
Fixing and Generating
Programs for Fun and Profit

José Cambronero

PROSE, Microsoft

josepablocam @ (gmail, twitter, github)

https://www.microsoft.com/en-us/research/group/prose/

Sumit Gulwani
Partner Research Manager

Arjun
Radhakrishna
Principal Researcher

Daniel Perelman
Senior Researcher

Ashish Tiwari
Principal Researcher

Gust Verbruggen
Researcher

Gustavo Soares
Principal Research

Manager

Vu Le
Principal Research

Manager

José Cambronero
Senior ResearcherPriyanshu Gupta

Associate Researcher

Yasharth Bajpai
Associate Researcher

Mukul Singh
Associate Researcher

PROSE Team

Chris Parnin
Principal Researcher

Danny Simmons
Principal Software Engineer

Clint Simon
Senior Software Engineer

Sherry Shi
Senior Software Engineer Austin Henley

Senior Program Manager

Bhavya Chopra
Research Fellow

Het Shah
Research Fellow Saksham Gupta

Research Fellow

Abishai Ebenezer
Research Fellow

Avishree Khare
Research Fellow

Anirudh Khatry
Research Fellow

Ananya Singha
Research Fellow

Harshit Joshi
Research Fellow

https://www.microsoft.com/en-us/research/group/prose/

Agenda

• Fixing Last Mile Errors
• LaMirage: Neurosymbolic approach
• RING: LLM-based approach
• FLAME: Custom Excel-Specific LLM trained on formulas

• Domain-Specific Synthesis (maybe…based on time)
• FormaT5: Natural language to conditional formatting rules

• Open Discussion
• Building software in PROSE
• Grad school vs Industry
• Career changes
• Anything else on your mind

Fixing Programs

Last-Mile Errors: Syntax++

• They are hard for low-code users to even identify them.

Syntax Errors

Concurrency
BugsType Errors

Logical Errors

Simple Bugs Complex Bugs

Last Mile Errors

• Wide range of spectrum of errors
• from simple, e.g., syntax errors, to complex, e.g., concurrency bugs

• We call errors that require few edits to fix, Last Mile errors.

Unhelpful compiler messages

Approaches to Last-Mile Repair

Symbolic Neurosymbolic Neural

LaMirage
https://aka.ms/lamirage-arxiv

https://aka.ms/lamirage-arxiv

LaMirage: LAst-MIle RepAir-engine GEnerator

We should also avoid repeating work!
• Implement as a repair engine generator

Repair Framework
LaMirage

Excel Repair Engine

Power Fx Repair
Engine

Power Fx domain
information

Excel domain
information

Provide

Provide

Generate

Generate

Language X Domain
Information

Provide
Language X Repair

Engine
Generate

Performance

• Neural methods are better than error recovery parser.

• LaMirage, a neurosymbolic method, outperforms neural models

• Performance degradation for neural models in PowerFx

System Type
Excel (200 benchmarks) Power Fx (200 benchmarks)

Top-1 Top-3 Top-5 Time (ms) Top-1 Top-3 Top-5 Time (ms)

Excel Desktop Symbolic 83 83 83 - - - - -

GRMTOOLS Symbolic 97 104 108 13.6 98 110 113 17.2

BIFI Neural 115 130 134 363.1 34 45 48 592.8

CODEX Neural 111 156 160 1651.8 86 117 132 1997.9

CODEX-EDIT Neural 147 163 165 5806.6 106 137 140 6417.6

LAMIRAGE Neurosymbolic 174 182 182 32.1 170 177 177 134.4

RING
https://aka.ms/ring-paper

https://aka.ms/ring-paper

Domain-Specific Repair Engines
• Symbolic: substantial engineering for new domain

• Neural: need new data and retraining for new domain

• Neurosymbolic: both challenges mitigated but still there

LaMirage Framework
(Neurosymbolic)

BIFI
(Neural)

Dr. Repair
(Neural)

Tfix
(Neural)

? ?

New languages pose a significant investment

Large Language Models Trained on Code (LLMC)

RING: Multilingual Program Repair with LLMs

Can we use an LLMC(e.g., Codex) to
repair programs in all these

domains?

Yes, and we’ll show how with RING

RING

RING: Repair Is Nearly Generation

RING Results

PyDex: Fixing Intro Programming
Assignments
https://arxiv.org/abs/2209.14876

PyDex

PyDex Results

FLAME
https://aka.ms/flame-arxiv

https://aka.ms/flame-arxiv

Why a domain-specific model for formulas?

• Up to billions of parameters, trained on GBs of code
• Costly to train and deploy
• General purpose programming languages – quite

different from Excel formulas

• 60M parameters, trained on 540MB of formulas
• Cheaper to train and deploy
• Tailored to Excel formula language

FLAME Overview

=LEFT(A2, FIND(“@”, A2) – 1)
=SUM(C1:C5)
=VLOOKUP(A1, C1:C10, 1, FALSE)

Pretraining corpus

Finetuning FLAME

Task Data

Pretraining

Public Excel workbooks

Task DataTask Data

Curation

Tokenization

Domain-Specific Data Curation and Tokenization

972M formulas from
1.8M workbooks

6.1M formulas
Syntax-aware deduplication

Per workbook

=SUM(A1:A10) → =SUM(cell:cell)

=SUMIF(B1:B5, "Not available", A1:A5) = sumif (b 1 : b 5 , ␣ " not ␣ available " , ␣ a 1 : a 5)

Domain-Specific Pretraining

FLAME Results (small snapshot…)

Continue playing with LMR

https://aka.ms/lmr-tutorial

https://aka.ms/lmr-tutorial

Domain Specific Synthesis

Domain-Specific Tools: An Opportunity

FormaT5: Multimodal Synthesis for
Conditional Formatting Rules

NL utterance
describing
formatting

Model

Input/output
example(s)

Synthesizer

Concrete
Rule

Rule with
typed holes

Concrete
Rule

Key Idea 1: Pretraining on Rule+Data Corpus

MASK0(
GreaterThan("Marks", MASK1("Marks")),
MASK2(“ID”, “Mid”)

)

("Name",Text) ("Marks",Number) ("ID",Text)

MASK0 AND MASK1 Average MASK2 TextContains

Masked Input

Output

AND(
GreaterThan(MASK0, AVERAGE("Marks")),
TextContains(MASK1, MASK2)

)

("Name",Text) ("Marks",Number) ("ID",Text)

MASK0 "Marks“ MASK1 “ID“ MASK2 “Mid”

Masked Input

Output

(a) Proposition Name Masking (b) Argument & Column Masking

(1) Mask Span
Prediction

Text Contains (“ID” , “Mid”)

1 1 0 2 0 3 0

(2) Rule Token Tagging

AND(
GreaterThan("Marks", AVERAGE("Marks")),
TextContains(“ID”, “Mid”)

)

("Name",Text) ("Marks",Number) ("ID",Text)

Noisy Input

Output

(3) Table Type
Prediction

Key Idea 2: Fine-tune on (synthetic) task data

CF rules and data
extracted from offline

corpus of spreadsheets

105K fine tuning tasks
with synthetic NL and

real CF rule/data

Sampled rules with
predicate coverage +
templates

Sampled rules

Paraphrase NL

Generate NL

Validated w/
Backtranslation

Key Idea 3: Constrained Decoding

AND

Text
Contains

“ID” “Mid”

?

“Highlight Students who have
Middle School ID and have
scored above Average”

Less
Than

(Name, Text)
(Marks, Number)
(ID, Text)

Query:

Table Schema:

[Marks]

Possible
Extensions:

Table Schema:

Key Idea 4: Abstain when unsure and fill
inductively

Students Library Sports Lab

Student 1 Yes No Yes

Student 2 Yes Yes Yes

Student 3 No Yes No

Student 4 No Yes Yes

Student 5 Yes No No

“You have a list of final year students.
Highlight the students who got clearance
from all departments”

Query:

AND(TextEquals(“Library”,[HOLE]),
TextEquals(“Sports”,[HOLE]),
TextEquals(“Lab”,[HOLE]))

Rule Sketch:

AND(TextEquals(“Library”, “Yes”),
TextEquals(“Sports”, “Yes”),
TextEquals(“Lab”, “Yes”))

Predicted Rule:

Table:

Rule Generation

Value Filling

FormaT5 Results

Open Discussion

Building Software in PROSE

• Pull Requests
• At least 2 approvers
• Automated checks for style, basic functionality

• Releases
• Nightly builds with automated error reporting
• Nightly performance tests (runtime)

• Testing
• Hierarchical test suites (e.g. some run on PR build, some in release pipeline)
• Crowd-sourced, synthetic, and manually constructed test cases

• Delivery
• Azure DevOps Artifacts: npm package, nuget package

• Public Package: https://github.com/microsoft/prose (FlashFill-style framework)

https://github.com/microsoft/prose

Graduate School vs Industry

• Masters

• PhD

• Researcher

• Product-oriented roles: engineer, product manager, X?

Career Changes

• Personally:
• Math major → Econ major → Researcher at big bank (mortgages/housing) →

Masters in CS → PhD in CS → Industry research

• Uncommon path actually comes with benefits
• Took some time for me to recognize this

• Diversity of experiences/roles is a constant source of research ideas

	Slide 1: Fixing and Generating Programs for Fun and Profit
	Slide 2
	Slide 3: Agenda
	Slide 4: Fixing Programs
	Slide 5: Last-Mile Errors: Syntax++
	Slide 6: Unhelpful compiler messages
	Slide 7: Approaches to Last-Mile Repair
	Slide 8: LaMirage
	Slide 9
	Slide 10: We should also avoid repeating work!
	Slide 11: Performance
	Slide 12: RING
	Slide 13: Domain-Specific Repair Engines
	Slide 14: Large Language Models Trained on Code (LLMC)
	Slide 15: RING
	Slide 16: RING Results
	Slide 17: PyDex: Fixing Intro Programming Assignments
	Slide 18: PyDex
	Slide 19: PyDex Results
	Slide 20: FLAME
	Slide 21: Why a domain-specific model for formulas?
	Slide 22: FLAME Overview
	Slide 23: Domain-Specific Data Curation and Tokenization
	Slide 24: Domain-Specific Pretraining
	Slide 25: FLAME Results (small snapshot…)
	Slide 26: Continue playing with LMR
	Slide 27: Domain Specific Synthesis
	Slide 28: Domain-Specific Tools: An Opportunity
	Slide 29: FormaT5: Multimodal Synthesis for Conditional Formatting Rules
	Slide 30: Key Idea 1: Pretraining on Rule+Data Corpus
	Slide 31: Key Idea 2: Fine-tune on (synthetic) task data
	Slide 32: Key Idea 3: Constrained Decoding
	Slide 33: Key Idea 4: Abstain when unsure and fill inductively
	Slide 34: FormaT5 Results
	Slide 35: Open Discussion
	Slide 36: Building Software in PROSE
	Slide 37: Graduate School vs Industry
	Slide 38: Career Changes

