

Question 1. Word Bank Matching (1 point each, 14 points total)

For each statement below, input the letter of the term that is best described. Note that you can click each cell to mark it off.
Each word is used at most once.

A. — A/B Testing B. — Alpha Testing C. — Beta Testing D. — Competent Programmer
Hypothesis

E. — Deliverables F. — Formal Code
Inspection

G. — Fuzz Testing H. — Instrumentation

I. — Integration Testing J. — Invariant K. — Maintainability L. — Mocking

M. — Oracle N. — Pair
Programming

O. — Passaround Code
Review

P. — Perverse Incentive

Q. — Race Condition R. — Regression Test S. — Requirements T. — Risk

U. — Spiral
Development

V. — Streetlight Effect W. — Test-driven
Development

X. — Threat to Construct Validity

Y. — Threat to External
Validity

Z. — Unit Testing

Q1.1: I

Bruce is developing a video game. He creates a class Player and a class Car. His intended functionality is

that the player should be able to get inside the car and drive it. He then writes a set of test cases to
ensure the interaction between these two classes is functioning properly.

Q1.2: Q

Mike is writing an application that allows moviegoers to reserve seats at the theater. Unfortunately, there

is a bug that allows multiple users to reserve the exact same seat at the same time. If only Mike had
included safeguards to prevent multiple reservations of the same seat.

Q1.3: R

Valeria is failing a public test case provided in the project spec. She uses a debugger to identify the issue

and promptly fixes it. She writes a test case afterwards to alert her if the issue resurfaces as she
continues the project.

Q1.4: O

Sasha has just finished making a small change in a file within her company’s codebase. Prior to pushing

it to production, she emails her colleague Jean to look over her changes at his convenience. Jean gives his
approval a few hours later and Sasha pushes her code, committing the change to the main repository.

Q1.5: M

Jan writes a function for sin(x). He knows sin(90) is equal to 1, so he accordingly writes a test case. In this

instance, 1 is the...

Q1.6: V

After discovering that her submissions to the Autograder are failing due to a timeout, Xiaoyu realizes
that she must make some runtime optimizations. She begins by looking at her recently-written functions

with the most lines of code since they are fresh in her mind. Unfortunately, the real bug is in a single
innocuous line in which her code calls an external library function incorrectly.

Q1.7: Y

Antoinette is interested in learning about how quickly it takes humans to understand code snippets. She

conducts a study on a group of PhD students and concludes that humans, on average, take 45 seconds
to understand how merge sort works. Her advisor is quick to chime in that her conclusion is flawed for

this reason...

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

Q1.8: L

Eren is working on the backend of a website. He implements a function that makes a rather expensive
database query. When writing test cases, he substitutes a hard-coded string in place of the query.

Q1.9: Z

Anthony is working on his HW6 open-source contribution assignment and submits a pull request to

Runelite. His code consists of many functions, but it is rejected because the functions lack test cases. If
only he had implemented this quality assurance strategy...

Q1.10: U

Jordan is developing a video chat app for a client. He spends two months adding voice chat functionality

and presents it to the client for feedback. He then spends two months adding live video before getting
feedback from the client. He continues this iterative process.

Q1.11: J

Larry rigorously tests a mathematical function he has written and realizes that the output is always

greater than or equal to the input.

Q1.12: F

Jeremy has just written a file that will be used in the software for a pacemaker, a device used for heart
arrhythmias. He schedules a meeting with members of his team where they will sit down and go through

his code, line by line, with the goal of identifying bugs.

Q1.13: C

Roxanne is preparing to release a new social media app. To catch bugs that may surface during common
use, she hires a group of social media influencers to test out the app and report any issues.

Q1.14: A

Annie is a developer for an online retailer. She is considering changing the color of the ‘BUY NOW’ button

from green to blue. She decides to change the color for a subset of customers and compares the
difference in purchasing activity before coming to a decision.

Question 2: Coverage (18 points total)

You are given the Python function below.

Q2.1 (4 points) Calculate the minimum statement coverage attainable using one test input and provide such an input (i.e.,
values of values of {var1}, {var2}, and {var3}).

4/6 = 66% with j: True, k: True, l: False

Q2.2 (6 points)Provide a single minimum set of test inputs(s) that achieves maximum statement AND maximum path coverage

def awesome_grizzly (j: bool, k: bool, l: bool):
 STMT_1

 if ((j or k) and (not k and l)):
 STMT_2

 else:
 STMT_3

 if ((j and l) and not (j or k) and l):
 STMT_4

 elif ((not j and l) or not (not k)):
 STMT_5

 if (k and not l):
 STMT_6

1
2

3
4

5
6

7
8

9
10

11
12

13

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

Operator Maximize Statement Coverage

P

Q

R

S

T

for this particular program. Consider only feasible paths and reachable statements. In one sentence, explain why this is the

smallest number of test inputs that can maximize both statement and path coverage.

The minimum set of test inputs is {(True, True, True), (True, True, False), (True, False, True), (False,
False, False)}. This is the smallest set of inputs to maximize path coverage because one input is necessary to cover each
path, and the set of paths contains the set of paths which maximize statement coverage.

Q2.3 (5 points total, 1 point per selection) Next, consider the C code below. Make selections for the operators P, Q, R, S, and T
such that:

1. The statement coverage induced by executing the single test case ecstatic_bohr(0, 1, 1) is maximized.

!= < ≥

!= < ≥

!= < ≥

!= < ≥

!= < ≥

Multiple answers apply. One correct answer is P, Q, R, S, T all being !=, which results in statement coverage of 4/8 = 50%

Q2.4 (3 points) Support or refute: it is harder to maximize branch coverage for code with a lower Maintainability Index. Use at
most four sentences.

Likely support. The Maintainability Index (covered on slide 7+ of the Measurement slideset) involves three components:
Halstead volume (operator counts are not relevant for branch coverage per se: you can have many or few operators on

straight-line code), LOC (not relevant for branch coverage per se: you can have many or few branches per line), and Cyclomatic
Complexity. Cyclomatic Complexity measures linearly independent paths through programs and is described on Slide 19 as

relating to the number of tests to cover all branches. So higher Cyclomatic Complexity (= lower Maintainability Index) generally
means code requires more tests to cover branches and thus to maximize branch coverage.

void ecstatic_bohr (bool j, bool k, bool l) {

 if (j •P• k) {
 STMT_1;

 if (k •Q• l) {
 STMT_2;

 } else {
 STMT_3;

 }
 } else {

 STMT_4;
 }

 if (j •R• l) {

 STMT_5;
 } else if (k •S• j) {

 STMT_6;
 }

 if (l •T• k) {

 STMT_7;
 } else {

 STMT_8;
 }

}

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

Question 3: Short Answer and Potpourri (28 points total)

Provide answers to each question below.

Q3.1 (3 points) Generating Test Inputs

Compare and contrast fuzz testing and constraint-based solvers for generating test inputs: what aspects do they share and

where do they differ? Give one example program for which we would expect a fuzzer to outperform a constraint-based solver.
Give one example of a program for which we would expect a constraint-based solver to outperform a fuzzer. Use at most six

sentences.

Fuzz testing and constraint-based test input generation are both interested in generating test inputs (not necessarily oracles)

to reach as much of the code as possible without requiring manual human effort. Fuzz testers do so by generating random
inputs (e.g., random integers, random strings) and are typically "black box" analyses (they do not need to see the code).

Constraint solvers do so by generating path predicates and solving them to reach particular targets and they are "white box"
analyses (they do need to see the code).

A program that contains a conditional like "if (input == 12345) ..." is hard for a fuzz tester (because you are unlikely to "guess"
12345 to visit the true branch) but easy for a constraint solver. By contrast, a conditional like "if (input > length(read_file("on-

disk.txt"))) ..." is likely to be hard for a constraint solver (which cannot reason about files in the disk or over the network or the
like) but a fuzz tester can just guess big and small numbers. Similarly, modern constraint solvers struggle with non-linear

arithmetic (e.g., "input * input > 25"). Slide 24 of the lecture gives a concrete example.

Your answer here.

Q3.2 (2 points each; 10 points total) Software Engineering Comparisons

Consider each of the following pairs of techniques, tools, or processes. For each pair, give a class of defects or a situation for
which the first does better than the second (i.e., is more likely to succeed and reduce software engineering effort and/or

improve software engineering outcomes) and explain why. For full credit, each explanation must include why the second is
worse in that situation (simply indicating how the first is good is not sufficient). Use at most three sentences per answer.

maximizing branch coverage vs. pair programming

For defects related to control flow (such as the infinite loop leap year bug on Slide 9 of the Code Review lecture), branch

coverage may reveal the defect quickly, while having a second human look at the code while it is being created may not reveal
the mistake.

For a situation, consider a product with a tight time deadline: it must pass QA and ship soon. In such a setting, pair
programming may be worse (because it can take longer) compared to simply generating high branch coverage (via something

like AFL: note that the question asks about coverage, not about oracles). In 481 we might not favor such an argument (e.g.,
investing in pair programming may be better in the long term) but it can be a full-credit answer to a test question.

static dataflow analysis vs. unit tests

For security bugs (e.g., information leaks), a static dataflow analysis may be better at pointing out potential defects on all

paths, regardless of whether or not the unit tests happened to consider those paths. Static analysis can also give conservative
answers for code involving other modules, even without calling or integrating with those modules. Finally, static analyses can

be applied even if test inputs and oracles have not been written yet.
mocking vs. passaround code review

Early in development if there are not many experts in a particular module or if there are no other developers who are familiar
with the programming language used, mocking may be a better QA activity than code review. It only requires one developer

and does not require any expensive interfaces to be in place. In the lecture we mentioned that some companies require an
expert or owner of the module to be involved, and if there are no other experts available yet (perhaps they have not yet been

hired this early), code review will not be as effective. Similarly, some companies require familiarity with the language
(sometimes called a "badge") -- for a new module written in a new language, other language experts may not be available, so

code review would not be as effective.
the Eraser dynamic analysis vs. fuzz testing

Eraser does better at detecting race conditions related to misusing locking. Since such bugs tend to be influenced more by the
scheduler than by the program inputs, fuzz testing (which picks program inputs) can be particularly bad at finding them.

Your answer here.

Your answer here.

Your answer here.

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

regression testing vs. formal code inspection

Regression testing is a better option for making sure that a code change does not reintroduce any bugs that have been
previously fixed. It is suitable for this situation because it verifies that the code base still maintains the correct behavior,

despite a code change. Formal code inspection isn't as suitable for this situation because it requires gathering the team
together, which is typically too logistically difficult and expensive for such a small change.

Your answer here.

Q3.3 (2 points each; 6 points total) Pair programming and Process

You are a manager at WebFlix and need to decide whether or not to employ pair programming for a series of tasks. Since pair

programming tends to produce code of higher quality, you are willing to opt for pair programming for a particular task so long
as there is not an increase in total costs of more than 59%. The table below summarizes the various costs and benefits of using

pair programming for each task.

For "Pair Programming increase in Cost per Hour (%)", 100% would mean that pair programming carries twice the cost of solo

programming. Similarly, a "Pair Programming decrease in Total Hours (%)" of 40% means that a task that takes 10 hours solo
would take 6 hours with pair programming.

Task
Total
Hours

Cost Per
Hour

Pair Programming decrease in Total
Hours (%)

Pair Programming increase in Cost per
Hour (%)

A 27 10 39 100

B 34 5 83 113

C 12 17 84 139

(2 points each) For each of the following tasks, decide whether to employ pair programming.
A Yes, use Pair Programming

No, do not use Pair Programming
B Yes, use Pair Programming

No, do not use Pair Programming
C Yes, use Pair Programming

No, do not use Pair Programming
ANSWER: This is a math optimization problem. We compute the original cost, subtract out the decrease in the number of

hours (folding in the pair benefit), then multiply by the new cost per hour. If this decrease results in a new cost below the
target acceptable percentage, then we expect to mark True. Otherwise, False.

A: T
B: T

C: T

Q3.4 (3 points) Risk and Measurement

You are a software engineering manager. You are considering a proposal in which 30% of the resources currently used for
integration testing would instead be reallocated and used for a different dynamic analysis (e.g., something like Chaos Monkey

or Driver Verifier, etc.). Identify two risks associated with this proposal and one benefit associated with this proposal. For each,
identify one associated measurement that might be taken to reduce uncertainty (i.e., to determine the degree to which that

positive or negative outcome occurred).

Dynamic analysis tools such as Chaos Monkey or the Driver Verifier were covered starting on Slide 52 of the Dynamic Analysis

lecture (and it was remarked during the lecture that they would be fair game), as well as in some optional readings. Risks (e.g.,
staff illness, requirements changes, etc.) are covered in the Risk lecture and might prevent a high-quality product from

shipping on time. Measurements (covered in their own lecture) help reduce uncertainty and thus help detect and manage risk.

Benefits of the proposal relate to the use of the dynamic analysis. For example, one benefit of using a tool like the Driver

Verifier is that it can catch corruption bugs related to low-level systems code. One benefit of Chaos Monkey style tools is that
they are particularly good at findings bugs related to resilience, redundancy or even internationalization. Students could also

mention that these dynamic analyses are automated, compared to creating integration tests and oracles, so one potential
benefit is that developer time and effort is freed up for other uses.

Risks. however, abound. Integration testing is particularly good at finding bugs related to two modules working together. One
risk is that fewer such bugs might be detected before shipping. Similarly, dynamic analyses often suffer from soundness and

completeness issues: false positives and false negatives. One risk is that the dynamic analysis will produce too many false
alarms. Another is that it will miss important bugs (even of the type it is "supposed" to find). Other risks are possible: students

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

might mention that dynamic analyses require you to already have a high quality test suite (remember: you have to run the

program on something) and thus may not be workable until later in the development process when many test inputs are
available.

Each associated measurement should be something that can be quantified and that could help a manager answer a question
like "How big is this problem?" or "Is this really a big issue?" If one is worried that no bugs will be detected, a metric like "bugs

reported per line of code" (e.g., on just one module, before deciding if the analysis should be deployed instead of 30% of
integration testing) could help with that decision. Similarly, the "false positive rate", the "number of critical bugs missed", or

even the "coverage requirement for the test inputs for the tool to run well" or the "weeks into development when enough test
inputs will be available" could all be reasonable choices for the risks above. For benefit metrics, "bugs found" or "bugs found

per lines of code" or "developer hours saved" or the like might all apply.

Q3.5 (3 points) Development Processes

In three sentences or fewer, describe the differences between spiral development and waterfall development.

In the Waterfall Model, stages such as requirements elicitation, design, coding, testing, and operations are carried out in strict
order. As a result, information learned during testing or operations would never influence design, for example. By contrast, in

spiral development, an increasingly complex series of prototypes is constructed while accounting for risk. This allows
information learned during the testing or operation of one prototype to influence the design of the next, for example. These

concepts are covered in the initial slides of the Process lecture.

Your answer here.

Q3.6 (3 points) Code Review

Identify a developer expectation of modern passaround code review that is commonly met. Identify a developer expectation of
modern passaround code review that is rarely met. Describe a buggy patch that modern passaround code review is unlikely to

correctly reject. Use at most six sentences.

Following Bacchelli and Bird's "Expectations, outcomes, and challenges of modern code review" (also covered in Slides 32-36

of the Code Review Lecture), key expectations that are met include finding defects and code improvements. Goals that are
rarely met include knowledge transfer and alternate solutions.

Consider a patch that "does what it says" (e.g., says it is removing a button and actually removes a button) but is doing the
wrong thing (e.g., the customer wants the button retained, not removed). As Slide 38 and Section VI-A of the Bachhelli and

Bird paper suggests, "the most difficult thing when doing a code review is understanding the reason of the change" and "the
biggest information need in code review: what instigated the change". If the code reviewers do not know why the change is

being made, they will not be able to assess it correctly, and may allow a patch that has no visible defects (but is ultimately
doing the wrong thing). In general, students should describe a patch that has no "easy errors" but instead has a bug "beneath

the surface".

Your answer here.

Question 4. Mutation Testing (29 points)

Consider the code snippet below defining a function foo:

(a) (1 point per field, 20 points total) Complete the table below by indicating whether each test kills each Mutant. (Y for killed
and N for not killed). Oracle stands for the expected output of foo run on the corresponding input. Be careful: subsequent

subquestions depend on correctly understanding this subquestion.

Test # Input (y) Oracle (foo(y)) Mutant 1 Mutant 2 Mutant 3

(Q4.a.0): Test 0 0 0 Y N N

def foo(y):
 if (y < 0): # Mutant 1: y <= 0

 # Invalid input
 return -1

 elif y == 0:
 return 0

 elif y == 1 or y == 2: # Mutant 2: y == 1 and y == 2
 return 8

 else:
 return foo(y - 1) + foo(y - 2) # Mutant 3: foo(y - 1) - foo(y - 2)

1
2

3
4

5
6

7
8

9
10

11

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

(e) (2 points per mutant, 6 total) Make at most one edit each to create THREE NEW and DIFFERENT mutants of foo. Exactly

one of your three new first-order mutants should be killed by when provided the same test input y=2.

(Make at most one edit to the code to create a new mutant that is different from Mutants 1-3. Repeat this process to produce a

total of 3 new, mutually different mutants and make sure the kill score with input y=2 is 1/3. For example, you might change
line 2 from if num < 0 to if num > 0 but not to if num <= 0 because that's already Mutant 1 in this question.)

You should not introduce any loops as part of your mutations. Make sure that your mutants correspond to valid Python3 code
— syntactically invalid mutants may receive no credit. Moreover, please do not attempt to subvert this question by modifying

the code to immediately return a value — you are asked to make first-order mutants.

Attempting to submit code that infinitely loops, that interacts with any I/O, that imports other libraries, or that shells out is a
violation of the honor code. Doing so will result in a 0 for the entire exam.

Test # Input (y) Oracle (foo(y)) Mutant 1 Mutant 2 Mutant 3

(Q4.a.1): Test 1 1 8 N Y N

(Q4.a.2): Test 2 2 8 N Y N

(Q4.a.3): Test 3 3 16 N Y Y

(Q4.a.4): Test 4 4 24 N Y Y

(b) (1 point) What is the mutation score for tests 0-4 using Mutants 1-3?

1.0
(c) (1 point) What is the mutation score for test 0 using Mutants 1-2?

0.5
(d) (1 point) What is the mutation score for tests 0-4 using just Mutant 1?

1.0

Mutant X:

Mutant Y:

Mutant Z:

def foo(y):
 if (y < 0): # Mutant 1: y <= 0

 # Invalid input
 return -1

 elif y == 0:
 return 0

 elif y == 1 or y != 2: # Mutant 2: y == 1 and y == 2
 return 8

 else:
 return foo(y - 1) + foo(y - 2) # Mutant 3: foo(y - 1) - foo(y - 2)

def foo(y):

 if (y < 0): # Mutant 1: y <= 0
 # Invalid input

 return -1
 elif y != 0:

 return 0
 elif y == 1 or y == 2: # Mutant 2: y == 1 and y == 2

 return 8
 else:

 return foo(y - 1) + foo(y - 2) # Mutant 3: foo(y - 1) - foo(y - 2)

def foo(y):
 if (y < 0): # Mutant 1: y <= 0

 # Invalid input
 return -1

 elif y == 0:
 return 0

1
2

3
4

5
6

7
8

9
10

11

1

2
3

4
5

6
7

8
9

10
11

1
2

3
4

5
6

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

Question 5: Dataflow Analysis (11 points total)

Consider a live variable dataflow analysis for three variables, a, x, and q used in the graph below. We associate with each

variable a separate analysis fact: either the variable is possibly read on a later path before it is overwritten (live) or it is not
(dead). We track the set of live variables at each point: for example, if a and x are alive but q is not, we write {a, x}. The

special statement return reads, but does not write, its argument. (You must determine if this is a forward or backward
analysis).

(1 point each) For each basic block B1 through B11, write down the list of variables that are live right before the start of the
corresponding block in the control flow graph above. Please list only the variable names in lowercase without commas or other

spacing (e.g., use either ab or ba to indicate that a and b are alive before that block).

ANSWER: {'a', 'q'}

B1

ANSWER: {'a', 'q'}

B2

ANSWER: {'a', 'q'}

B3

ANSWER: {'a', 'q'}

B4

ANSWER: {'a', 'q'}

B5

ANSWER: {'a', 'q'}

B6

ANSWER: {'a', 'q'}

B7

ANSWER: {'a'}

B8

ANSWER: {'a', 'q'}

B9

ANSWER: {'q'}

B10

ANSWER: {'q'}

B11

Extra Credit

Each question below is for 1 point of extra credit unless noted otherwise. We are strict about giving points for these answers.

No partial credit.

(1) What is your favorite part of the class so far?

Your answer here.

(2) What is your least favorite part of the class so far?

 elif y == 1 or y <= 2: # Mutant 2: y == 1 and y == 2

 return 8
 else:

 return foo(y - 1) + foo(y - 2) # Mutant 3: foo(y - 1) - foo(y - 2)

7

8
9

10
11Navigation

Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

Your answer here.

(3) If you read any optional reading, identify it and demonstrate to us that you have read it. (2 points)

Your answer here.

(4) If you read any other optional reading, identify it and demonstrate to us that you have read it. (2 points)

Your answer here.

(5) In your own words, identify and explain any of the bonus psychology effects. (2 points)

Your answer here.

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit

