
Lecture 8

EECS 598-008 & EECS 498-008:
Intelligent Programming Systems

Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)

• Zoom link on course website

• Discuss A2 (due next Monday)

• CFPP due midnight Tuesday, September 28

• Submit your paper presentaOon preferences

• Assignment will be released on Wednesday, aRer which you can start prep

• Course survey: hUps://forms.gle/XVQ3uMPwNomP1onn7

• More papers added to HotCRP

2

https://forms.gle/XVQ3uMPwNomP1onn7

Today’s Agenda
• Present Morpheus paper

• Talk about Morpheus

• Talk about how to present a (PL) research paper in general

3

What Does A (PL) Research Paper Look Like?

4

1 2 3 4 7 8 9 10 11 12 135 6

What Does A (PL) Research Paper Look Like?

5

1 2 3 4 7 8 9 10 11 12 135 6

Introduc;on: problem, idea, solu;on, evalua;on, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

6

1 2 3 4 7 8 9 10 11 12 135 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

7

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solu;on, using examples, in more detail, 1-2 pages

5 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

8

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, soluOon, using examples, in more detail, 1-2 pages

Technical sec;ons: problem formula;on, algorithms, with examples, in great
detail, 4-5 pages

5 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

9

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, soluOon, using examples, in more detail, 1-2 pages

Technical secOons: problem formulaOon, algorithms, with examples, in great
detail, 4-5 pages

Implementa;on details, < 1 page

5 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

10

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, soluOon, using examples, in more detail, 1-2 pages

Technical secOons: problem formulaOon, algorithms, with examples, in great
detail, 4-5 pages

ImplementaOon details, < 1 page

Evalua;on: benchmarks, experimental
setup, results, analysis, 2 pages

5 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

11

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, soluOon, using examples, in more detail, 1-2 pages

Technical secOons: problem formulaOon, algorithms, with examples, in great
detail, 4-5 pages

ImplementaOon details, < 1 page

EvaluaOon: benchmarks, experimental
setup, results, analysis, 2 pages

Related work, limita;ons,
conclusion, 1-2 pages

5 6

IntroducOon: problem, idea, soluOon, evaluaOon, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

12

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, soluOon, using examples, in more detail, 1-2 pages

Technical secOons: problem formulaOon, algorithms, with examples, in great
detail, 4-5 pages

ImplementaOon details, < 1 page

EvaluaOon: benchmarks, experimental
setup, results, analysis, 2 pages

Related work, limitaOons,
conclusion, 1-2 pages

5 6

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• EvaluaOon

• Related work

13

Explain the Problem at a High-Level

14

• Data preparaOon

• Data prep is tedious involving consolidaOng data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

15

• How to automaOcally synthesize table transformaOon programs?

• Given a library of funcOons for table transformaOon and a set of input-output
examples, how to find a program?

Explain the Problem at a High-Level
• Data preparaOon

• Data prep is tedious involving consolidaOng data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

16

• How to automaOcally synthesize table transformaOon programs?

• Given a library of funcOons for table transformaOon and a set of input-output
examples, how to find a program?

• Useful because with this technique, non-experts can also “write” programs

Explain the Problem at a High-Level
• Data preparaOon

• Data prep is tedious involving consolidaOng data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

Use An Example to Illustrate the Problem

17

Use An Example to Illustrate the Problem

18

Input Example

Output Example

Use More Examples to Illustrate the Problem

19

Input Example

Output Example

 “find out proporOons of flights to desOnaOon(SeaUle)”

Use More Examples to Illustrate the Problem

20

Input Example Output Example

“I want to combine these 2 data frames to create a new one which looks like this”

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• EvaluaOon

• Related work

21

What are the Challenges?

22

• Problem: given a library of funcOons and a set of examples, find a program using
funcOons in the library that saOsfies the provided examples.

What are the Challenges?

23

• Problem: given a library of funcOons and a set of examples, find a program using
funcOons in the library that saOsfies the provided examples.

• Key challenge: scalability

• Large number of funcOons in library (e.g., R)

• Previous approaches consider very small languages

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• EvaluaOon

• Related work

24

Key idea

25

• Lightweight SMT-based deducOon for pruning

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• EvaluaOon

• Related work

26

Problem FormulaOon

27

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

Problem FormulaOon

28

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

• Also known as “component-based program synthesis”
• A program is a loop-free composiOon of components from a given library

Problem FormulaOon

29

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

• Also known as “component-based program synthesis”
• A program is a loop-free composiOon of components from a given library
• Component-based vs. DSL-based

• Any type-safe composiOon is okay vs. syntacOc restricOons imposed by grammar

Important Concepts

30

• Hypothesis: “parOal program”

Important Concepts

31

• Hypothesis: “parOal program”

Leaf node is hole (base case)

Important Concepts

32

Leaf node is hole with qualifier (base case)
A qualifier expresses addiOonal informaOon about the
hole, i.e., how to fill the hole

 must be replaced with variable which
binds to table , i.e., this leaf node is concrete
?1 x1

T

• Hypothesis: “parOal program”

Important Concepts

33

Non-leaf node (recursive case)

• Hypothesis: “parOal program”

Important Concepts

34

Table transformers
FuncOons that transform tables to tables

• Hypothesis: “parOal program”

Important Concepts

35

Value transformers
FuncOons that don’t transform tables; they transform values.
Constants are special value transformers.

• Hypothesis: “parOal program”

Important Concepts

36

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Important Concepts

37

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Hypothesis, not sketch Hypothesis, and sketch

Important Concepts

38

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Hypothesis, not sketch Hypothesis, and sketch

• EssenOally, in sketch, all table-typed holes are concrete
• In other words, sketch represents a “smaller space” of concrete programs

Synthesis Algorithm

39

Synthesis Algorithm

40

Explain algorithm in terms of its input/output

Synthesis Algorithm

41

Explain each step in an organized way

Synthesis Algorithm

42

A worklist algorithm. IniOalizaOon.

Synthesis Algorithm

43

Remove one hypothesis from worklist

Synthesis Algorithm

44

Prune using deducOon (discuss later)
In parOcular, “Deduce” procedure checks whether we can prune
sketches corresponding to the hypothesis (but not the enOre
hypothesis)

Synthesis Algorithm

45

If can prune (“contradicOon” means “can prune”)
In parOcular, replace each table-typed leaf node in with table
transforma;on operators (not variables) in

H
ΛT

Refine

Synthesis Algorithm

46

If cannot prune
In parOcular, convert to a set of sketches, fill each sketch,
check each concrete program against spec

H

Hypothesis Sketch

Concrete Program

Synthesis Algorithm

47

If cannot prune
In parOcular, convert to a set of sketches, fill each sketch,
check each concrete program against spec

H

SOll need to refine

DeducOon

48

DeducOon

49

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

DeducOon

50

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Explain algorithm in terms of its input/output

DeducOon

51

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Explain each step in an organized way

DeducOon

52

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is set of table-typed leaf nodes in S H

DeducOon

53

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is the th table in input examplexi i
 is all input tables in input exampleEin
 essenOally encodes all possible sketches

(recall: table-typed leaf nodes in sketch must be concrete)
φin

DeducOon

54

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is the output of enOre programy

DeducOon

55

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Compose constraints to form constraint of
enOre program

DeducOon

56

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for table-typed leaf nodes

DeducOon

57

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for output of enOre program

DeducOon

58

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Input-output example

DeducOon

59

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

DeducOon

60

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

DeducOon

61

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Leaf nodes (base case)

DeducOon

62

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Concrete program (base case)
Execute, produce a concrete output table, abstract
output table using abstracOon funcOon α

DeducOon

63

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Make use of “parOal evaluaOon”

DeducOon

64

ParOal evaluaOon of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

DeducOon

65

ParOal evaluaOon of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

DeducOon

66

ParOal evaluaOon of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

If can be concrete, be concrete (base case)

DeducOon

67

ParOal evaluaOon of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

If cannot be concrete, keep holes (base case)

DeducOon

68

ParOal evaluaOon of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

Recursive case

DeducOon

69

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Subtree (recursive case)
Use specificaOon for operator, need renaming

Use an Example to Explain DeducOon

70 Input Example
Output Example

Use an Example to Explain DeducOon

71 Input Example
Output Example

?3 = x1

72 Input Example
Output Example

?3 = x1

y = ?0

Use an Example to Explain DeducOon

73 Input Example
Output Example

?3 = x1

y = ?0

Use an Example to Explain DeducOon

74 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain DeducOon

75 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain DeducOon

76 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain DeducOon

77 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain DeducOon

78 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain DeducOon

79 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain DeducOon

80 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain DeducOon

81 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

82 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

83 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

⊤ ⊤

Use an Example to Explain DeducOon

84 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain DeducOon

⊤ ⊤

85 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain DeducOon

⊤ ⊤

86 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain DeducOon

⊤ ⊤

Where do we use par;al evalua;on?

87 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

∧ ∧
∧

88 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain DeducOon

∧ ∧
∧

UNSAT

Sketch CompleOon

89

Sketch CompleOon

90

• Given a sketch, fill holes with value transformers

Sketch CompleOon

91

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

Sketch CompleOon

92

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

Sketch CompleOon

93

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

Sketch CompleOon

94

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

Sketch CompleOon

95

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2

Sketch CompleOon

96

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2
• Be “boUom-up” to leverage parOal evaluaOon

Sketch CompleOon

97

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitaOon

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2
• Be “boUom-up” to leverage parOal evaluaOon

• Skip details

Synthesis Algorithm Recap

98

• IniOal hypothesis is a hole

Synthesis Algorithm Recap

99

• IniOal hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis

SMT-based deduc;on
Par;al evalua;on

Synthesis Algorithm Recap

100

• IniOal hypothesis is a hole

• Can prune: refine hypothesis
• Pruning: consider sketches corresponding to hypothesis

Synthesis Algorithm Recap

101

• IniOal hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis

• Can prune: refine hypothesis
• Can’t prune: convert to sketches, complete sketches, if program found, return;

otherwise, refine hypothesis

BoWom-up, type-directed
enumera;on

Use N-gram Models for Search PrioriOzaOon

102

• Not a major contribuOon of this paper: applicaOon of standard technique
• ImplementaOon secOon

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evalua;on

• Related work

103

EvaluaOon

104

• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?

EvaluaOon

105

• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

EvaluaOon

106

• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

EvaluaOon

107

• Benchmarks
• 80 data preparaOon tasks in R from StackOverflow

• 20 components from tidyr and dplyr packages

EvaluaOon

108

• Research quesOons

• How well does Morpheus work on real-world table transforma;on tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Evaluate Morpheus

109

Evaluate Morpheus

110

Take-away: Morpheus can
solve almost all benchmarks
within seconds

EvaluaOon

111

• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• Abla;on study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Evaluate Usefulness of SMT-based DeducOon

112

• Evaluate impact of different specificaOons on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Evaluate Usefulness of SMT-based DeducOon

113

• Evaluate impact of different specificaOons on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Evaluate Usefulness of SMT-based DeducOon

114

• Evaluate impact of different specificaOons on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Take-away: more precise,
beWer performance

Evaluate Usefulness of ParOal EvaluaOon

115

• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of ParOal EvaluaOon

116

• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of ParOal EvaluaOon

117

• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of ParOal EvaluaOon

118

• Evaluate impact of parOal evaluaOon
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE Take-away: PE helps speed up search

Evaluate Usefulness of N-gram Model

119

• Evaluate impact of n-gram model
• No deducOon, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model

Evaluate Usefulness of N-gram Model

120

• Evaluate impact of n-gram model
• No deducOon, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model

Take-away: n-gram model helps speed up search

EvaluaOon

121

• Research quesOons

• How well does Morpheus work on real-world table transformaOon tasks?
• AblaOon study

• How much does SMT-based deducOon help?
• How much does parOal evaluaOon help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Morpheus vs. λ2

122

• solves 0 out of 80 benchmarks λ2

• Because uses a DSL that’s not tailored towards table transformaOons in Rλ2

• Take-away: having the right DSL (abstrac;on) is very important for synthesis!

Morpheus vs. SQLSynthesizer

• On 80 R benchmarks, 1 (SQLSynthesizer) vs. 78 (Morpheus)
• On 28 SQLSynthesizer benchmarks, 20 (SQLSynthesizer) vs. 27 (Morpheus)

123

• Morpheus technique is beWer than prior techniques

Summary
• What’s the problem? Why is it important?

• High-level, use examples

• Why is the problem challenging?

• High-level, use examples

• How does the paper solve the problem? What’s the key idea?

• One single key idea

• More detail, sOll relaOvely high-level, use examples

• Explain technique in more detail

• Great detail, organized, use examples

• EvaluaOon

• Summarize results and take-aways

124

