Fixing and Generating Programs for Fun and Profit

José Cambronero

PROSE, Microsoft

josepablocam @ (gmail, twitter, github)

Principal Research

Manager

Daniel Perelman

Senior Researcher

Ananya Singha **Research Fellow**

Priyanshu Gupta

Associate Researcher

PROSE Team

Sumit Gulwani

Partner Research Manager

Danny Simmons Principal Software Engineer

Sherry Shi

Senior Software Engineer

Avishree Khare **Research Fellow**

Arjun Radhakrishna Principal Researcher

Het Shah

https://www.microsoft.com/en-us/research/group/prose/

Vu Le Principal Research Manager

Chris Parnin Principal Researcher

Harshit Joshi

Research Fellow

Gust Verbruggen

Researcher

Mukul Singh Associate Researcher

Yasharth Bajpai Associate Researcher

Research Fellow

Ashish Tiwari

Clint Simon Senior Software Engineer

> Saksham Gupta **Research Fellow**

Research Fellow

Abishai Ebenezer **Research Fellow**

Agenda

- Fixing Last Mile Errors
 - LaMirage: Neurosymbolic approach
 - RING: LLM-based approach
 - FLAME: Custom Excel-Specific LLM trained on formulas
- Domain-Specific Synthesis (maybe...based on time)
 - FormaT5: Natural language to conditional formatting rules
- Open Discussion
 - Building software in PROSE
 - Grad school vs Industry
 - Career changes
 - Anything else on your mind

Fixing Programs

Last-Mile Errors: Syntax++

- Wide range of spectrum of errors
 - from simple, e.g., syntax errors, to complex, e.g., concurrency bugs
- We call errors that require few edits to fix, Last Mile errors.
- They are hard for low-code users to even identify them.

Unhelpful compiler messages

Approaches to Last-Mile Repair

LaMirage

https://aka.ms/lamirage-arxiv

LaMirage: LAst-MIle RepAir-engine GEnerator

We should also avoid repeating work!

Implement as a repair engine generator

Performance

- Neural methods are better than error recovery parser.
- LaMirage, a neurosymbolic method, outperforms neural models
- Performance degradation for neural models in PowerFx

C	Туре	Excel (200 benchmarks)				Power Fx (200 benchmarks)			
System		Тор-1	Тор-З	Тор-5	Time (ms)	Top-1	Тор-3	Top-5	Time (ms)
Excel Desktop	Symbolic	83	83	83	-	-	-	-	-
GRMTOOLS	Symbolic	97	104	108	13.6	98	110	113	17.2
BIFI	Neural	115	130	134	363.1	34	45	48	592.8
CODEX	Neural	111	156	160	1651.8	86	117	132	1997.9
CODEX-EDIT	Neural	147	163	165	5806.6	106	137	140	6417.6
LAMIRAGE	Neurosymbolic	174	182	182	32.1	170	177	177	134.4

RING

https://aka.ms/ring-paper

Domain-Specific Repair Engines

- Symbolic: substantial engineering for new domain
- Neural: need new data and retraining for new domain
- Neurosymbolic: both challenges mitigated but still there

New languages pose a significant investment

Large Language Models Trained on Code (LLMC)

RING: Multilingual Program Repair with LLMs

RING

RING: Repair Is Nearly Generation

RING Results

Language	Approach	Top@1	Top@3	Top@50 [*]	Metric	Avg. Tokens	
	RING (Abstracted Message, Error Vector)	0.82	0.89	0.92			
Excel	LaMirage (Bavishi et al. 2022)	0.71	0.76	-	Exact Match	26 ± 14	
_	Codex (Chen et al. 2021)	0.60	0.77	0.88			
	RING (Compiler Message, Message Embedding)	0.71	0.85	0.87			
Power Fx	LaMirage (Bavishi et al. 2022)		0.88	-	Exact Match	29 ± 19	
	Codex (Chen et al. 2021)	0.47	0.68	0.84			
Javascript	RING (Compiler Message, Error Vector)	0.46	0.59	0.64			
	TFix (extended code snippets) (Berabi et al. 2021)	0.09	-	-	Exact Match	163 ± 106	
	TFix (original dataset) (Berabi et al. 2021)	0.59	-	-	Exact Materi	105 ±100	
	Codex (Chen et al. 2021)	0.19	0.28	0.39			
	RING (Compiler Message, Message Embedding)	0.94	0.97	0.97	Desses Demor		
Python	BIFI (Yasunaga and Liang 2021)		0.95	0.96	Edit Distance < 5	104 ± 150	
	Codex (Chen et al. 2021)	0.87	0.94	0.98			
	RING (Compiler Message, Message Embedding)	0.63	0.69	0.70	D. D.		
С	Dr Repair (Yasunaga and Liang 2020)	0.55	-	-	Passes Parser Edit Distance < 5	$223\pm\!\!72$	
	Codex (Chen et al. 2021)		0.56	0.61			
Dowershell	RING (Compiler Message, Message Embedding)	0.18	0.25	0.28	Exact Match	24 ± 20	
rowershell	Codex (Chen et al. 2021)	0.10	0.15	0.18	Exact Match	24 ± 30	

PyDex: Fixing Intro Programming Assignments

https://arxiv.org/abs/2209.14876

PyDex

Peer programs

PyDex Results

Me	thod	PyDex (without few-shot)	PyDex	(with few-shot)	BIF	I + Refactory	PyDex(syntax) + Refactory		PyDex(s	yntax) + GenProg
ID	# Sub	RR (%)	Mean TED (SD)	RR (%)	Mean TED (SD)	RR (%)	Mean TED (SD)	RR (%)	Mean TED (SD)	RR (%)	Mean TED (SD)
2865	11	100.00	6.45 (4.74)	100.00	6.45 (4.74)	100.00	16.45 (7.00)	100.00	20.55 (6.08)	90.91	16.10 (6.08)
2868	28	85.71	8.79 (8.94)	100.00	8.64 (8.49)	82.14	36.35 (19.26)	96.43	35.15 (19.24)	96.43	26.00 (9.06)
2869	23	95.65	16.68 (18.47)	100.00	10.30 (10.99)	69.57	47.75 (20.27)	100.00	42.35 (19.77)	30.43	20.29 (12.85)
2870	27	74.07	10.00 (13.33)	100.00	15.00 (19.35)	85.19	39.48 (31.38)	92.59	35.72 (31.78)	33.33	20.22 (21.35)
2872	18	100.00	8.33 (15.15)	100.00	7.39 (13.01)	72.22	105.08 (34.58)	100.00	103.06 (38.65)	88.89	15.94 (6.56)
2873	32	78.13	12.00 (16.18)	90.63	12.93 (15.47)	84.38	75.00 (19.75)	100.00	71.41 (20.37)	25.00	18.63 (5.48)
2874	16	100.00	9.56 (12.50)	100.00	8.50 (11.76)	87.50	35.79 (18.63)	100.00	38.94 (31.43)	75.00	15.83 (5.48)
2875	23	86.96	14.75 (19.97)	100.00	11.52 (12.52)	78.26	63.22 (28.97)	100.00	58.65 (28.55)	47.83	17.09 (7.94)
2877	21	100.00	9.71 (16.82)	100.00	9.14 (16.79)	80.95	67.47 (27.87)	100.00	57.95 (32.19)	85.71	19.44 (11.49)
2878	25	100.00	37.00 (60.16)	100.00	36.32 (59.53)	68.00	138.18 (44.17)	88.00	167.50 (66.11)	52.00	21.46 (15.49)
2879	21	76.19	131.19 (51.62)	85.71	132.78 (52.61)	52.38	183.45 (40.90)	71.43	195.33 (55.24)	4.76	229.00 (N/A)
2882	23	60.87	90.64 (71.76)	91.30	106.57 (77.57)	0.00	N/A	0.0	N/A	17.39	42.00 (18.30)
2883	5	100.00	17.40 (14.67)	100.00	17.40 (14.67)	40.00	141.00 (8.49)	100.00	103.60 (39.37)	60.00	46.00 (19.47)
2920	10	80.00	84.38 (67.62)	80.00	53.50 (66.05)	0.00	N/A	10.00	69.00 (N/A)	20.00	42.00 (5.66)
2921	3	100.00	28.00 (3.61)	100.00	28.00 (3.61)	0.00	N/A	0.0	N/A	0.0	N/A
Ov	erall	86.71	28.59	96.50	29.68	67.13	70.39	83.57	73.53	49.30	22.82

FLAME

https://aka.ms/flame-arxiv

Why a domain-specific model for formulas?

- Up to billions of parameters, trained on GBs of code
- Costly to train and deploy
- General purpose programming languages quite different from Excel formulas

B2	~ ×	$\checkmark f_x$	=LEFT(A2, F	IND("@", A	42) - 1)
	А	В	С	D	E
1	email	user			
2	joe@domain.com	joe			
3	jess@microsoft.com	jess			
4	rob@microsoft.com	rob			
-					

- 60M parameters, trained on 540MB of formulas
- Cheaper to train and deploy
- Tailored to Excel formula language

FLAME Overview

Public Excel workbooks

Domain-Specific Data Curation and Tokenization

Domain-Specific Pretraining

FLAME Results (small snapshot...)

		Last Mil	le Repair		Syntax Reconstuction				
Model	For	Forum		Test		Forum		Test	
	T@ 1	T@5	T@ 1	T@5	T@ 1	T@5	T@1	T@5	
Cushman	0.79	0.88	0.87	0.93	0.70	0.80	0.84	0.91	
Davinci (FS)	0.76	0.89	0.54	0.77	0.62	0.77	0.61	0.73	
CodeT5 (220M)	0.70	0.84	0.84	0.90	0.70	0.84	0.82	0.89	
CodeT5 (60M)	0.72	0.83	0.82	0.89	0.65	0.81	0.83	0.89	
FLAME	<u>0.76</u>	0.89	0.83	<u>0.91</u>	0.75	0.89	0.84	<u>0.89</u>	

Continue playing with LMR

https://aka.ms/Imr-tutorial

ះ mai	n 👻	Go to file Add file	e▼ <> Code ▼	About
🌒 jos	sepablocam Update F	README.md	on Feb 3 🕤 48	Al4Code syntax repair tutorial fo IAP 2023
nep	pair	setup	2 months ago	🛱 Readme
res	sources	add images	last month	 ☆ 7 stars ① 1 watching
scr	ripts	update data scripts	2 months ago	양 2 forks
🗅 .gi	tignore	working on eval fucntion and some cleanup	2 months ago	
🗅 RE	ADME.md	Update README.md	last month	Releases
🗋 do	wnload_data.sh	two bash scripts	last month	No releases published
🗅 ins	stall.sh	some fixes and readme update	2 months ago	Create a new release
🗋 rec	quirements.txt	some fixes and readme update	2 months ago	Packages
🗅 set	tup.py	starting out	2 months ago	No packages published
🗅 set	tup_collab.sh	two bash scripts	last month	Publish your first package
🗅 tut	torial1-syntax-rep	fix	last month	
			Ø	Languages
E RE	ADME.md			

Domain Specific Synthesis

Domain-Specific Tools: An Opportunity

	ho conditional formatting $ imes$	José Cambroner					
ROSE AI	Best Action						
ext	New Rule	ad \sum_{i} \sum_{i} AutoSum \sim A_{T}					
& Center	Actions	eutral v Ymr Sort & Fin V Clear v Filter v Sele					
	Conditional Formatting	Highlight Cells Rules > Greater Than					
	III Manage Rules						
К	Duplicate Values	<u>10</u> <u>I</u> op/Bottom Rules > <u>L</u> ess Than Y					
	📅 Greater Than	Data Bars					
	Files Conditional Formatting_March_2022.pptx OneDrive - Microsoft	$\square \square $					
	Conditional Formatting_Mukul's_Edits.pptx > Mukul Singh's OneDrive - Microsoft > Documents > Microsoft Teams Ch >	Image: Interview Image: Interview					
	Get Help	<u>Clear Rules</u> <u>A Date Occurring</u>					
	⑦ Use conditional formatting to highlight information	Manage Rules Duplicate Values					
	Papely shading to alternate rows or columns in a worksheet	More Rules					
	⑦ Get Help on "conditional formatting"						
	Find in Worksheet						
	"conditional formatting"						
	${\cal O}$ More search results for "conditional formatting"						

New Forma	tting Rule					?	\times
<u>S</u> elect a Rule	Type:						
🛏 Format a	II cells based on their valu	Jes					
🛏 Format (only cells that contain						
🛏 Format (only top or bottom ranked	l values					
🛏 Format (only values that are above	or below aver	rage				
🛏 Format (only unique or duplicate v	alues					
🛏 Use a fo	rmula to determine which	cells to forma	it				
Edit the Rule	Description:						
F <u>o</u> rmat va	ues where this formula is	true:					
							Ť
Preview:		N	o ⊦ormat S	et	 	Forma	t
					OK	Can	cel

FormaT5: Multimodal Synthesis for Conditional Formatting Rules

Key Idea 1: Pretraining on Rule+Data Corpus

Key Idea 2: Fine-tune on (synthetic) task data

Generate NL

Key Idea 3: Constrained Decoding

Key Idea 4: Abstain when unsure and fill inductively

Query:

"You have a list of final year students. Highlight the students who got clearance from all departments"

Table:

Students	Library	Sports	Lab
Student 1	Yes	No	Yes
Student 2	Yes	Yes	Yes
Student 3	No	Yes	No
Student 4	No	Yes	Yes
Student 5	Yes	No	No

FormaT5 Results

Table 2: Comparison of FORMAT5 with baselines on the task of NL based rule generation. We report sketch (SM), exact (EM) and execution match (ExM) of the generated rules for the different task categories. "Model" column denotes the underlying base LLM used by the system. FORMAT5 outperforms all baselines in sketch, execution and exact rule match.

System description			Single			Extended				Multiple		
Method	Model	Param	EM	SM	ExM	EM	SM	ExM	EM	SM	ExM	
T5	T5	770M	74.8	86.8	77.7	63.3	84.7	70.9	48.9	68.2	54.6	
CodeT5	T5	770M	75.4	88.0	78.0	65.1	83.8	72.5	50.4	69.3	55.8	
Codex	GPT 3	175B	68.5	82.1	70.8	62.9	79.7	70.4	45.1	62.4	50.8	
PICARD	T5	770M	75.8	88.7	78.3	67.4	85.6	75.0	52.4	73.5	58.2	
Synchromesh	GPT 3	175B	74.5	87.5	76.9	66.0	83.5	73.3	50.9	69.8	56.7	
ValueNet	BERT	110M	71.4	79.9	73.9	60.4	74.8	67.6	42.4	63.2	47.9	
TAPAS	BERT	110M	73.3	84.7	75.5	65.2	72.6	72.4	43.4	62.6	49.0	
TaBERT	BERT	110M	69.6	81.5	72.6	61.6	70.9	68.5	41.8	60.5	47.3	
FORMAT5	T5	770M	78.2	90.7	81.2	70.7	86.2	78.0	58.6	79.5	64.3	

Open Discussion

Building Software in PROSE

- Pull Requests
 - At least 2 approvers
 - Automated checks for style, basic functionality
- Releases
 - Nightly builds with automated error reporting
 - Nightly performance tests (runtime)
- Testing
 - Hierarchical test suites (e.g. some run on PR build, some in release pipeline)
 - Crowd-sourced, synthetic, and manually constructed test cases
- Delivery
 - Azure DevOps Artifacts: npm package, nuget package
- Public Package: https://github.com/microsoft/prose (FlashFill-style framework)

Graduate School vs Industry

- Masters
- PhD
- Researcher
- Product-oriented roles: engineer, product manager, X?

Career Changes

- Personally:
 - Math major → Econ major → Researcher at big bank (mortgages/housing) → Masters in CS → PhD in CS → Industry research
- Uncommon path actually comes with benefits
 - Took some time for me to recognize this
 - Diversity of experiences/roles is a constant source of research ideas