
Lecture 8

EECS 598-008 & EECS 498-008:

Intelligent Programming Systems

Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)

• Zoom link on course website

• Discuss A2 (due next Monday)

• CFPP due midnight Tuesday, September 28

• Submit your paper presentation preferences

• Assignment will be released on Wednesday, after which you can start prep

• Course survey: https://forms.gle/XVQ3uMPwNomP1onn7

• More papers added to HotCRP

2

https://forms.gle/XVQ3uMPwNomP1onn7

Today’s Agenda
• Present Morpheus paper

• Talk about Morpheus

• Talk about how to present a (PL) research paper in general

3

What Does A (PL) Research Paper Look Like?

4

1 2 3 4 7 8 9 10 11 12 135 6

What Does A (PL) Research Paper Look Like?

5

1 2 3 4 7 8 9 10 11 12 135 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

6

1 2 3 4 7 8 9 10 11 12 135 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

7

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

5 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

8

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

Technical sections: problem formulation, algorithms, with examples, in great
detail, 4-5 pages

5 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

9

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

Technical sections: problem formulation, algorithms, with examples, in great
detail, 4-5 pages

Implementation details, < 1 page

5 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

10

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

Technical sections: problem formulation, algorithms, with examples, in great
detail, 4-5 pages

Implementation details, < 1 page

Evaluation: benchmarks, experimental
setup, results, analysis, 2 pages

5 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

11

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

Technical sections: problem formulation, algorithms, with examples, in great
detail, 4-5 pages

Implementation details, < 1 page

Evaluation: benchmarks, experimental
setup, results, analysis, 2 pages

Related work, limitations,
conclusion, 1-2 pages

5 6

Introduction: problem, idea, solution, evaluation, at high-level, 2 pages

What Does A (PL) Research Paper Look Like?

12

1 2 3 4 7 8 9 10 11 12 13

Overview: illustrate problem, idea, solution, using examples, in more detail, 1-2 pages

Technical sections: problem formulation, algorithms, with examples, in great
detail, 4-5 pages

Implementation details, < 1 page

Evaluation: benchmarks, experimental
setup, results, analysis, 2 pages

Related work, limitations,
conclusion, 1-2 pages

5 6

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evaluation

• Related work

13

Explain the Problem at a High-Level

14

• Data preparation

• Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

15

• How to automatically synthesize table transformation programs?

• Given a library of functions for table transformation and a set of input-output
examples, how to find a program?

Explain the Problem at a High-Level
• Data preparation

• Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

16

• How to automatically synthesize table transformation programs?

• Given a library of functions for table transformation and a set of input-output
examples, how to find a program?

• Useful because with this technique, non-experts can also “write” programs

Explain the Problem at a High-Level
• Data preparation

• Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.

• Especially important in the “big data” era

Use An Example to Illustrate the Problem

17

Use An Example to Illustrate the Problem

18

Input Example

Output Example

Use More Examples to Illustrate the Problem

19

Input Example

Output Example

 “find out proportions of flights to destination(Seattle)”

Use More Examples to Illustrate the Problem

20

Input Example Output Example

“I want to combine these 2 data frames to create a new one which looks like this”

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evaluation

• Related work

21

What are the Challenges?

22

• Problem: given a library of functions and a set of examples, find a program using
functions in the library that satisfies the provided examples.

What are the Challenges?

23

• Problem: given a library of functions and a set of examples, find a program using
functions in the library that satisfies the provided examples.

• Key challenge: scalability

• Large number of functions in library (e.g., R)

• Previous approaches consider very small languages

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evaluation

• Related work

24

Key idea

25

• Lightweight SMT-based deduction for pruning

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evaluation

• Related work

26

Problem Formulation

27

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

Problem Formulation

28

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

• Also known as “component-based program synthesis”
• A program is a loop-free composition of components from a given library

Problem Formulation

29

• Given an input-output example and a library of components , find a program
 over such that (1) is well-typed over and (2)

E Λ
λ ⃗x . e Λ e Λ (λ ⃗x . e)Ein = Eout

• Also known as “component-based program synthesis”
• A program is a loop-free composition of components from a given library
• Component-based vs. DSL-based

• Any type-safe composition is okay vs. syntactic restrictions imposed by grammar

Important Concepts

30

• Hypothesis: “partial program”

Important Concepts

31

• Hypothesis: “partial program”

Leaf node is hole (base case)

Important Concepts

32

Leaf node is hole with qualifier (base case)
A qualifier expresses additional information about the
hole, i.e., how to fill the hole

 must be replaced with variable which
binds to table , i.e., this leaf node is concrete
?1 x1

T

• Hypothesis: “partial program”

Important Concepts

33

Non-leaf node (recursive case)

• Hypothesis: “partial program”

Important Concepts

34

Table transformers
Functions that transform tables to tables

• Hypothesis: “partial program”

Important Concepts

35

Value transformers
Functions that don’t transform tables; they transform values.
Constants are special value transformers.

• Hypothesis: “partial program”

Important Concepts

36

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Important Concepts

37

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Hypothesis, not sketch Hypothesis, and sketch

Important Concepts

38

• Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

Hypothesis, not sketch Hypothesis, and sketch

• Essentially, in sketch, all table-typed holes are concrete
• In other words, sketch represents a “smaller space” of concrete programs

Synthesis Algorithm

39

Synthesis Algorithm

40

Explain algorithm in terms of its input/output

Synthesis Algorithm

41

Explain each step in an organized way

Synthesis Algorithm

42

A worklist algorithm. Initialization.

Synthesis Algorithm

43

Remove one hypothesis from worklist

Synthesis Algorithm

44

Prune using deduction (discuss later)
In particular, “Deduce” procedure checks whether we can prune
sketches corresponding to the hypothesis (but not the entire
hypothesis)

Synthesis Algorithm

45

If can prune (“contradiction” means “can prune”)
In particular, replace each table-typed leaf node in with table
transformation operators (not variables) in

H
ΛT

Refine

Synthesis Algorithm

46

If cannot prune
In particular, convert to a set of sketches, fill each sketch,
check each concrete program against spec

H

Hypothesis Sketch

Concrete Program

Synthesis Algorithm

47

If cannot prune
In particular, convert to a set of sketches, fill each sketch,
check each concrete program against spec

H

Still need to refine

Deduction

48

Deduction

49

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Deduction

50

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Explain algorithm in terms of its input/output

Deduction

51

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Explain each step in an organized way

Deduction

52

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is set of table-typed leaf nodes in S H

Deduction

53

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is the th table in input examplexi i
 is all input tables in input exampleEin
 essentially encodes all possible sketches

(recall: table-typed leaf nodes in sketch must be concrete)
φin

Deduction

54

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

 is the output of entire programy

Deduction

55

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Compose constraints to form constraint of
entire program

Deduction

56

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for table-typed leaf nodes

Deduction

57

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for output of entire program

Deduction

58

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Input-output example

Deduction

59

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Deduction

60

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Deduction

61

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Leaf nodes (base case)

Deduction

62

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Concrete program (base case)
Execute, produce a concrete output table, abstract
output table using abstraction function α

Deduction

63

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Make use of “partial evaluation”

Deduction

64

Partial evaluation of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

Deduction

65

Partial evaluation of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

Deduction

66

Partial evaluation of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

If can be concrete, be concrete (base case)

Deduction

67

Partial evaluation of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

If cannot be concrete, keep holes (base case)

Deduction

68

Partial evaluation of Hi
Idea: if some sub-program in is already concrete,
evaluate it to a concrete table

Hi

Recursive case

Deduction

69

• Given hypothesis , generate SMT formula that corresponds to sketches of , and
check against example

H H

Constraint for hypothesis

Subtree (recursive case)
Use specification for operator, need renaming

Use an Example to Explain Deduction

70 Input Example
Output Example

Use an Example to Explain Deduction

71 Input Example
Output Example

?3 = x1

72 Input Example
Output Example

?3 = x1

y = ?0

Use an Example to Explain Deduction

73 Input Example
Output Example

?3 = x1

y = ?0

Use an Example to Explain Deduction

74 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain Deduction

75 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain Deduction

76 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

Use an Example to Explain Deduction

77 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain Deduction

78 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain Deduction

79 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain Deduction

80 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

Use an Example to Explain Deduction

81 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

Use an Example to Explain Deduction

82 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

Use an Example to Explain Deduction

83 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col

⊤ ⊤

Use an Example to Explain Deduction

84 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain Deduction

⊤ ⊤

85 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain Deduction

⊤ ⊤

86 Input Example
Output Example

?3 = x1

y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧

?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row
∧ ?1 . col = ?3 . col ⊤

Use an Example to Explain Deduction

⊤ ⊤

Where do we use partial evaluation?

87 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain Deduction

∧ ∧
∧

88 Input Example
Output Example

?3 = x1 y = ?0

x1 . row = 3 ∧ x1 . col = 4 y . row = 2 ∧ y . col = 4∧
∧ ?0 . row = ?1 . row∧?0 . col < ?1 . col

?1 . row < ?3 . row ∧ ?1 . col = ?3 . col

Use an Example to Explain Deduction

∧ ∧
∧

UNSAT

Sketch Completion

89

Sketch Completion

90

• Given a sketch, fill holes with value transformers

Sketch Completion

91

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

Sketch Completion

92

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

Sketch Completion

93

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

Sketch Completion

94

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

Sketch Completion

95

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2

Sketch Completion

96

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2
• Be “bottom-up” to leverage partial evaluation

Sketch Completion

97

• Given a sketch, fill holes with value transformers
• Table-driven type inhabitation

• Make sure enumerate only (sub-)programs that are well-typed

• To fill , need to know table ?4 ?3

• To fill , need to know intermediate table at ?2 ?1

• We want: fill first, then ?4 ?2
• Be “bottom-up” to leverage partial evaluation

• Skip details

Synthesis Algorithm Recap

98

• Initial hypothesis is a hole

Synthesis Algorithm Recap

99

• Initial hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis

SMT-based deduction

Partial evaluation

Synthesis Algorithm Recap

100

• Initial hypothesis is a hole

• Can prune: refine hypothesis
• Pruning: consider sketches corresponding to hypothesis

Synthesis Algorithm Recap

101

• Initial hypothesis is a hole
• Pruning: consider sketches corresponding to hypothesis

• Can prune: refine hypothesis
• Can’t prune: convert to sketches, complete sketches, if program found, return;

otherwise, refine hypothesis

Bottom-up, type-directed
enumeration

Use N-gram Models for Search Prioritization

102

• Not a major contribution of this paper: application of standard technique
• Implementation section

How To Present A Research Paper?
• What’s the problem? Why is it important?

• Why is the problem challenging?

• How does the paper solve the problem? What’s the key idea?

• Explain technique in more detail

• Evaluation

• Related work

103

Evaluation

104

• Research questions

• How well does Morpheus work on real-world table transformation tasks?

Evaluation

105

• Research questions

• How well does Morpheus work on real-world table transformation tasks?
• Ablation study

• How much does SMT-based deduction help?
• How much does partial evaluation help?
• How much does n-gram model help?

Evaluation

106

• Research questions

• How well does Morpheus work on real-world table transformation tasks?
• Ablation study

• How much does SMT-based deduction help?
• How much does partial evaluation help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Evaluation

107

• Benchmarks
• 80 data preparation tasks in R from StackOverflow

• 20 components from tidyr and dplyr packages

Evaluation

108

• Research questions

• How well does Morpheus work on real-world table transformation tasks?
• Ablation study

• How much does SMT-based deduction help?
• How much does partial evaluation help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Evaluate Morpheus

109

Evaluate Morpheus

110

Take-away: Morpheus can
solve almost all benchmarks
within seconds

Evaluation

111

• Research questions

• How well does Morpheus work on real-world table transformation tasks?
• Ablation study

• How much does SMT-based deduction help?
• How much does partial evaluation help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Evaluate Usefulness of SMT-based Deduction

112

• Evaluate impact of different specifications on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Evaluate Usefulness of SMT-based Deduction

113

• Evaluate impact of different specifications on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Evaluate Usefulness of SMT-based Deduction

114

• Evaluate impact of different specifications on performance
• No spec
• Spec 1: less precise
• Spec 2: more precise

Take-away: more precise,
better performance

Evaluate Usefulness of Partial Evaluation

115

• Evaluate impact of partial evaluation
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

116

• Evaluate impact of partial evaluation
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

117

• Evaluate impact of partial evaluation
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

118

• Evaluate impact of partial evaluation
• Spec 1: w/ and w/o PE
• Spec 2: w/ and w/o PE Take-away: PE helps speed up search

Evaluate Usefulness of N-gram Model

119

• Evaluate impact of n-gram model
• No deduction, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model

Evaluate Usefulness of N-gram Model

120

• Evaluate impact of n-gram model
• No deduction, w/ and w/o n-gram model
• Spec 2, w/ and w/o n-gram model

Take-away: n-gram model helps speed up search

Evaluation

121

• Research questions

• How well does Morpheus work on real-world table transformation tasks?
• Ablation study

• How much does SMT-based deduction help?
• How much does partial evaluation help?
• How much does n-gram model help?

• Comparison against baselines

• Comparison against [1]λ2

• Comparison against SQLSynthesizer [2]

[1] Synthesizing data structure transformations from input-output examples. Feser et al. 2015.
[2] Automatically synthesizing sql queries from input-output examples. Zhang et al. 2013.

Morpheus vs. λ2

122

• solves 0 out of 80 benchmarks λ2

• Because uses a DSL that’s not tailored towards table transformations in Rλ2

• Take-away: having the right DSL (abstraction) is very important for synthesis!

Morpheus vs. SQLSynthesizer

• On 80 R benchmarks, 1 (SQLSynthesizer) vs. 78 (Morpheus)
• On 28 SQLSynthesizer benchmarks, 20 (SQLSynthesizer) vs. 27 (Morpheus)

123

• Morpheus technique is better than prior techniques

Summary
• What’s the problem? Why is it important?

• High-level, use examples

• Why is the problem challenging?

• High-level, use examples

• How does the paper solve the problem? What’s the key idea?

• One single key idea

• More detail, still relatively high-level, use examples

• Explain technique in more detail

• Great detail, organized, use examples

• Evaluation

• Summarize results and take-aways

124

