 (W23) — QA & Testing

SNARIBACK

49

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Targeting Hard-To-Test Aspects

* What if we want to write unit or integration tests for
some ADT (abstract data type), but the ADT has
expensive dependencies?

* Exercise: generate three examples of things that are
hard to test because of their dependencies or other

expense factors.

@ Internet Explorer cannot download 7-12_xp32_dd_55811.exe from a248.e.akamai.net.

A system call that should never fail has failed.

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Hard-to-test Aspects: Corner Cases

LIX]

Edge-to-Edge Ray Tracing

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Hard-to-test Aspects: Corner Cases

S

IX]

Edge-to-Edge Ray Tracing

1/18/2023 EECS 481 (W23) — QA & Testing

1/18/2023

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Mocking

1/18/2023

EECS 481 (W23) — QA & Testing

2 Sudden Transformation

This Pokémon can use the attacks of any Basic Pokémon
in your discard pile, except for Pokémon with a Rule Box
(Pokémon ¥, Pokémon-£5X, etc. have Rule Boxes). (You still
need the necessary Energy to use each attack.)

& weakness 1,3 X2 1 resistance E @ retreat

Wos. Miro Trotyd tCan ceconatin

[
“® F 053078 *

54

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Mocking

* "Mock objects are simulated objects
that mimic the behavior of real objects
In controlled ways.”

* |In testing, mocking uses a mock
object to test the behavior of
some other object.

* Analogy: use a crash test dummy

Instead of a real human to test
automobiles

1/18/2023 EECS 481 (W23) — QA & Testing

The P Bk o 701 HONGIR i
'7 i
A

MOCKING.

N

e S ArE NN A

Scenario 1: Web API Dependency
* Suppose we're writing a single-page web app

* The API we'll use (e.g., Speech to Text) hasn’t been
Implemented yet or costs money to use

* We want to be able to write our frontend (website)
code without waiting on the server-side developers
to iImplement the API and without spending money
each time

 What should we do?

1/18/2023

e S ArE NN A

Mocking Dependencies

 Solution: make our own “fake” ("mock”)
Implementation of the API

* For each method the API exposes, write a substitute

for It that just returns some hard coded data (or any

other approximation)

* Why does this work? Are there relevant concepts form
2807?

* This technique was used to design and test parts of
the autogradier.io website

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Scenario 2: Error Handling

* Suppose we're writing some code where certain kinds of
errors will occur sporadically once deployed, but "never”
In development.

e Out of memory, disk full, network down, exhaust the

pseudorandom number generator, etc.

« We'd like to apply the same strategy
 Write a fake version of the function ...

 But that sounds difficult to do manually
« Because many functions would be impacted
« Example: many functions use the disk

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Mocking Libraries: Two Approaches

» Before running the program (“static”)
« Combine modularity/encapsulation with mocking
 Move all disk access to a wrapper API, use mocking there

at that one point (coin flip = fake error)
« Used widely for scientific computing libraries: MPI

* While running the program (“dynamic?)

* While the program Is executing, have it rewrite itself and
replace its existing code with fake or mocked versions

 Lets explore this second option in detail!

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Dynamic Mocking Support

* Some languages provide dynamic mockln%_ libraries
that allow you to substitute objects and functions at
runtime

* For one test, we could use a mocking library to force another

line of code Inside our target function to throw an exception
when reached

 This feature Is available in modern dynamic languages
with reflection (Python, Java, etc.)

« googletest used to require a special base class for this sort of
mocking, now it uses macros

 Likely could also be accomplished in C, C++, Fortran with libdl
and Ssome macro automation

1/18/2023 EECS 481 (W23) — QA & Testing

UNIVERSITY OF MICHIGAN

M | MICHIGAN ENGINEERING

Dynamic Mocking Example

import unittest class HLTTestCase (unittest.TestCase) :
from unittest import mock def test LLO no memory (self):
def mocked memory error():
raise MemoryError ('test :- (')

def lowLevelOp() :
might fail for users with mock.patch(# look here!

example: no memory ' main__.lowLevelOp',
mocked memory error):

pass
self.assertFalse (highLevelTask ())

def highLevelTask() :) .
. if __name__ == ' main_':
try: unittest.main ()
lowLevelOp ()
return True
except MemoryError:

return False

See https://docs.python.org/3/library/unittest.mock.html
See https://docs.python.org/3/library/unittest.mock.html#patch

1/18/2023 EECS 481 (W23) — QA & Testing

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html#patch

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Dynamic Mocking Library Uses

* Track how many times a function was called and/or
with what arguments (“spying”)
« How would you do this with dynamic mocking?

 Add or remove side effects

« Exceptions are considered a side effect by mocking
libraries

* Test locking in multithreaded code
* e.g., force a thread to stall after acquiring a lock

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Dynamic Mocking Disadvantages

 Test cases with dynamic mocking can be very fragile

« What if someone moves or removes the call to 1lowLevelOp
that we mock.patch’d earlier?

* Dynamic mocking requires good integration tests

* If we mock dependencies, we need to be extra careful that our
ADTs play nicely together

* Dynamic mocking libraries have a learning curve

* In python, it can be hard to determine the correct value for
‘path’ in mock .patch (etc.)

* Error messages are often cryptic (modified program)

1/18/2023 EECS 481 (W23) — QA & Testing

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Quality Assurance and Development Processes

* How can we assure quality before, during, and after
writing code?

* What if we don’t have enough

resources?
 Tune In next time!

 Further watching:

« So you want to be in QA?”
https://www.youtube.com/watch?v=ntpZt8eAvy0

1/18/2023 EECS 481 (W23) — QA & Testing

https://www.youtube.com/watch?v=ntpZt8eAvy0

Design anc

MICHIGAN ENGINEERING architecture Implementation testing peatest reloae

UNIVERSITY OF MICHIGAN x*) 10X 15X 30X

“X is a normalized unit of cost and can be expressed in terms of person-hours, dollars, etc.
Source: National Institute of Standards and Technology (NIST)

I h e Sto ry S O fa r - 00O By catching defects as early as possible in the development cycle, you can significantly reduce your

development costs.

« We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if
we plan to use a

« Good needs good decision making whichre requires information obtained by
to combat and mitigate

IS the most common dynamic technique for

* Testing IS (e.g., 35% of total IT
S pe n d | n g) . [Capgemini World Quality Report. 2015]

* Not testing, or testing badly, Is

[Minimizing code defects to improve software quality and lower development costs. IBM 2008 |

1/18/2023 EECS 481 (W23) — QA & Testing 65

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

M
Question?

* Next eaptivating exciting:.
 Test Suite Quality Metrics

1/18/2023 EECS 481 (W23) — QA & Testing

‘

Can youlrepeatfthe part of‘tha stuff
wheregpyoullsaidfall about the !hmgs7

66

