
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Some Challenges and Opportunities in Software
Engineering in Computational Science and Engineering

SAND2021-15212 PE, …

Roscoe A. Bart let t

Department 1424

Software Eng ineer ing and Research

April 12, 2023

Dr. Roscoe A. Bartlett: Career Overview
1996 – 2001 : Ph.D. Chemical Engineering, CMU

• Large-scale optimization algorithms research
• Successive Quadratic Programming

2001 - 2011: Sandia National Laboratories
(SNL)

• Continued Optimization R&D
• Sensitivities and Inverse problems
• Abstract numerical algorithms (Thyra)
• Build and test systems (TriBITS)
• Almost continuous integration: Charon, Sierra
• Lean/Agile advocate

(https://bartlettroscoe.github.io, 2008+)

2011 – 2016: Oak Ridge National Laboratory
(ORNL)

• CASL (Nuclear Reactor Modeling DOE HUB)
• SE processes and infrastructure

2016 – Present: Sandia National Laboratories
(SNL)

• Computational Tools and Development
Environments

• Productivity and Sustainability for the Exascale
Computing Project (ECP)

• Large-scale build and test systems for CSE
package ecosystems (TriBITS)

APP Interface

APP

Vec
Mat

ANA

Preconditioner

LAL

111

1..*

1

1..*1..*
1

1

1

 Computes functions

2

https://bartlettroscoe.github.io/

Dr. Roscoe A. Bartlett: Self-Taught SE Education

3
Site: https://bartlettroscoe.github.io/reading-list/

https://bartlettroscoe.github.io/reading-list/

Computational Science and Engineering (CSE) Overview

• Computational science and engineering (CSE) is an interdisciplinary

field that uses computational methods to solve scientific and

engineering problems.

• CSE draws on knowledge from mathematics, computer science, physics,

chemistry, engineering, climate and other fields.

• CSE is used to solve a wide range of problems, including:

• Modeling the behavior of complex (physical) systems

• Designing new products and processes

• Simulating and predicting physical phenomena

• Improving the efficiency of existing systems

• Making predictions about the future (e.g. climate)

• CSE is essential for solving many of the world's most pressing problems,

such as climate change, energy security, and healthcare.

4

Computational Sciences: PDEs and More …

Chemically reacting flows

Climate modeling

Combustion

Compressible flows

Computational biology

Circuit modeling

Inhomogeneous fluids

Materials modeling

MEMS modeling

Seismic imaging

Shock and multiphysics

Structural dynamics

Heat transfer

Network modeling

5

High Performance Computing (HPC) Overview

• High performance computing (HPC) is the use of powerful

computers to solve complex computing problems that are beyond

the capabilities of ordinary personal computers.

• HPC systems are typically made up of hundreds or even thousands

of individual nodes that are linked together with a high bandwidth

interconnect.

• HPC systems are very expensive to build and maintain.

• HPC systems require a high level of expertise to operate and

manage.

• HPC systems generate a lot of heat, which can be a challenge to

manage.

• Current thrust in HPC is reaching exascale computations (i.e. 1018

floating-point operations per second)

• Modern exascale HPC systems use smaller numbers of beefier

hybrid computing nodes involving a CPU and a number of

accelerator units (i.e. NVIDA GPUs, AMD GPUs, Intel Max GPUs)

6

Classic Environments for CSE/HPC

7

Serial / SMP (symmetric multi-processor)

• All data stored in RAM in a single local process

Out of Core

• Data stored in file(s) (too big to fit in RAM)

SPMD (Single program multiple data)

• Same code on each processor but different data: Message Passing Interface (MPI)

Processor

Code

Data

Processor Disk

Code Data

Proc(0)

Code

Data(0)

Proc(1)

Code

Data(1)

Proc(N-1)

Code

Data(N-1)

…

Exascale HPC Systems

MPI/X

• Course-grained parallelism: MPI

• Fine-grained on-node/GPU parallelism: CUDA (NVIDA GPUs), HIP (AMD GPUs)

Interconnect

Complex multi-level parallel algorithms and software
=>

Lots of complex bugs leading to random errors

8

Proc(0)

Code

Data(0)

GPU0

GPU1

Proc(1)

Code

Data(1)

GPU0

GPU1

Proc(N-1)

Code

Data(N-1)

GPU0

GPU1

…

Software Engineering (SE) Challenges in CSE

• Increasing complexity of hardware and programming HPC environments.

• Needing to develop and integrate increasingly more complex algorithms from specialized

domains to continue progress solving CSE problems

• CSE developers are domain experts (classic engineering, applied math, physics, etc.) and

lack basic SE knowledge and skills

• Needing to update CSE/HPC software for new algorithms and new programming

environments

=> Of f (. . “T ”

• Difficultly hiring and retaining skilled software engineers to aid CSE domain expert

developers

=> Agile best practices

=> Software modeling and design (e.g. UML & Design Patterns)

9

9

Some of the Challenges in Modern Exascale CSE/HPC Systems

• Running on bleeding-edge hardware and system software

• Defects in system software (e.g. compilers, MPI) slipping

through system testing and instead being detected in

downstream testing of CSE/HPC Codes

• Fairly frequent systems upgrades to newer bleeding-edge

system software

• Setting up builds on new platforms requires painful

debugging of failing automated tests to distinguish latent

Code defects from system hardware/software defects

10

10

Advancing scientific productivity through better
scientific software
Science through computing is only as good as the software that
produces it.

https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability

● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress

● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility

● Create Software Development Kits (SDKs)

to facilitate the combined use of

complementary libraries and tools

Engage in community outreach
● Broad community partnerships

● Collaboration with computing facilities

● Webinars, tutorials, events

● WhatIs and HowTo docs

● Better Scientific Software site (https://bssw.io)

1

2

3

4

11

https://bssw.io/
https://ideas-productivity.org/

Better Scientific Software (https://bssw.io)

12

Better Scientific Software (Bssw.io): Resources

13

Agile Principles and
Technical Practices

14

Agile: Defined

• Agile Software Engineering Methods:

• Agile Manifesto (2001) (Capital ‘A’ in Agile)

• Founded on long standing wisdom in SE community (55+ years)

• Push back against heavy plan-driven methods in 1980s & 1990s (e.g. CMM(I))

• Focus on incremental design, development, and delivery (i.e. software life-cycle)

• Close customer focus and interaction and constant feedback

• Example methods: SCRUM, XP (extreme programming)

• Has become a dominate software engineering approach (example IBM)

References: https://bartlettroscoe.github.io/reading-list/

15

http://blogs.wsj.com/cio/2015/04/27/ibm-cio-designs-new-it-workflow-for-struggling-tech-giant/
https://bartlettroscoe.github.io/reading-list/

Principles for Agile Technical Practices
• Agile Design: Reusable software is best designed and developed by

incrementally attempting to reuse it with new clients and incrementally
redesigning and refactoring the software as needed keeping it simple.

• Technical debt in the code is managed through continuous
incremental (re)design and refactoring.

• Agile Quality: High quality defect-free software is most effectively
developed by not putting defects into the software in the first place.

• High quality software is best developed collaboratively (e.g. pair
programming and code reviews).

• Software is fully verified before it is even written (i.e. Test Driven
Development (TDD)).

• High quality software is developed in small increments and with
sufficient testing in between sets of changes.

• Agile Integration: Software needs to be integrated early and often

• Agile Delivery: Software should be delivered to real (or as real as we
can make them) customers is short (fixed) intervals.

References: https://bartlettroscoe.github.io/reading-list/
16

https://bartlettroscoe.github.io/reading-list/

Key Agile Technical Practices
Unit Testing

▪ Re-build fast and run fast
▪ Localize errors
▪ Well supports continuous integration, TDD, etc.

Integration and System-Level Testing
▪ Tests on full system or larger integrated pieces
▪ Slower to build and run
▪ Generally does not well support CI or TDD.

Test Driven Development (TDD)
▪ Write a compiling but failing test and verify that it fails
▪ Add/change minimal code until the test passes (keeping all other tests passing)
▪ Refactor code to make more clear and remove duplication
▪ Repeat (in many back-to-back cycles)

Continuous Integration
▪ Integrating software in small batches of changes frequently
▪ Most development on primary ‘master’ branch

Incremental Structured Refactoring
▪ Make changes to restructure code without changing behavior (or performance, usually)
▪ Separate refactoring changes from changes to change behavior

Agile-Emergent Design
▪ Keep the design simple and obvious for the current set of features (not some imagined set of

future features)
▪ Continuously refactor code as design changes to match current feature set

Integration Tests

Courser-grained “Integration tests” can be

relatively fast to write but take slightly

longer to rebuild and run than pure “unit

tests” but cover behavior fairly well but don’t

localize errors as well as “unit tests”.

These are real skills
that take time and
practice to acquire!

17

Regression!

Common Approach: Development Instability

#failing tests
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

Common Approach
NOT AGILE!

Problems

• Cost of fixing defects increases the longer they exist in the code

• Difficult to sustain development productivity

• Broken code begets broken code (i.e. broken window phenomenon)

• Long time between branch and release

– Difficult to merge changes back into main development branch

– Temptation to add “features” to the release branch before a release

• Nearly impossible to consider more frequent development integration models

• High risk of creating a regression 18

#failing tests
or

#defects

Agile Approach: Development Stability

Time

Release X Branch for
Release X+1

Release X+1

The Agile way!

Advantages

• Defects are kept out of the code in the first place

• Code is kept in a near releasable state at all times

• Shorten time needed to put out a release

• Allow for more frequent releases

• Reduce risk of creating regressions

• Decrease overall development cost (Fundamental Principle of Software Quality)

• Allows many options in how to do development integration models

19

Typical (i.e. non-Lean/Agile) CSE Lifecycle

Research Production
Growth

Production
Maintenance

Unit and Verification Testing

Research Production
Growth

Production
Maintenance

Acceptance Testing

Research Production
Growth

Production
Maintenance

Code and Design Clarity

Research Production
Growth

Production
Maintenance

Documentation and Tutorials

Research Production
Growth

Production
Maintenance

User Input Checking and Feedback

Research Production
Growth

Production
Maintenance

Backward compatibility

Research Production
Growth

Production
Maintenance

Portability

Research Production
Growth

Production
Maintenance

Space/Time Performance

Research Production
Growth

Production
Maintenance

Cost per new feature

Time
20

Pure Lean/Agile Lifecycle: “Done Done”

Unit and Verification Testing Acceptance Testing

Code and Design Clarity Documentation and Tutorials

User Input Checking and Feedback Backward compatibility

Portability

Space/Time Performance

Time

Cost per new feature

21

Why Software Practices Matter for Research Software?

• Even research software (only written by and run by a researcher) needs to have a base level of SE
practices/quality to support basic research!

• Example: A simple software defect in protein configuration/folding research code [1]

• The researcher: A respected Presidential Early Career winner

• The defect:

▪ An array index failure (i.e. verification failure)

▪ leading to incorrect protein folding (validation failure)

• Direct impact:

▪ Several papers were published with incorrect results & conclusions

• Indirect impact:

▪ Papers from other competing researchers with different results were rejected

▪ Proposals from other researchers with different results were turned down

• Final outcome: Defect was finally found and author retracted five papers!

▪ But: Damage to the research community not completely erased!

• [1] Miller, G. “A Scientist's Worst Nightmare: Software Problem Leads to Five Retractions”, Science, vol
314, number 5807, Dec. 2006, pages 1856-1857

And Software Development
Productivity Matters CSE

Researchers Too!

22

Working Effectively with
Legacy Software

Where the rubber meets the road with
“Things you should never do: Part 1”

23

Definition of Legacy Code and Changes

Legacy Code = Code Without Tests
“Code without tests is bad code. It does not matter how
well written it is; it doesn’t matter how pretty or object-
oriented or well-encapsulated it is. With tests, we can
change the behavior of our code quickly and verifiably.
Without them, we really don’t know if our code is getting
better or worse.”

Source: M. Feathers. Preface of “Working Effectively with Legacy
Code”

Reasons to change code:

• Adding a Feature

• Fixing a Bug

• Improving the Design (i.e. Refactoring)

• Optimizing Resource Usage

Preserving behavior under change:

“Behavior is the most important thing about
software. It is what users depend on. Users
like it when we add behavior (provided it is
what they really wanted), but if we change or
remove behavior they depend on (introduce
bugs), they stop trusting us.”

Source: M. Feathers. Chapter 1 of “Working
Effectively with Legacy Code”

Existing behavior new behavior
24

Legacy Software Change Algorithm: Details
Abbreviated Legacy Software Change Algorithm:

▪ 1. Cover code to be changed with tests to protect existing behavior

▪ 2. Change code and add new tests to define and protect new behavior

▪ 3. Refactor and clean up code to well match current functionality

Legacy Code Change Algorithm (Chapter 2 “Working Effectively with
Legacy Code”)

▪ 1. Identify Change Points

▪ 2. Find Test Points

▪ 3. Break Dependencies (without unit tests)

▪ 4. Cover Code with Verification or No-change/Characterization Unit or Integration Tests

▪ 5. Add New Functionality with Test Driven Development (TDD)

▪ 6. Refactor to remove duplication, clean up, etc.

Covering Existing Code with Tests: Details
▪ Identify Change Points: Find out the code you want to change, or add to

▪ Find Test Points: Find out where in the code you can sense variables, or call functions,
etc. such that you can detect the behavior of the code you want to change.

▪ Break Dependencies: Do minimal refactorings with safer hipper-sensitive editing to
allow code to be instantiated and run in a test harness. Can be at unit or integration
test levels (consider tradeoffs).

▪ Cover Legacy Code with Unit Tests: If you have the specification for how to code is
supposed to work, write tests to that specification (i.e. verification tests). Otherwise,
write no-change or “Characterization Tests” to see what the code actually does under
different input scenarios. 25

Legacy Software Tools, Tricks, Strategies

Reasons to Break Dependencies:
▪ Sensing: Sense the behavior of the code that we can’t otherwise see

▪ Separation: Allow the code to be run in a test harness outside of production setting

Faking Collaborators:
▪ Fake Objects: Impersonates a collaborator to allow sensing and control

▪ Mock Objects: Extended Fake object that asserts expected behavior

Seams: Ways to inserting test-related code or putting code into a test harness.
▪ Preprocessing Seams: Preprocessor macros to replace functions, replace header files, etc.

▪ Link Seams: Replace implementation functions (program or system) to define behavior or sense
changes.

▪ Object Seams: Define interfaces and replace production objects with mock or fake objects in test
harness.

▪ NOTE: Prefer Object Seams to Link or Preprocessing Seams!

Unit Test Harness Support:
▪ C++: Teuchos Unit Testing Tools, Gunit, Boost?

▪ Python: pyunit ???

▪ CMake: ???

▪ Other: Make up your own quick and dirty unit test harness or support tools as needed!

Refactoring and testing strategies … See the book …

26

Two Ways to Change Software: An Example
The Goal: Refactor five functions on a few interface classes and update all subclass
implementations and client calling code. Total change will involve changing about 30
functions on a dozen C++ classes and about 300 lines of C++ client code.

Option A: Change all the code at one time testing only at the end

• Change all the code rebuilding several times and documentation in one sitting [6 hours]

• Build and run the tests (which fail) [10 minutes]

• Try to debug the code to find and fix the defects [1.5 days]

• [Optional] Abandon all of the changes because you can’t fix the defects

Option B: Design and execute an incremental and safe refactoring plan

• Design a refactoring plan involving several intermediate steps where functions can be
changed one at a time [1 hour]

• Execute the refactoring in 30 or so smaller steps, rebuilding and rerunning the tests each
refactoring iteration [15 minutes per average iteration, 7.5 hours total]

• Perform final simple cleanup, documentation updates, etc. [2 hour]

Are these scenarios realistic?

=> This is exactly what happened to me in a refactoring several years ago!
27

Legacy Software: Turning the ship around

Agile Legacy Software Change Algorithm:

1. Identify Change Points

2. Break Dependencies

3. Cover with Unit Tests

4. Add New Functionality with Test Driven Development (TDD)

5. Refactor to removed duplication, clean up, etc.

NOTE: After enough iterations of the Legacy Software

Change Algorithm the software may approach Agile-

compliant sustainable software!

Cost per new feature

Legacy
Code Creation

Legacy Code using Legacy Change Process

28

Any short questions or
clarifications?

29

Basic Agile Development
Workflows

30

Simple Centralized CI Workflow

A1 B1 A2 A3 B2 C

• Features implemented in commits intermingled on ‘master’ branch
– Feature “A”: Commits “A1”, “A2”, “A3”

– Feature “B”: Commits “B1”, “B2”

– Feature “C”: Commit “C”

• Pros and Cons (w.r.t. other more sophisticated workflows):
– Pro: Simplest workflow with fewest Git commands, no distributed VC concepts (i.e. SVN-like).

– Pro: Requires least knowledge of Git .

– Pro: Minimizes merge conflicts (frequent pushes to and pulls from ‘master’).

– Con: Difficult to perform pre-merge code reviews.

– Con: Difficult to collaborate with other developers with partial changes (can’t push broken code to ‘master’

to share with others).

– Con: Difficult to back out bad feature sets.

– Con: Difficult to maintain 100% passing tests for all Nightly Builds.

master

Dev 1 Dev 2

D

31

Addition of Topic Branches and Pre-Merge/PR Testing

A1

B1

A2 A3

B2

1st topic
branch for
feature A

Branch for compete
feature B

2nd topic
branch for
feature A

• Introduce usage of temporary short-lived topic branches:
– Developers implement features in one or more topic branches and merge to ‘develop’. E.g.:

• Feature “A”: 1st topic branch (commits “A1”, “A2”), 2nd topic branch (commit “A3”)

• Feature “B”: Single topic branch (commits “B1”, “B2”)

– Topic branches pass PR Builds and merged into ‘develop’ about once/day or 4-6 hours of work (ideal)

– NOTE: Usage of topic branches does not degrade CI at all! Does not lead to more merge conflicts!

– NOTE: Not typically long-lived “feature branches” that are hard to merge back!

• Pros and Cons (w.r.t. single branch workflow):
– Pro: Allow changes to be easily backed out if something goes wrong

– Pro: Allow switching between different topic branches quickly

– Pro: Allow easy sharing for quick collaboration with other devs before merging to ‘develop’

– Pro: Allow quick code reviews (pull-requests) on the topic branch before merging to ‘develop’.

– Pro: Maps to GitHub Flow with Pull Requests including automated testing before merges!

– Con: Requires knowing how to use multiple branches and merges with Git

develop
Must pass Pull Request (PR) Builds/Tests before merge!

Close Users

32

Where does testing fit in to development and integration processes?

Coverage Testing?

Nightly Testing

Only enough computing resources to be run once a day

Post-Merge CI Testing

Pre-Merge CI Testing

Memory Testing (e.g. Valgrind, Clang Sanitizers)?

C
o

rr
e
c

tn
e
s

s
 T

e
s

ti
n

g

Heavy Testing

Smaller set of very expensive tests

Run less frequently

33

A1 A2

develop

topic-a1

B1 B2

topic-b1

Primary Goal: Provide stable yet frequent updates

Development and Integration Challenges:

• Balancing stability vs. speed of updates

• Stability: Maintaining portability on wide range of platforms

• Stability: Avoid getting significant defects

vs:

• Speed: Frequent updates to get new features to drive progress

• Speed: Avoid merge conflicts

• Speed: Co-development upstream and downstream packages requires frequent

upgrades

Development & Integration: Speed vs Stability

34

Multi-Team
Multi-Repository

Integration

35

Dependences Between Selected CASL VERA Repositories (2016)

Trilinos

(SNL)

TeuchosWrappersExt

(Multi Inst.)

VERAInExt

(Multi Inst.)

COBRA-TF

(PennState) MPACT

(U.Mich.)

SCALE (ORNL)

VUQDemos

(SNL)

MOOSEExt

MOOSE /

Bison (INL)

DatraTransferKit

(ORNL)

Exnihilo

(ORNL)

DakotaExt

Dakota

(SNL)

PSSDriversExt

(Multi Inst.)

• Primary/originating institution shown in Blue

• Most codes being contributed by multiple institutions as well

• All direct dependencies not shown

• Local VERA git clones of all these repos kept compatible

MAMBA

(LANL)

36

What Not to Do

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Repos

External

Repo2 Devs

External

Repo1 Devs

Project

Devs

pull

push

pull

push

pull

pull

Why is this so bad?

• L f x ’

 ’ .

• External repo developers not testing against

 ’ .

• External repo may be broken w.r.t. to the

project for long periods of time.

• Project developers frequently pull code that

does not even configure or build.

• Broken code frequently interrupting the work

of project developers.

Project Developers Directly

Pulling from the External Repos

pull

push

37

Managing Internal and External Development & Integration

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Repos

External

Repo2 Devs

Repo1

Integrator

Repo2 / Project

Co-developer

External

Repo1 Devs

Project Devs

Project

Releaser

Issues that need to be addressed:

• Flexibility for development inside and outside

of the project.

• Frequent stable updates of the software.

• Maintaining the stability of the software to

keep project developers productive.

• Making non-backward compatible changes

across many repos.

• Full tracking of changes and updates.

pull

push

pull

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

push

pull

pull

push

pull

push

Repo2

Integrator

38

Basic Parts to Development & Integration Processes

• Git Workflows:

• How git repositories and branches are set up, how merges occur, what git commands are run, etc.

• Different git workflows used for external repo developers, Project developers, and repo/project

co-developers.

• Testing gates for workflows:

• G f “ ” f .

• G , “ -so- f ”.

• Important test suites:

Upstream Package build & tests G ‘ ’ .

APP builds & tests: Gates all updates of the A ’ repos.

• Detection, triage and fixing of new failing builds and tests:

• Detection and notification of new failures.

• Triage failures.

• Address failures.

• Manage & follow-up.

39

Primary Goal: Provide stable yet frequent updates

Development and Integration Challenges:

• Balancing stability vs. speed of updates

• Stability: Maintaining portability on wide range of platforms

• Stability: Avoid getting significant defects

vs:

• Speed: Frequent updates to get new features to drive progress

• Speed: Avoid merge conflicts

• Speed: Co-development upstream and downstream packages requires frequent

upgrades

Development & Integration: Speed vs Stability

40

Development and Integration Workflows

Integrator

Downstream Project

Developers

Upstream

Pkg Dev 2
Upstream

Pkg Dev 3

upstream-pkg-downstream/

master

upstream-pkg/

develop

<github-user>/

1235-topic-b

Initial creation of upstream package

fork in downstream project

Must pass gating:

2) Upstream Pkg

nightly tests

3) Downstream

Pkg tests

<github-user>/

1234-topic-a

Must pass gating:

1) Upstream Pkg PR

tests

Upstream

Pkg Dev 1

commits on

branch

<main-branch>
(explicit) merge

commit

Unspecified git

graph/history

link to ancestor

commit

link to merge ancestor

branch

references

Person creating or

using commit

<topic-branch>

Legend for Git

Workflow Diagrams

Time

direct commit on

<main-branch>

Adventurous Users

Upstream &

Downstream

Co-Developers

41

Downstream Project

Users

Testing and Defect Detection in

Challenging CSE Environments

42

2) Upstream Package Nightly Builds & Tests (CDash, 2018+)

• Build and run native Trilinos

test suite on all customer

platforms.

• Catch defects in upstream

package and system

software customer

platforms.

• Builds are too expensive to

run more than one set per

24-hour day.

• Build and test results often

go missing (e.g. should be

40 not 38 builds and missing

test results in 6 builds).

• Frequent random system

failures make detection of

new code-related failures

difficult.

43

Common Problem: Existing Failures Hiding New Failures

Example: Customer update of upstream package with key defect:

• APP customer had many failing tests on dashboard every day

• Customer updated upstream package with a major defect which triggered a

new failing APP test. (Did not notice new failing test due to other existing

failing tests!)

• Major upstream package defect only noticed months later.

• Detailed & expensive Git bisection study performed over months of upstream

package commit history discovered the defect.

=> Discovered that an APP test had actually caught this!

Lessons Learned:

• Don’t let existing failing tests hide the emergence of new failing tests!

• Must examine every failing test to look for possible new defects!

44

Testing Challenges for CSE/HPC software

Testing Challenges:

• Random system-related failures create noise on results dashboard.

• Random build failures due to system issues:

• Disk and network I/O issues

• Machine overloading

• Compiler license server problems (e.g. Intel license server).

• Random test failures due to system issues:

• Disk and network I/O issues

• MPI stat-up problems

• Non-deterministic (rare) bugs in bleeding-edge system software (e.g.

OpenMPI+CUDA CPU/GPU data management).

• (Randomly) failing tests due to defects in CSE code:

• Defects in features not used by real customers

• Defects in tests (but not the code itself) for features used by real customers

• Defects in functional software used by customers (5-10% of failing tests)

• Missing build and test results on dashboard:

• Machine overloading (e.g. queues are full)

• Machines go down for maintenance in middle of build/testing.

• Communication problems with dashboard server to upload results.

Can’t judge health of a CSE/HPC code from just the

amount of red or green on results dashboard! 45

Reducing Time to Detect, Triage, and

Address New Failures

46

General SE Principles for Defects

• Lean/Agile SE Practices for dealing with defects:

• Strong automated testing (have tests help new detect defects)

• Continuous testing (reduce the time to detect new defects caught by tests)

• Continuous integration (reduce time to detect conflicts)

• STOP THE LINE when a new defect gets into the main development branch

• Fixing defects in previously working software is higher priority than developing

new features!

• Cost of a defect goes up

(significantly) the longer it

takes to detect and correct a

defect.

47

Where to Catch Defects in Upstream Package?

Upstream package native test suite running in customer

configurations/environments

• Best place to catch an upstream package’s defect!

• Upstream package developers can triage and fix a defect before

customer/package Integrators need to dig in to triage customer

failures caused by these defects

Downstream Package native test site

• Less than best place to catch a upstream package defect

• Requires Downstream/Upstream Package Integrator and

Downstream Developers to triage problems and communicate back

to Upstream Package developers

Downstream developer or user when running downstream code

• The worst place to catch an upstream package defect!

• Customer has to report problems back to Developers who have to

triage the failure and then report back to upstream package

developers

Example:

• SEACAS update https://github.com/trilinos/Trilinos/issues/2650

• Broke upstream Trilinos/SEACAS CUDA test suite

• Did NOT break the downstream EMPIRE test suite

• Broke usage of downstream EMPIRE by EMPIRE users!

If update of Trilinos/SEACAS was

gated by 100% passing SEACAS tests,

then downstream EMPIRE developers

and users may have never seen these

defects!
48

https://github.com/trilinos/Trilinos/issues/2650

Injecting New Failures and Fixing Failures: A Race!

• Mean-time to fail: Average time (in days) for when a new failure shows up in

‘ ’ .

• Mean-time to fix: Average time (in days) to discover, triage and fix a failure on

 ‘ ’ .

• The core problem: If “ - f ” “ - f x”,

 ‘ ’ ALWAYS be broken

(and therefore block updates of Upstream Package to downstream customers)!

Mean-time to fix

<

Mean-time to fail
#
 T

e
st

 f
a
il
u
re

s

P
o
st

-m
e
rg

e
Time (days)

Mean-time to fix

>

Mean-time to fail

100% clean allowing Upstream Package

updates to downstream customers

49

#
 T

e
st

 f
a
il
u
re

s

P
o
st

-m
e
rg

e

Options for updates of upstream package in downstream project

• Option-1: Make Upstream Package builds clean on ‘develop’

periodically

• Option-2: Create ‘release’ branches and clean up there

50

Option-1: Get clean upstream package test on ‘develop’

Time (days)

Mean-time to fix < Mean-time to fail

Integrator

Downstream Project

Developers

upstream-pkg-downstream/

master

Must pass gating:

2) Upstream Pkg

nightly tests

3) Downstream

Pkg tests

Must pass gating:

1) Upstream Pkg PR

tests

51

#
 T

e
st

 f
a
il
u
re

s

U
p
st

re
a
m

 P
k
g
 t

e
st

s

Option-2: Upstream package release branches: Workflow

upstream-pkg-downstream/master

upstream-pkg/

developAdds new Upstream

Package and APP

failures on ‘develop’?

Must create bug-fix

branch off of ‘release’

NOT ‘develop’

Fixes failures on

‘release’ and

‘develop’

Must create 2

PRs per bug-

fix branch!

Fixes Upstream Package

and APP test suites!

release

Create a new

‘release’

branch

release

Create a

new

‘release’

branch

‘develop’ has many

Upstream Package and

APP failures!

Adds new Upstream

Package and APP

failures on ‘develop’?

Bug-fix topic

branch

Must run Upstream Package

builds on ’release’ branch also!

Merge ‘release’ to

‘upstream-pkg-downstream/master

’

NOTE: Note this is really just an adaptation of the gitworkflows(7) release ‘maint’ branch

52

https://git-scm.com/docs/gitworkflows

Option-2: Upstream Release Branches: Failures

‘ ’

branch

Time (days)

‘ ’

branch

 ‘ ’ ‘ -

pkg- ’

Create new

‘ ’

Create new

‘ ’

 ‘ ’ ‘ -

pkg- ’

53

#
 T

e
st

 f
a
il
u
re

s

U
p
st

re
a
m

 P
k
g
 t

e
st

s
#
 T

e
st

 f
a
il
u
re

s

U
p
st

re
a
m

 P
k
g
 t

e
st

s

Options for Upstream Package APP Updates: Summary

• Option-1: Make Upstream Package builds clean on ‘develop’ periodically
• Assumes: “ - f x” “ - f ” ‘ ’ .

• Pro: Requires just one set of builds on the platforms.

• Pro: Simpler workflow for Upstream Package developers f x ‘ ’ .

• Pro: Provides quicker APP updates of Upstream Package.

• Pro: Allows APPs like EMPIRE to co-develop Upstream Package ‘ ’

get updates to the APP fairly regularly.

• Con: Requires fast reaction time to detect and triage new failures and then either a) fix, b) disable, or c)

 “ - f x” “ - f ”.

• Option-2: Create ‘release’ branches and clean up there
• Assumes: “ - f x” “ - f ” (

• Pro: More leisurely reaction time to fix defects “ - f ”.

• Pro: Guaranteed periodic Upstream Package updates with 100% clean Upstream Package builds.

• Con: Requires double the number of builds; ‘ ’, ‘ ’

• Con: More complex workflow for Upstream Package developers f x ‘ ’

 “ ” -fix branch!

• Con: More complex workflow for APP Upstream Package co-developers involving branches, cherry-picks

(e.g. EMPIRE git-git-like workflow and SPARC cherry-picking workflow).

54

Detecting New Failures/Missing Results: Dashboard Analysis

Failures in red may

require triage!
• Missing test results!

• Failing tests without

issue trackers!

Software Engineering (SE) Challenges in CSE: Solutions?

• Needing to develop and integrate increasingly more complex algorithms from specialized

domains to continue progress solving CSE problems

=> Adopting/adapting Agile development practices

• Needing to update CSE/HPC software for new algorithms and new programming

environments

=> Legacy Software Change Process

• CSE developers are domain experts (classic engineering, applied math, physics, etc.) and

lack basic SE knowledge and skills

• Difficultly hiring and retaining skilled software engineers to aid CSE domain expert

developers

=> Research Software Engineers

56

Research Software Engineer Role?
• A Research Software Engineer (RSE) is a software engineer who works with and supports

CSE researchers and developers to develop, maintain, and extend CSE software

• RSEs have a strong understanding of both the research domain and software engineering
principles, and they use this knowledge to help researchers solve problems and achieve their
goals.

• What are the responsibilities of an RSE?

• Developing and maintaining software that supports research projects

• Working with researchers to understand their needs and requirements

• Designing and implementing software solutions

• Testing and debugging software

• Documenting software

• Collaborating with other software engineers and researchers

• Keeping up-to-date with the latest software approaches and technologies

• RSE Organizations:

• RSE (society-rse.org) Society of Research Software Engineering (UK)

• US-RSE (us-rse.org): The United States Research Software Engineer Association

57

Better Scientific Software (https://bssw.io)

58

Questions?

59

