
Lecture 8

EECS 598-008 & EECS 498-008:  
Intelligent Programming Systems 



Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)  

• Zoom link on course website 

• Discuss A2 (due next Monday) 

• CFPP due midnight Tuesday, September 28  

• Submit your paper presentaOon preferences  

• Assignment will be released on Wednesday, aRer which you can start prep 

• Course survey: hUps://forms.gle/XVQ3uMPwNomP1onn7  

• More papers added to HotCRP 
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https://forms.gle/XVQ3uMPwNomP1onn7


Today’s Agenda
• Present Morpheus paper 

• Talk about Morpheus  

• Talk about how to present a (PL) research paper in general 
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What Does A (PL) Research Paper Look Like?
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How To Present A Research Paper?
• What’s the problem? Why is it important? 

• Why is the problem challenging?  

• How does the paper solve the problem? What’s the key idea? 

• Explain technique in more detail 

• EvaluaOon 

• Related work
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Explain the Problem at a High-Level

14

• Data preparaOon  

• Data prep is tedious involving consolidaOng data sources, cleaning, reshaping, etc.  

• Especially important in the “big data” era
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• How to automaOcally synthesize table transformaOon programs?  

• Given a library of funcOons for table transformaOon and a set of input-output 
examples, how to find a program? 

• Useful because with this technique, non-experts can also “write” programs

Explain the Problem at a High-Level
• Data preparaOon  

• Data prep is tedious involving consolidaOng data sources, cleaning, reshaping, etc.  

• Especially important in the “big data” era



Use An Example to Illustrate the Problem
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Use An Example to Illustrate the Problem
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Input Example

Output Example



Use More Examples to Illustrate the Problem
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Input Example

Output Example

 “find out proporOons of flights to desOnaOon(SeaUle)”



Use More Examples to Illustrate the Problem
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Input Example Output Example

“I want to combine these 2 data frames to create a new one which looks like this”



How To Present A Research Paper?
• What’s the problem? Why is it important? 

• Why is the problem challenging?  

• How does the paper solve the problem? What’s the key idea? 

• Explain technique in more detail 

• EvaluaOon 

• Related work
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What are the Challenges?
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• Problem: given a library of funcOons and a set of examples, find a program using 
funcOons in the library that saOsfies the provided examples.

• Key challenge: scalability  

• Large number of funcOons in library (e.g., R) 

• Previous approaches consider very small languages 



How To Present A Research Paper?
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Key idea
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• Lightweight SMT-based deducOon for pruning



How To Present A Research Paper?
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• Given an input-output example  and a library of components , find a program  
 over  such that (1)  is well-typed over  and (2) 

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

• Also known as “component-based program synthesis”
• A program is a loop-free composiOon of components from a given library
• Component-based vs. DSL-based 

• Any type-safe composiOon is okay vs. syntacOc restricOons imposed by grammar



Important Concepts
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• Hypothesis: “parOal program”

Leaf node is hole (base case)



Important Concepts
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Leaf node is hole with qualifier (base case)
A qualifier expresses addiOonal informaOon about the 
hole, i.e., how to fill the hole

 must be replaced with variable  which 
binds to table , i.e., this leaf node is concrete
?1 x1

T

• Hypothesis: “parOal program”



Important Concepts
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Non-leaf node (recursive case)

• Hypothesis: “parOal program”



Important Concepts
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Table transformers
FuncOons that transform tables to tables

• Hypothesis: “parOal program”



Important Concepts
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Value transformers
FuncOons that don’t transform tables; they transform values. 
Constants are special value transformers.

• Hypothesis: “parOal program”



Important Concepts
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Important Concepts
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• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Hypothesis, not sketch Hypothesis, and sketch

• EssenOally, in sketch, all table-typed holes are concrete
• In other words, sketch represents a “smaller space” of concrete programs



Synthesis Algorithm
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Synthesis Algorithm
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Explain algorithm in terms of its input/output



Synthesis Algorithm
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Explain each step in an organized way



Synthesis Algorithm
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A worklist algorithm. IniOalizaOon.



Synthesis Algorithm
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Remove one hypothesis from worklist



Synthesis Algorithm
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Prune using deducOon (discuss later)
In parOcular, “Deduce” procedure checks whether we can prune 
sketches corresponding to the hypothesis (but not the enOre 
hypothesis) 



Synthesis Algorithm
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If can prune (“contradicOon” means “can prune”)
In parOcular, replace each table-typed leaf node in  with table 
transforma;on operators (not variables) in 

H
ΛT

Refine



Synthesis Algorithm
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If cannot prune
In parOcular, convert  to a set of sketches, fill each sketch, 
check each concrete program against spec

H

Hypothesis Sketch

Concrete Program



Synthesis Algorithm

47

If cannot prune
In parOcular, convert  to a set of sketches, fill each sketch, 
check each concrete program against spec

H

SOll need to refine



DeducOon
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H H

Explain each step in an organized way
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

 is set of table-typed leaf nodes in S H



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

 is the th table in input examplexi i
 is all input tables in input exampleEin
 essenOally encodes all possible sketches 

(recall: table-typed leaf nodes in sketch must be concrete)
φin



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

 is the output of enOre programy



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Compose constraints to form constraint of 
enOre program
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for table-typed leaf nodes
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for output of enOre program



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Input-output example
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Constraint for hypothesis
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for hypothesis

Leaf nodes (base case)



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for hypothesis

Concrete program (base case)
Execute, produce a concrete output table, abstract 
output table using abstracOon funcOon α



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for hypothesis

Make use of “parOal evaluaOon”



DeducOon
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ParOal evaluaOon of Hi
Idea: if some sub-program in  is already concrete, 
evaluate it to a concrete table

Hi
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DeducOon
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ParOal evaluaOon of Hi
Idea: if some sub-program in  is already concrete, 
evaluate it to a concrete table

Hi

If can be concrete, be concrete (base case)



DeducOon
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ParOal evaluaOon of Hi
Idea: if some sub-program in  is already concrete, 
evaluate it to a concrete table

Hi

If cannot be concrete, keep holes (base case)



DeducOon
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ParOal evaluaOon of Hi
Idea: if some sub-program in  is already concrete, 
evaluate it to a concrete table

Hi

Recursive case



DeducOon
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• Given hypothesis , generate SMT formula that corresponds to sketches of , and 
check against example

H H

Constraint for hypothesis

Subtree (recursive case)
Use specificaOon for operator, need renaming



Use an Example to Explain DeducOon

70 Input Example
Output Example
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?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
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85 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤
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86 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain DeducOon

⊤ ⊤

Where do we use par;al evalua;on?



87 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

∧ ∧
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88 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

∧ ∧
∧

UNSAT
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Sketch CompleOon
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• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill  first, then ?4 ?2
• Be “boUom-up” to leverage parOal evaluaOon

• Skip details
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• IniOal hypothesis is a hole
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• IniOal hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis 

SMT-based deduc;on 
Par;al evalua;on
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• IniOal hypothesis is a hole

• Can prune: refine hypothesis
• Pruning: consider sketches corresponding to hypothesis 



Synthesis Algorithm Recap
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• IniOal hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis 

• Can prune: refine hypothesis
• Can’t prune: convert to sketches, complete sketches, if program found, return; 

otherwise, refine hypothesis

BoWom-up, type-directed 
enumera;on



Use N-gram Models for Search PrioriOzaOon

102

• Not a major contribuOon of this paper: applicaOon of standard technique 
• ImplementaOon secOon



How To Present A Research Paper?
• What’s the problem? Why is it important? 

• Why is the problem challenging?  

• How does the paper solve the problem? What’s the key idea? 

• Explain technique in more detail 

• Evalua;on 

• Related work
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• How well does Morpheus work on real-world table transformaOon tasks?
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• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
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• How much does SMT-based deducOon help?
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• How much does n-gram model help?
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• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against  [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.



EvaluaOon
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• Benchmarks
• 80 data preparaOon tasks in R from StackOverflow

• 20 components from tidyr and dplyr packages   



EvaluaOon
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• Research quesOons

• How well does Morpheus work on real-world table transforma;on tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against  [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.
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Evaluate Morpheus
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Take-away: Morpheus can 
solve almost all benchmarks 
within seconds



EvaluaOon
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• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• Abla;on study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against  [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.
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• Evaluate impact of different specificaOons on performance 
• No spec
• Spec 1: less precise
• Spec 2: more precise
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Evaluate Usefulness of SMT-based DeducOon
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• Evaluate impact of different specificaOons on performance 
• No spec
• Spec 1: less precise
• Spec 2: more precise

Take-away: more precise, 
beWer performance



Evaluate Usefulness of ParOal EvaluaOon
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• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE
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• Evaluate impact of parOal evaluaOon
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Evaluate Usefulness of ParOal EvaluaOon
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• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE Take-away: PE helps speed up search



Evaluate Usefulness of N-gram Model
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• Evaluate impact of n-gram model
• No deducOon, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model



Evaluate Usefulness of N-gram Model
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• Evaluate impact of n-gram model
• No deducOon, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model

Take-away: n-gram model helps speed up search



EvaluaOon
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• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against  [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.



Morpheus vs. λ2
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•  solves 0 out of 80 benchmarks λ2

• Because  uses a DSL that’s not tailored towards table transformaOons in Rλ2

• Take-away: having the right DSL (abstrac;on) is very important for synthesis!



Morpheus vs. SQLSynthesizer

• On 80 R benchmarks, 1 (SQLSynthesizer) vs. 78 (Morpheus)
• On 28 SQLSynthesizer benchmarks, 20 (SQLSynthesizer) vs. 27 (Morpheus)
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• Morpheus technique is beWer than prior techniques



Summary
• What’s the problem? Why is it important? 

• High-level, use examples 

• Why is the problem challenging?  

• High-level, use examples 

• How does the paper solve the problem? What’s the key idea? 

• One single key idea 

• More detail, sOll relaOvely high-level, use examples 

• Explain technique in more detail 

• Great detail, organized, use examples 

• EvaluaOon 

• Summarize results and take-aways 
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