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Agenda

• Fixing Last Mile Errors
• LaMirage: Neurosymbolic approach
• RING: LLM-based approach
• FLAME: Custom Excel-Specific LLM trained on formulas

• Domain-Specific Synthesis (maybe…based on time)
• FormaT5: Natural language to conditional formatting rules

• Open Discussion
• Building software in PROSE
• Grad school vs Industry
• Career changes
• Anything else on your mind



Fixing Programs



Last-Mile Errors: Syntax++

• They are hard for low-code users to even identify them. 

Syntax Errors

Concurrency 
BugsType Errors

Logical Errors

Simple Bugs Complex Bugs

Last Mile Errors

• Wide range of spectrum of errors
• from simple, e.g., syntax errors, to complex, e.g., concurrency bugs

• We call errors that require few edits to fix, Last Mile errors. 



Unhelpful compiler messages



Approaches to Last-Mile Repair

Symbolic Neurosymbolic Neural



LaMirage
https://aka.ms/lamirage-arxiv

https://aka.ms/lamirage-arxiv


LaMirage: LAst-MIle RepAir-engine GEnerator



We should also avoid repeating work!
• Implement as a repair engine generator

Repair Framework
LaMirage

Excel Repair Engine

Power Fx Repair 
Engine

Power Fx domain 
information

Excel domain 
information

Provide

Provide

Generate

Generate

Language X Domain 
Information

Provide
Language X Repair 

Engine
Generate



Performance

• Neural methods are better than error recovery parser.

• LaMirage, a neurosymbolic method, outperforms neural models

• Performance degradation for neural models in PowerFx

System Type
Excel (200 benchmarks) Power Fx (200 benchmarks)

Top-1 Top-3 Top-5 Time (ms) Top-1 Top-3 Top-5 Time (ms)

Excel Desktop Symbolic 83 83 83 - - - - -

GRMTOOLS Symbolic 97 104 108 13.6 98 110 113 17.2

BIFI Neural 115 130 134 363.1 34 45 48 592.8

CODEX Neural 111 156 160 1651.8 86 117 132 1997.9

CODEX-EDIT Neural 147 163 165 5806.6 106 137 140 6417.6

LAMIRAGE Neurosymbolic 174 182 182 32.1 170 177 177 134.4



RING
https://aka.ms/ring-paper

https://aka.ms/ring-paper


Domain-Specific Repair Engines
• Symbolic: substantial engineering for new domain

• Neural: need new data and retraining for new domain

• Neurosymbolic: both challenges mitigated but still there

LaMirage Framework
(Neurosymbolic)

BIFI
(Neural)

Dr. Repair
(Neural)

Tfix
(Neural)

? ?

New languages pose a significant investment



Large Language Models Trained on Code (LLMC)

RING: Multilingual Program Repair with LLMs 

Can we use an LLMC(e.g., Codex) to 
repair programs in all these 

domains?

Yes, and we’ll show how with RING



RING

RING: Repair Is Nearly Generation



RING Results



PyDex: Fixing Intro Programming 
Assignments
https://arxiv.org/abs/2209.14876



PyDex



PyDex Results



FLAME
https://aka.ms/flame-arxiv

https://aka.ms/flame-arxiv


Why a domain-specific model for formulas?

• Up to billions of parameters, trained on GBs of code
• Costly to train and deploy
• General purpose programming languages – quite 

different from Excel formulas

• 60M parameters, trained on 540MB of formulas
• Cheaper to train and deploy
• Tailored to Excel formula language



FLAME Overview

=LEFT(A2, FIND(“@”, A2) – 1)
=SUM(C1:C5)
=VLOOKUP(A1, C1:C10, 1, FALSE)

Pretraining corpus

Finetuning FLAME

Task Data

Pretraining

Public Excel workbooks

Task DataTask Data



Curation

Tokenization

Domain-Specific Data Curation and Tokenization

972M formulas from 
1.8M workbooks

6.1M formulas
Syntax-aware deduplication

Per workbook

=SUM(A1:A10) → =SUM(cell:cell)

=SUMIF(B1:B5, "Not available", A1:A5) = sumif ( b 1 : b 5 , ␣ " not ␣ available " , ␣ a 1 : a 5 )



Domain-Specific Pretraining



FLAME Results (small snapshot…)



Continue playing with LMR

https://aka.ms/lmr-tutorial

https://aka.ms/lmr-tutorial


Domain Specific Synthesis



Domain-Specific Tools: An Opportunity



FormaT5: Multimodal Synthesis for 
Conditional Formatting Rules

NL utterance 
describing 
formatting

Model

Input/output 
example(s)

Synthesizer

Concrete 
Rule

Rule with 
typed holes

Concrete 
Rule



Key Idea 1: Pretraining on Rule+Data Corpus

MASK0(
GreaterThan("Marks", MASK1("Marks")),     
MASK2(“ID”, “Mid”)

)

("Name",Text) ("Marks",Number) ("ID",Text)

MASK0 AND MASK1 Average MASK2 TextContains

Masked Input

Output

AND(
GreaterThan(MASK0, AVERAGE("Marks")),     
TextContains(MASK1, MASK2)

)

("Name",Text) ("Marks",Number) ("ID",Text)

MASK0 "Marks“ MASK1 “ID“ MASK2 “Mid”

Masked Input

Output

(a) Proposition Name Masking (b) Argument & Column Masking

(1) Mask Span 
Prediction

Text Contains ( “ID” , “Mid” )

1           1         0    2     0      3     0

(2) Rule Token Tagging

AND(
GreaterThan("Marks", AVERAGE("Marks")),     
TextContains(“ID”, “Mid”)

)

("Name",Text) ("Marks",Number) ("ID",Text)

Noisy Input

Output

(3) Table Type
Prediction



Key Idea 2: Fine-tune on (synthetic) task data

CF rules and data 
extracted from offline 

corpus of spreadsheets

105K fine tuning tasks 
with synthetic NL and 

real CF rule/data

Sampled rules with 
predicate coverage + 
templates

Sampled rules

Paraphrase NL

Generate NL

Validated w/
Backtranslation



Key Idea 3: Constrained Decoding

AND

Text
Contains

“ID” “Mid”

?

“Highlight Students who have 
Middle School ID and have 
scored above Average”

Less
Than

(Name, Text)
(Marks, Number)
(ID, Text)

Query:

Table Schema:

[Marks]

Possible 
Extensions:

Table Schema:



Key Idea 4: Abstain when unsure and fill 
inductively

Students Library Sports Lab

Student 1 Yes No Yes

Student 2 Yes Yes Yes

Student 3 No Yes No

Student 4 No Yes Yes

Student 5 Yes No No

“You have a list of final year students. 
Highlight the students who got clearance 
from all departments”

Query:

AND(TextEquals(“Library”,[HOLE]), 
TextEquals(“Sports”,[HOLE]),  
TextEquals(“Lab”,[HOLE]))

Rule Sketch:

AND(TextEquals(“Library”, “Yes”), 
TextEquals(“Sports”, “Yes”),  
TextEquals(“Lab”, “Yes”))

Predicted Rule:

Table:

Rule Generation

Value Filling



FormaT5 Results



Open Discussion



Building Software in PROSE

• Pull Requests
• At least 2 approvers
• Automated checks for style, basic functionality

• Releases
• Nightly builds with automated error reporting
• Nightly performance tests (runtime)

• Testing
• Hierarchical test suites (e.g. some run on PR build, some in release pipeline)
• Crowd-sourced, synthetic, and manually constructed test cases

• Delivery
• Azure DevOps Artifacts: npm package, nuget package

• Public Package: https://github.com/microsoft/prose (FlashFill-style framework)

https://github.com/microsoft/prose


Graduate School vs Industry

• Masters

• PhD

• Researcher

• Product-oriented roles: engineer, product manager, X?



Career Changes

• Personally:
• Math major → Econ major → Researcher at big bank (mortgages/housing) →

Masters in CS → PhD in CS → Industry research

• Uncommon path actually comes with benefits
• Took some time for me to recognize this

• Diversity of experiences/roles is a constant source of research ideas
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