
Quality

Assurance

and Testing

1/18/2023 EECS 481 (W23) – QA & Testing 1

Prof. Kochunas

EECS 481 (W23)

One-Slide Summary

1/18/2023 EECS 481 (W23) – QA & Testing 2

• Quality Assurance maintains desired product
properties through process choices.

• Testing involves running the program and inspecting its
results or behavior. It is the dominant approach to
software quality assurance. There are numerous
methods of testing, such as regression testing, unit
testing, and integration testing.

• Mocking uses simple replacement functionality to test
difficult, expensive, or unavailable modules or features.

(special thanks to James Perretta for material)

Outline

1/18/2023 EECS 481 (W23) – QA & Testing 3

• Motivation and Basic Concepts

• A look at some examples of testing you might be familiar with

• Testing Concepts
• Regression Testing, Unit Testing, xUnit

• Test-Driven Development

• Integration Testing

• Mocking

1/18/2023 EECS 481 (W23) – QA & Testing 4

Learning Objectives: by the end of today’s

lecture you should be able to…
1. (knowledge) explain what a regression test, unit test, and integration

test is and their difference.

2. (knowledge) explain the limitations of testing, and how these might be
addressed

3. (knowledge/value) explain the belief/hypothesis of test-driven
development, and why its “good”

4. (value) believe that testing is an important key activity
to support quality

The Story so far…

1/18/2023 EECS 481 (W23) – QA & Testing 5

• We want to deliver high-quality software at low cost. We can
be more efficient in this endeavor if we plan to use a
software development process

• Planning requires information: we measure the world to
combat uncertainty and mitigate risk

• Good measurement is difficult and requires critical thinking

• But how do we
measure, assess or
assure software quality

6

Motivation and Basic Concepts

1/18/2023 EECS 481 (W23) – QA & Testing

Official Definition

1/18/2023 EECS 481 (W23) – QA & Testing 7

• Quality assurance is the maintenance of a desired level
of quality in a service or product, especially by means of
attention to every stage of the process of delivery or
production.

• Oxford English
Dictionary

Quality Motivation

1/18/2023 EECS 481 (W23) – QA & Testing 8

• External (Customer-Facing) Quality
• Programs should “do the right thing”

• So customers buy them!

• Internal (Developer-Facing)
Quality

• Programs should be
readable, maintainable, etc.

Internal-Facing Quality

1/18/2023 EECS 481 (W23) – QA & Testing 9

• If the dominant activity of software engineering is
maintenance …

• Then the internal quality is mostly maintenance!

• How do we ensure maintainability?
• Human code review
• Code analysis tools and linters
• Using programming idioms and

design patterns
• Following local coding standards

• More on this in future lectures!
Early example of code review/pair programming;

Card Verifier (left) and keypunch (right)

Fortran Punch Card

External-Facing Quality

1/18/2023 EECS 481 (W23) – QA & Testing 10

• What does “Do The Right Thing” mean?

• Behave according to a specification
• Foreshadowing: What is a good specification?

• Don’t do bad things
• Security issues, crashing, etc.
• Some failure is inevitable:

How to handle it?

• Robustness against
maintenance mistakes

• Do “fixed” bugs sneak back
into the code?

Doing the Right Thing

1/18/2023 EECS 481 (W23) – QA & Testing 11

• Why don’t we just write a new program X to tell us if
our software Y is correct?

Doing the Right Thing

1/18/2023 EECS 481 (W23) – QA & Testing 12

• Why don’t we just write a new program X to tell us if
our software Y is correct?

• The Halting Problem prevents X from giving the
right answer every time.

• X always give the wrong answer

• X cannot always give a right answer

• We can still approximate!
• Type systems, linters, static analyzers, etc.

1/18/2023 EECS 481 (W23) – QA & Testing 13

Practical Solution: Testing

14

Examples of Testing

1/18/2023 EECS 481 (W23) – QA & Testing

Or testing experiences you may be familiar
with

Testing

1/18/2023 EECS 481 (W23) – QA & Testing 15

• “Software testing is an investigation conducted to
provide stakeholders with information about the quality
of the software product or service under test.”

• A typical test involves input data and a comparison of
the output. (More next lecture!)

• Note: unless your input domain is finite, testing does
NOT prove the absence of all bugs.

• Testing gives you confidence that your implementation
adheres to your specification.

Testing in UM EECS Courses (1/3)

1/18/2023 EECS 481 (W23) – QA & Testing 16

• EECS 183 and 482

• 1 main() function == 1 test

• For each test
• Run test against correct solution, save output

• For each buggy solution
• Run test against buggy solution, diff output with result from

correct solution

• If outputs differ, a bug is exposed!

Testing in UM EECS Courses (2/3)

1/18/2023 EECS 481 (W23) – QA & Testing 17

• EECS 281

• 1 input file == 1 test

• For each test
• Pipe input to correct solution, save output

• For each buggy solution
• Pipe input to buggy solution, diff output with result

from correct solution

• If outputs differ, a bug is exposed!

Testing in UM EECS Courses (3/3)

1/18/2023 EECS 481 (W23) – QA & Testing 18

• EECS 280

• 1 function with assert()s == 1 test

• For each test
• Run test against correct solution

• Throw out the test if it fails

• For each buggy solution
• Run test against buggy solution

• If assertion fails, a bug is exposed!

Exercise: UM EECS Testing

1/18/2023 EECS 481 (W23) – QA & Testing 19

• With your neighbor, discuss and write down brief
pros and cons of each testing method

• If notecards are passed around, write your UM email(s)—
aka your uniqname—in block letters (e.g., “bkochuna”)

• If we can’t read it → we can’t give you credit for it

• Recall
• 183/482: 1 main() function == 1 test; output diff
• 281: 1 input file == 1 test; output diff
• 280: 1 function with assert()s == 1 test; assertion failure

Testing: Inputs and Outputs

1/18/2023 EECS 481 (W23) – QA & Testing 20

• For 183/281/482, students write program inputs, but not
expected outputs

• For 280, students write program inputs and also
expected outputs

• In real life, you rarely have an already-correct
implementation of your program

• Testing with random inputs (fuzz testing) can help
detect “bad things” bugs (segfaults, memory errors,
crashes, etc.)

• But does not provide full expected outputs

21

Testing Concepts

1/18/2023 EECS 481 (W23) – QA & Testing

Testing Concepts

1/18/2023 EECS 481 (W23) – QA & Testing 22

• Regression Testing

• Unit Testing

• xUnit

• Test-Driven Development

• Integration Testing

• Mocking

Ross’s Taxonomy of Testing

Scientific

Computing

also includes

• Verification

• Validation

Regression Testing (in one slide)

1/18/2023 EECS 481 (W23) – QA & Testing 23

• Never have I ever had one of those
“I swear we’ve seen and fixed this bug
before!” moments?

• Perhaps you did, but someone else broke it again
• This is a regression in the source code

• Best Practice: when you fix a bug, add a test that
specifically exposes that bug

• This is called a regression test
• It assesses whether future implementations

still fix the bug

Regression Testing Story

1/18/2023 EECS 481 (W23) – QA & Testing 24

// Dear maintainer:

//

// Once you are done trying to ‘optimize’ this routine,

// and have realized what a terrible mistake that was,

// please increment the following counter as a warning

// to the next guy:

//

// total_hours_wasted_here = 42

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

Unit Testing and Frameworks

1/18/2023 EECS 481 (W23) – QA & Testing 25

• In unit testing, “individual units of source code, sets of
one or more computer program modules together with
associated control data, usage procedures, and
operating procedures, are tested to determine whether
they are fit for use.”

• Modern frameworks are often based on SUnit (for
Smalltalk), written by Kent Beck

• Java JUnit, Python unittest, C++ googletest, etc.

• These frameworks are collectively referred to as xUnit

xUnit Features

1/18/2023 EECS 481 (W23) – QA & Testing 26

• Test cases “look like other code”
• They are special methods written to return a boolean or raise

assertion failures

• A test case discoverer
finds all such tests

• Special naming
scheme, dynamic
reflection, etc.

• A test case runner
chooses which tests
to run

xUnit Definitions

1/18/2023 EECS 481 (W23) – QA & Testing 27

• In xUnit, a test case is
• A piece of code (usually a method) that establishes some

preconditions, performs an operation, and asserts
postconditions

• A test fixture
• Specifies code to be run before/after each test case
• Each test is run in a “fresh” environment

• Special assertions
• Check postconditions, give helpful error messages

1/18/2023 EECS 481 (W23) – QA & Testing 28

Python unittest Example

Python unittest Details

1/18/2023 EECS 481 (W23) – QA & Testing 29

• Discussion Sections will provide more details

• See Python unittest documentation
(aka RTFM)
https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Unit Testing Advantages

1/18/2023 EECS 481 (W23) – QA & Testing 30

• Unit testing tests features in isolation
• In the previous example, our test for zap() tested only

the zap() method
• Advantage: when a test fails, it is easier to locate the bug

(facilitates defect localization)

• Unit tests are small
• Advantage: smaller tests are easier to understand

(facilitates maintainability)

• Unit testing tests are fast
• Advantage: fast tests can be run frequently

(facilitates rapid feedback cycle)

EECS UM Unit Testing

1/18/2023 EECS 481 (W23) – QA & Testing 31

• Recall the Euchre project from EECS 280…
• Card, Pack, and Player classes

• A top-level “play Euchre” application

• Suppose you wrote Card,
Pack, and Player without
testing, and then wrote
“play Euchre”

• What do you do when
you find a bug
in “play Euchre”?

32

TDD – Test Driven Development

and Integration Testing

1/18/2023 EECS 481 (W23) – QA & Testing

TLDR – Too long didn’t read

TLDT – Too long didn’t test

Test-Driven Development

1/18/2023 EECS 481 (W23) – QA & Testing 33

• “Test-driven development is a software
development process that relies on the repetition of
a very short development cycle: requirements are
turned into very specific test cases, then the
software is improved so that the tests pass.”

Basic Procedure:

1. Write a unit test for a new feature

2. When you run the test, it should fail

3. Write the code that your unit test case tests

4. Run all available tests

5. Fix anything that breaks; repeat until no tests fail.

6. Go back to step 1.

Test-Driven Development

1/18/2023 EECS 481 (W23) – QA & Testing 34

• “Test-driven development is a software
development process that relies on the repetition of
a very short development cycle: requirements are
turned into very specific test cases, then the
software is improved so that the tests pass.”

Basic Procedure:

1. Write a unit test for a new feature

2. When you run the test, it should fail

3. Write the code that your unit test case tests

4. Run all available tests

5. Fix anything that breaks; repeat until no tests fail.

6. Go back to step 1.

Integration Testing

1/18/2023 EECS 481 (W23) – QA & Testing 35

• Typically, any feature can be made to work in
isolation

• What happens when we put our unit-tested features
together into a larger problem?

• Does our application work from start to finish?
• “End-to-end” testing

• Integration testing combines and tests individual
software modules as a group.

Unit Testing vs. Integration Testing

1/18/2023 EECS 481 (W23) – QA & Testing 36

• Are those “unit tests” for Pack and Player actually
integration tests?

• Does Pack build on
or use Card for example?

Unit Testing vs. Integration Testing

1/18/2023 EECS 481 (W23) – QA & Testing 37

“There can be no peace until they renounce their
Rabbit God and accept our Duck God.”

Unit and Integration Abstractions

1/18/2023 EECS 481 (W23) – QA & Testing 38

• Once you’ve unit-tested an ADT (abstract data
type), you build atop it and write unit tests for
subsequent modules at a higher level of abstraction

• This also promotes a modular, decoupled design

• Example: we already do this integer, etc.
• “Does that mean that our tests that rely on integers aren’t

really unit tests? No. We can treat integers as a given and
we do. Integers have become part of the way we think
about programming.” – Kent Beck

Integration Testing Examples

1/18/2023 EECS 481 (W23) – QA & Testing 39

• Integration testing is application-specific

• EECS Classes
• Run main program with input file, diff output

• Web and GUI applications
• Use a testing framework (or harness) that lets you

simulate user clicks and other input

• Systems Software
• Use a testing framework that lets you simulate disk and

network failures (cf. Chaos Monkey later)

Creative Integration Testing Examples

1/18/2023 EECS 481 (W23) – QA & Testing 40

• For video games, you might write an AI to play
• Bayonetta

• (https://www.platinumgames.com/official-blog/article/6968)

• Cloudberry Kingdom
• (https://www.gamedeveloper.com/design/how-to-make-insane-procedural-

platformer-levels)

• Or have players use gaze-detecting goggles
• (https://www.tobiipro.com/fields-of-use/user-experience-

interaction/game-usability)
• “We see … modern eye tracking technology as a future standard in

modern QA teams to improve the overall quality of game
experiences.”
- Markus Kassulke, CEO, HandyGames

https://www.platinumgames.com/official-blog/article/6968
https://www.gamedeveloper.com/design/how-to-make-insane-procedural-platformer-levels
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability

41

Trivia Break

1/18/2023 EECS 481 (W23) – QA & Testing

1/18/2023 EECS 481 (W23) – QA & Testing 42

Psychology: Backfire Effect

• Is there a difference between being uninformed and
being misinformed?

• Correct factual ignorance or misperception …

• “However, individuals who receive unwelcome
information may not simply resist challenges to their
views. Instead, they may come to support their
original opinion even more strongly – what we call a
backfire effect.”

1/18/2023 EECS 481 (W23) – QA & Testing 43

Psychology: Backfire Effect

• Human studies of 130 + 197 participants

• Found that conservative supporters of president
Bush “doubled down” when presented with evidence
that there were no weapons of mass destruction in
Iraq before the 2003 US invasion

• Commonly referenced in popular press, message
boards, etc.

[B Nyhan and J Reifler. (2010). When Corrections Fail: The persistence of political misperceptions. In Political Behavior 32(2):303–330.]

1/18/2023 EECS 481 (W23) – QA & Testing 44

Psychology: Backfire Effect
• “Four experiments in which we enrolled more than 8,100

subjects and tested 36 issues of potential backfire.
Across all experiments, we found only one issue
capable of triggering backfire: whether WMD were found
in Iraq in 2003. Even this limited case was susceptible
to a survey item effect […] Evidence of factual backfire
is farm more tenuous than prior research suggests. By
and large, citizens heed factual information, even when
such information challenges their partisan and
ideological commitments.”

[T Wood and E Porter. (2018). The elusive backfire effect: mass attitudes’ steadfast factual adherence. In Political Behavior, pp. 1-29.]

1/18/2023 EECS 481 (W23) – QA & Testing 45

1/18/2023 EECS 481 (W23) – QA & Testing 46

Psychology: Confirmation Bias

• Confirmation bias is the tendency to search for,
interpret, favor, and recall information in a way that
affirms one’s prior beliefs or hypotheses. It includes
a tendency to test ideas in a one-sided way,
focusing on one possibility and ignoring alternatives.

• It is so well-established that experimental evidence
is available in many flavors.

[R Nickerson. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. In Review of General Psychology, 2(2):175-220.]

1/18/2023 EECS 481 (W23) – QA & Testing 47

Psychology: Confirmation Bias
(each subclaim has its own studies)

• Restriction of attention to a favored hypothesis

• Preferential treatment of evidence supporting existing beliefs

• Looking only, or primarily, for positive cases

• Overweighting positive confirmatory instances

• Seeing what one is looking for

• Favoring information acquired early

• Prof. Kochunas’s contribution*: twice constitutes “always”
* - not an actual study

1/18/2023 EECS 481 (W23) – QA & Testing 48

Psychology: Confirmation Bias

• Implications for SE:

• Policy Rationalization justifies policies to which an
organization has already committed. “Once a policy has
been adopted and implemented, all subsequent activity
becomes an effort to justify it.”

• Theory Persistence involves holding to a favored idea
long after the evidence against it has been sufficient to
persuade others who lack vested interests.

• Idea or policy = any SE process decision.

49

Testing Concepts

(continued)

1/18/2023 EECS 481 (W23) – QA & Testing

Some things are hard
to test

Targeting Hard-To-Test Aspects

1/18/2023 EECS 481 (W23) – QA & Testing 50

• What if we want to write unit or integration tests for
some ADT (abstract data type), but the ADT has
expensive dependencies?

• Exercise: generate three examples of things that are
hard to test because of their dependencies or other
expense factors.

1/18/2023 EECS 481 (W23) – QA & Testing 51

Hard-to-test Aspects: Corner Cases

Edge-to-Edge Ray Tracing

1/18/2023 EECS 481 (W23) – QA & Testing 52

Hard-to-test Aspects: Corner Cases

Edge-to-Edge Ray Tracing

1/18/2023 EECS 481 (W23) – QA & Testing 53

Corner Cases

Edge-to-Edge Ray Tracing

54

Mocking

1/18/2023 EECS 481 (W23) – QA & Testing

Mocking

1/18/2023 EECS 481 (W23) – QA & Testing 55

• “Mock objects are simulated objects
that mimic the behavior of real objects
in controlled ways.”

• In testing, mocking uses a mock
object to test the behavior of
some other object.

• Analogy: use a crash test dummy
instead of a real human to test
automobiles

Scenario 1: Web API Dependency

1/18/2023 EECS 481 (W23) – QA & Testing 56

• Suppose we’re writing a single-page web app

• The API we’ll use (e.g., Speech to Text) hasn’t been
implemented yet or costs money to use

• We want to be able to write our frontend (website)
code without waiting on the server-side developers
to implement the API and without spending money
each time

• What should we do?

Mocking Dependencies

1/18/2023 EECS 481 (W23) – QA & Testing 57

• Solution: make our own “fake” (“mock”)
implementation of the API

• For each method the API exposes, write a substitute
for it that just returns some hard coded data (or any
other approximation)

• Why does this work? Are there relevant concepts form
280?

• This technique was used to design and test parts of
the autogradier.io website

Scenario 2: Error Handling

1/18/2023 EECS 481 (W23) – QA & Testing 58

• Suppose we’re writing some code where certain kinds of
errors will occur sporadically once deployed, but “never”
in development.

• Out of memory, disk full, network down, exhaust the
pseudorandom number generator, etc.

• We’d like to apply the same strategy
• Write a fake version of the function …

• But that sounds difficult to do manually
• Because many functions would be impacted

• Example: many functions use the disk

Mocking Libraries: Two Approaches

1/18/2023 EECS 481 (W23) – QA & Testing 59

• Before running the program (“static”)
• Combine modularity/encapsulation with mocking
• Move all disk access to a wrapper API, use mocking there

at that one point (coin flip → fake error)
• Used widely for scientific computing libraries: MPI

• While running the program (“dynamic”)
• While the program is executing, have it rewrite itself and

replace its existing code with fake or mocked versions
• Lets explore this second option in detail!

Dynamic Mocking Support

1/18/2023 EECS 481 (W23) – QA & Testing 60

• Some languages provide dynamic mocking libraries
that allow you to substitute objects and functions at
runtime

• For one test, we could use a mocking library to force another
line of code inside our target function to throw an exception
when reached

• This feature is available in modern dynamic languages
with reflection (Python, Java, etc.)

• googletest used to require a special base class for this sort of
mocking, now it uses macros

• Likely could also be accomplished in C, C++, Fortran with libdl
and some macro automation

1/18/2023 EECS 481 (W23) – QA & Testing 61

class HLTTestCase(unittest.TestCase):

def test_LLO_no_memory(self):

def mocked_memory_error():

raise MemoryError('test :-(')

with mock.patch(# look here!

'__main__.lowLevelOp',

mocked_memory_error):

self.assertFalse(highLevelTask())

if __name__ == '__main__':

unittest.main()

import unittest

from unittest import mock

def lowLevelOp():

might fail for users

example: no memory

pass

def highLevelTask():

try:

lowLevelOp()

return True

except MemoryError:

return False

Dynamic Mocking Example

See https://docs.python.org/3/library/unittest.mock.html

See https://docs.python.org/3/library/unittest.mock.html#patch

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html#patch

Dynamic Mocking Library Uses

1/18/2023 EECS 481 (W23) – QA & Testing 62

• Track how many times a function was called and/or
with what arguments (“spying”)

• How would you do this with dynamic mocking?

• Add or remove side effects
• Exceptions are considered a side effect by mocking

libraries

• Test locking in multithreaded code
• e.g., force a thread to stall after acquiring a lock

Dynamic Mocking Disadvantages

1/18/2023 EECS 481 (W23) – QA & Testing 63

• Test cases with dynamic mocking can be very fragile
• What if someone moves or removes the call to lowLevelOp

that we mock.patch’d earlier?

• Dynamic mocking requires good integration tests
• If we mock dependencies, we need to be extra careful that our

ADTs play nicely together

• Dynamic mocking libraries have a learning curve
• In python, it can be hard to determine the correct value for

‘path’ in mock.patch (etc.)

• Error messages are often cryptic (modified program)

Quality Assurance and Development Processes

1/18/2023 EECS 481 (W23) – QA & Testing 64

• How can we assure quality before, during, and after
writing code?

• What if we don’t have enough
resources?

• Tune in next time!

• Further watching:
• So you want to be in QA?”

https://www.youtube.com/watch?v=ntpZt8eAvy0

https://www.youtube.com/watch?v=ntpZt8eAvy0

1/18/2023 EECS 481 (W23) – QA & Testing 65

The Story so far…
• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if

we plan to use a software development process

• Good planning needs good decision making whichre requires information obtained by
measurements to combat uncertainty and mitigate risk

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive (e.g., 35% of total IT
spending).

• Not testing, or testing badly, is even more expensive

[Capgemini World Quality Report. 2015]

[Minimizing code defects to improve software quality and lower development costs. IBM 2008]

1/18/2023 EECS 481 (W23) – QA & Testing 66

Question?

• Next captivating exciting:

• Test Suite Quality Metrics

