EECS 598-008 \& EECS 498-008: Intelligent Programming Systems

Lecture 8

Announcements

- Live, remote discussion 3-4pm Friday (tomorrow)
- Zoom link on course website
- Discuss A2 (due next Monday)
- CFPP due midnight Tuesday, September 28
- Submit your paper presentation preferences
- Assignment will be released on Wednesday, after which you can start prep
- Course survey: https://forms.gle/XVQ3uMPwNomP1onn7
- More papers added to HotCRP

Today's Agenda

- Present Morpheus paper
- Talk about Morpheus
- Talk about how to present a (PL) research paper in general

What Does A (PL) Research Paper Look Like?

1	2	3	4	5	6	7	8	9	10	11	12	13
$\underline{\underline{\underline{o}} \text { - }}$	\%-3x	- [\|프…]	F =			=a	-	- $=$	-	1110	僉	-
		=	-				- 2					
-					E		-		-			-

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

What Does A (PL) Research Paper Look Like?

How To Present A Research Paper?

- What's the problem? Why is it important?
- Why is the problem challenging?
- How does the paper solve the problem? What's the key idea?
- Explain technique in more detail
- Evaluation
- Related work

Explain the Problem at a High-Level

- Data preparation
- Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.
- Especially important in the "big data" era

Component-Based Synthesis of Table Consolidation and Transformation Tasks from Examples *

Yu Feng
University of Texas at Austin, USA yufeng@cs.utexas.edu

Ruben Martins
University of Texas at Austin, USA rmartins@cs.utexas.edu

Jacob Van Geffen
University of Texas at Austin, USA
jsv@cs.utexas.edu

Isil Dillig
University of Texas at Austin, USA isil@cs.utexas.edu

```
Swarat Chaudhuri
Rice University, USA
swarat@rice.edu
```


Explain the Problem at a High-Level

- Data preparation
- Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.
- Especially important in the "big data" era
- How to automatically synthesize table transformation programs?
- Given a library of functions for table transformation and a set of input-output examples, how to find a program?

Explain the Problem at a High-Level

- Data preparation
- Data prep is tedious involving consolidating data sources, cleaning, reshaping, etc.
- Especially important in the "big data" era
- How to automatically synthesize table transformation programs?
- Given a library of functions for table transformation and a set of input-output examples, how to find a program?
- Useful because with this technique, non-experts can also "write" programs

Use An Example to Illustrate the Problem

Complex data reshaping in R

Asked 5 years, 3 months ago Active 1 year, 6 months ago Viewed 386 timesI have a data frame with 3 columns (extract below):
6
df <- data. frame(

$$
\text { id }=c(1,1,1,2,2,2),
$$

Year = c(2007, 2008, 2009, 2007, 2008, 2009),
$A=c(5,2,3,7,5,6)$,
$B=c(10,0,50,13,17,17)$
)
df

I'd like to have this:
df_needed <- data.frame(id= c(1, 2), A_2007 = c $(5,7)$, B_2007 $=c(10,13)$,
A $2008=c(2,5)$,
B_2008 $=c(0,17)$,
A_2009 = c $(3,6)$, B_2009 $=c(50,17)$
)
df_needed

I'm familiar with reshape and tidyR but I don't think they can manage this transformation.

Use An Example to Illustrate the Problem

Complex data reshaping in R

Asked 5 years, 3 months ago Active 1 year, 6 months ago
Viewed 386 timesI have a data frame with 3 columns (extract below):
6

```
df <- data.frame(
        id = c(1,1,1,2,2,2),
            Year = c(2007, 2008, 2009, 2007, 2008, 2009),
        A = c(5, 2, 3, 7, 5, 6),
        B = c(10, 0, 50, 13, 17, 17)
    )
    df
```

I'd like to have this:
df_needed <- data.frame(id= c(1, 2), A_2007 = c(5, 7), B_2007 = c $(10,13)$, A $2008=c(2,5)$, B_2008 $=c(0,17)$ A_2009 = c $(3,6)$, B_2009 $=$ c $(50,17)$
)
df_needed

```
df1=gather(input,var,val,id,A,B)
df2=unite(df1,yearvar,var, year)
```

df3=spread(df2,yearvar,val)

```
```

```
df3=spread(df2,yearvar,val)
```

```

I'm familiar with reshape and tidyR but I don't think they can manage this transformation.


Input Example


\section*{Use More Examples to Illustrate the Problem}
\begin{tabular}{|ccc|}
\hline \hline flight & origin & dest \\
\hline \hline 11 & EWR & SEA \\
\hline 725 & JFK & BQN \\
\hline 495 & JFK & SEA \\
\hline 461 & LGA & ATL \\
\hline 1696 & EWR & ORD \\
\hline 1670 & EWR & SEA \\
\hline
\end{tabular}

Input Example
"find out proportions of flights to destination(Seattle)"
```

df1=filter(input, dest == "SEA")
df2=summarize(group_by(df1, origin), n = n())
df3=mutate(df2, prop = n / sum(n))

```
\begin{tabular}{|ccc|}
\hline origin & \(n\) & prop \\
\hline \hline\(E W R\) & 2 & 0.6666667 \\
\hline\(J F K\) & 1 & 0.3333333 \\
\hline
\end{tabular}

Output Example

\section*{Use More Examples to Illustrate the Problem}
"I want to combine these 2 data frames to create a new one which looks like this"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table 1:} & \multicolumn{4}{|l|}{Table 2:} \\
\hline frame & X1 & X2 & X3 & frame & X1 & X2 & X3 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 2 & 10 & 15 & 0 & 2 & 14.53 & 12.57 & 0 \\
\hline 3 & 15 & 10 & 0 & 3 & 13.90 & 14.65 & 0 \\
\hline
\end{tabular}

Input Example
\begin{tabular}{|cccc|}
\hline frame & pos & carid & speed \\
\hline \hline 2 & \(X 1\) & 10 & 14.53 \\
\hline 3 & \(X 2\) & 10 & 14.65 \\
\hline 2 & \(X 2\) & 15 & 12.57 \\
\hline 3 & \(X 1\) & 15 & 13.90 \\
\hline
\end{tabular}

Output Example
```

df1=gather(table1,pos, carid,X1,X2,X3)
df2=gather(table2,pos,speed,X1,X2,X3)
df3=inner_join(df1,df2)
df4=filter(df3,carid != 0)
df5=arrange (df4, carid, frame)

```

\section*{How To Present A Research Paper?}
- What's the problem? Why is it important?
- Why is the problem challenging?
- How does the paper solve the problem? What's the key idea?
- Explain technique in more detail
- Evaluation
- Related work

\section*{What are the Challenges?}
- Problem: given a library of functions and a set of examples, find a program using functions in the library that satisfies the provided examples.

\section*{What are the Challenges?}
- Problem: given a library of functions and a set of examples, find a program using functions in the library that satisfies the provided examples.
- Key challenge: scalability
- Large number of functions in library (e.g., R)
- Previous approaches consider very small languages

\section*{How To Present A Research Paper?}
- What's the problem? Why is it important?
- Why is the problem challenging?
- How does the paper solve the problem? What's the key idea?
- Explain technique in more detail
- Evaluation
- Related work

\section*{Key idea}
- Lightweight SMT-based deduction for pruning

\section*{How To Present A Research Paper?}
- What's the problem? Why is it important?
- Why is the problem challenging?
- How does the paper solve the problem? What's the key idea?
- Explain technique in more detail
- Evaluation
- Related work

\section*{Problem Formulation}
- Given an input-output example \(E\) and a library of components \(\Lambda\), find a program \(\lambda \vec{x} . e\) over \(\Lambda\) such that (1) \(e\) is well-typed over \(\Lambda\) and (2) \((\lambda \vec{x} . e) E_{\text {in }}=E_{\text {out }}\)

\section*{Problem Formulation}
- Given an input-output example \(E\) and a library of components \(\Lambda\), find a program \(\lambda \vec{x} . e\) over \(\Lambda\) such that (1) \(e\) is well-typed over \(\Lambda\) and (2) \((\lambda \vec{x} . e) E_{\text {in }}=E_{\text {out }}\)
- Also known as "component-based program synthesis"
- A program is a loop-free composition of components from a given library

\section*{Problem Formulation}
- Given an input-output example \(E\) and a library of components \(\Lambda\), find a program \(\lambda \vec{x} . e\) over \(\Lambda\) such that (1) \(e\) is well-typed over \(\Lambda\) and (2) \((\lambda \vec{x} . e) E_{\text {in }}=E_{\text {out }}\)
- Also known as "component-based program synthesis"
- A program is a loop-free composition of components from a given library
- Component-based vs. DSL-based
- Any type-safe composition is okay vs. syntactic restrictions imposed by grammar

\section*{Important Concepts}
- Hypothesis: "partial program"
```

$\operatorname{Term} t \quad:=$ const $\left|y_{i}\right| \mathcal{X}\left(t_{1}, \ldots, t_{n}\right)\left(\mathcal{X} \in \Lambda_{v}\right)$
Qualifier $\mathcal{Q} \quad:=(x, \mathrm{~T}) \mid \lambda y_{1}, \ldots y_{n} \cdot t$
Hypothesis $\mathcal{H}:=\left(?_{i}: \tau\right) \mid\left(?_{i}: \tau\right) @ \mathcal{Q}$
$?_{i}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\left(\mathcal{X} \in \Lambda_{\mathrm{T}}\right)$

```

Figure 5. Context-free grammar for hypotheses

\section*{Important Concepts}
- Hypothesis: "partial program"
```

$\operatorname{Term} t \quad:=$ const $\left|y_{i}\right| \mathcal{X}\left(t_{1}, \ldots, t_{n}\right)\left(\mathcal{X} \in \Lambda_{v}\right)$
Qualifier $\mathcal{Q} \quad:=(x, \mathrm{~T}) \mid \lambda y_{1}, \ldots y_{n} \cdot t$
Hypothesis $\mathcal{H}:=\left(?_{i}: \tau\right) \mid\left(?_{i}: \tau\right) @ \mathcal{Q}$
$\mid ?_{i}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\left(\mathcal{X} \in \Lambda_{\mathrm{T}}\right)$

```

Figure 5. Context-free grammar for hypotheses
Leaf node is hole (base case)


\section*{Important Concepts}
- Hypothesis: "partial program"
```

Term}t:= const | y | | \mathcal{ (t , , ., ,tn) (\mathcal{X}\in\mp@subsup{\Lambda}{v}{})
Qualifier \mathcal{Q }}:=(=,\textrm{T})|\lambda\mp@subsup{y}{1}{},···\mp@subsup{y}{n}{}.
Hypothesis }\mathcal{H}:=(\mp@subsup{?}{i}{}:\tau)|(\mp@subsup{?}{i}{}:\tau)@\mathcal{Q
| ?}\mp@subsup{}{i}{\mathcal{X}}(\mp@subsup{\mathcal{H}}{1}{},···,\mp@subsup{\mathcal{H}}{n}{})(\mathcal{X}\in\mp@subsup{\Lambda}{\top}{}

```

Figure 5. Context-free grammar for hypotheses

Leaf node is hole with qualifier (base case)
A qualifier expresses additional information about the hole, i.e., how to fill the hole

\(?_{1}\) must be replaced with variable \(x_{1}\) which binds to table \(T\), i.e., this leaf node is concrete

\section*{Important Concepts}
- Hypothesis: "partial program"
\(\begin{aligned} \text { Term } t: & \text { const }\left|y_{i}\right| \mathcal{X}\left(t_{1}, \ldots, t_{n}\right)\left(\mathcal{X} \in \Lambda_{v}\right) \\ \text { Qualifier } \mathcal{Q} & := \\ \text { Hypothesis } \mathcal{H}:= & (x, T) \mid \lambda y_{1}, \ldots y_{n} . t \\ & \left(?_{i}: \tau\right) \mid\left(?_{i}: \tau\right) @ \mathcal{Q} \\ & \mid ?_{i}^{X}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\left(\mathcal{X} \in \Lambda_{\top}\right)\end{aligned}\)
Figure 5. Context-free grammar for hypotheses

Non-leaf node (recursive case)


\section*{Important Concepts}
- Hypothesis: "partial program"
```

Term}t:=\mathrm{ const | }\mp@subsup{y}{i}{}|\mathcal{X}(\mp@subsup{t}{1}{},···,\mp@subsup{t}{n}{})(\mathcal{X}\in\mp@subsup{\Lambda}{v}{}
Qualifier \mathcal{Q }}:=(=,\textrm{T})|\lambda\mp@subsup{y}{1}{},···\mp@subsup{y}{n}{}.
Hypothesis }\mathcal{H}:=(\mp@subsup{?}{i}{}:\tau)|(\mp@subsup{?}{i}{}:\tau)@\mathcal{Q
| ?}\mp@subsup{}{i}{\mathcal{X}}(\mp@subsup{\mathcal{H}}{1}{},···,\mp@subsup{\mathcal{H}}{n}{})(\mathcal{X}\in\mp@subsup{\Lambda}{T}{}

```

Figure 5. Context-free grammar for hypotheses
```

dfl=filter(input, dest == "SEA")
df2=summarize(group_by(df1, origin), n = n())
df3=mutate(df2, prop = n / sum(n))

```

\section*{Important Concepts}
- Hypothesis: "partial program"
```

$\operatorname{Term} t \quad:=$ const $\left|y_{i}\right| \mathcal{X}\left(t_{1}, \ldots, t_{n}\right)\left(\mathcal{X} \in \Lambda_{v}\right)$
Qualifier $\mathcal{Q} \quad:=(x, \mathrm{~T}) \mid \lambda y_{1}, \ldots y_{n} \cdot t$
Hypothesis $\mathcal{H}:=\left(?_{i}: \tau\right) \mid\left(?_{i}: \tau\right) @ \mathcal{Q}$
$?_{i}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\left(\mathcal{X} \in \Lambda_{\mathrm{T}}\right)$

```

\section*{Value transformers}

Functions that don't transform tables; they transform values.
Constants are special value transformers.

Figure 5. Context-free grammar for hypotheses
```

df1=filter(input, dest == "SEA")
df2=summarize(group_by(df1, origin), n = n())
df3=mutate(df2, prop = n / sum(n))

```

\section*{Important Concepts}
- Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete

\section*{Important Concepts}
- Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete


Hypothesis, not sketch


Hypothesis, and sketch

\section*{Important Concepts}
- Sketch: a special form of hypothesis, where all table-typed leaf nodes are concrete
- Essentially, in sketch, all table-typed holes are concrete
- In other words, sketch represents a "smaller space" of concrete programs


Hypothesis, not sketch


Hypothesis, and sketch

\section*{Synthesis Algorithm}
```

procedure SYnthesize (\mathcal{E}, Λ)
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}:\right.$ t.bl $\}$
\triangleright Init worklist
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;
\triangleright No contradiction
for $\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)$ do
$\mathcal{P}:=\operatorname{FilLsketch}(\mathcal{S}, \mathcal{E})$
for $p \in \mathcal{P}$ do
if $\operatorname{CHECK}(p, \mathcal{E})$ then return p
refine: $\quad \triangle$ Hypothesis refinement
for $\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{Leaves}(\mathcal{H}) \mathbf{d o}$
$\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]$
$W:=W \cup \mathcal{H}^{\prime}$
return \perp

```

\section*{Synthesis Algorithm}
```

procedure $\operatorname{SYNTHESIZE}(\mathcal{E}, \Lambda)$
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}: \mathrm{tb} \mathrm{l}\right\}$
\triangleright Init worklist
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;
\triangleright No contradiction
for $\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)$ do
$\mathcal{P}:=\operatorname{Fillsketch}(\mathcal{S}, \mathcal{E})$
for $p \in \mathcal{P}$ do
if $\operatorname{CHECK}(p, \mathcal{E})$ then return p
refine: $\quad \triangleright$ Hypothesis refinement
for $\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}:\right.$ tbl $) \in \operatorname{Leaves}(\mathcal{H})$ do
$\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]$
$W:=W \cup \mathcal{H}^{\prime}$
return \perp

```

Explain algorithm in terms of its input/output

\section*{Synthesis Algorithm}
```

procedure SYNTHESIZE(\mathcal{E},\Lambda)
input: Input-output example }\mathcal{E}\mathrm{ and components }
output: Synthesized program or }\perp\mathrm{ if failure
W := {?0:t.bl}
\triangleright ~ I n i t ~ w o r k l i s t ~
while }W\not=\emptyset\mathrm{ do
choose }\mathcal{H}\inW\mathrm{ ;
W:=W\{\mathcal{H}}
if \operatorname{Deduce}(\mathcal{H},\mathcal{E})=\perp\mathrm{ then }\quad\triangleright\mathrm{ Contradiction}
goto refine;
No contradiction
for }\mathcal{S}\in\operatorname{Sketches}(\mathcal{H},\mp@subsup{\mathcal{E}}{in}{})\mathrm{ do
P := Fillsketch(\mathcal{S},\mathcal{E})
for }p\in\mathcal{P}\mathrm{ do
if CHECK}(p,\mathcal{E})\mathrm{ then return }
refine: }\triangle\mathrm{ Hypothesis refinement
for \mathcal{X}\in\mp@subsup{\Lambda}{\top}{},(?, (?: tbl) \in Leaves(\mathcal{H}) do
\mathcal{H}
W:=W\cup\mathcal{H}
return \perp

```
                                Explain each step in an organized way

\section*{Synthesis Algorithm}
```

procedure SYNTHESIZE(\mathcal{E}, Λ)
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}:\right.$ t.bl $\}$
$>$ Init worklist
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;
\triangleright No contradiction
for $\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)$ do
$\mathcal{P}:=\operatorname{FilLsketch}(\mathcal{S}, \mathcal{E})$
for $p \in \mathcal{P}$ do
if $\operatorname{CHECK}(p, \mathcal{E})$ then return p
refine: $\quad \triangleright$ Hypothesis refinement
for $\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{Leaves}(\mathcal{H}) \mathbf{d o}$
$\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]$
$W:=W \cup \mathcal{H}^{\prime}$
return \perp

```

\section*{Synthesis Algorithm}
```

procedure SYNTHESIZE(\mathcal{E},\Lambda)
input: Input-output example }\mathcal{E}\mathrm{ and components }
output: Synthesized program or }\perp\mathrm{ if failure
W:= {?0:t.bl}
\triangleright ~ I n i t ~ w o r k l i s t
while }W\not=\emptyset\mathrm{ do
choose \mathcal{H }\inW\mathrm{ ;}
W:=W\{\mathcal{H}}
if \operatorname{DEDUCE}(\mathcal{H},\mathcal{E})=\perp\mathrm{ then }\quad\triangleright\mathrm{ Contradiction}
goto refine;
No contradiction
for }\mathcal{S}\in\operatorname{Sketches}(\mathcal{H},\mp@subsup{\mathcal{E}}{in}{})\mathrm{ do
P := Fillsketch(\mathcal{S},\mathcal{E})
for }p\in\mathcal{P}\mathrm{ do
if }\operatorname{CHECK}(p,\mathcal{E})\mathrm{ then return }
refine: }\triangle\mathrm{ Hypothesis refinement
for \mathcal{X}\in\mp@subsup{\Lambda}{\textrm{T}}{},(?, (?: tbl) \in Leaves(\mathcal{H}) do
\mathcal{H}
W:=W\cup\mathcal{H}
return \perp

```

\section*{Synthesis Algorithm}
                        \(\triangleright\) No contradiction
        for \(\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)\) do
            \(\mathcal{P}:=\operatorname{Fillsketch}(\mathcal{S}, \mathcal{E})\)
            for \(p \in \mathcal{P}\) do
                if \(\operatorname{CHECK}(p, \mathcal{E})\) then return \(p\)
        refine: \(\quad \triangleright\) Hypothesis refinement
        for \(\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{Leaves}(\mathcal{H}) \mathbf{d o}\)
            \(\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]\)
            \(W:=W \cup \mathcal{H}^{\prime}\)
    return \(\perp\)
```

```
```

procedure $\operatorname{SYNTHESIZE}(\mathcal{E}, \Lambda)$

```
```

procedure $\operatorname{SYNTHESIZE}(\mathcal{E}, \Lambda)$
input: Input-output example \mathcal{E} and components Λ
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}:\right.$ t.bl $\}$
$W:=\left\{?_{0}:\right.$ t.bl $\}$
\triangleright Init worklist
\triangleright Init worklist
while $W \neq \emptyset$ do
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;

```
                goto refine;
```


Prune using deduction (discuss later)

In particular, "Deduce" procedure checks whether we can prune sketches corresponding to the hypothesis (but not the entire hypothesis)

Synthesis Algorithm

procedure $\operatorname{SYNTHESIZE}(\mathcal{E}, \Lambda)$
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}:\right.$ tbl $\}$
\triangleright Init worklist
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;
\triangleright No contradiction
for $\mathcal{S} \in \operatorname{SkETches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)$ do
$\mathcal{P}:=\operatorname{Fillsketch}(\mathcal{S}, \mathcal{E})$
for $p \in \mathcal{P}$ do
if $\operatorname{CHECK}(p, \mathcal{E})$ then return p
refine: $\quad \triangleright$ Hypothesis refinement
for $\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}:\right.$ tbl $) \in \operatorname{LEAVES}(\mathcal{H})$ do
$\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]$
$W:=W \cup \mathcal{H}^{\prime}$
return \perp

Synthesis Algorithm

procedure $\operatorname{SYNTHESIZE}(\mathcal{E}, \Lambda)$
input: Input-output example \mathcal{E} and components Λ
output: Synthesized program or \perp if failure
$W:=\left\{?_{0}:\right.$ tbl $\}$
while $W \neq \emptyset$ do
choose $\mathcal{H} \in W$;
$W:=W \backslash\{\mathcal{H}\}$
if $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp$ then $\quad \triangleright$ Contradiction
goto refine;
\triangleright No contradiction
for $\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)$ do
$\mathcal{P}:=\operatorname{Fillsketch}(\mathcal{S}, \mathcal{E})$
for $p \in \mathcal{P}$ do
if $\operatorname{CHECK}(p, \mathcal{E})$ then return p
refine: $\quad \triangleright$ Hypothesis refinement
for $\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{LEAVES}(\mathcal{H})$ do
$\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]$
$W:=W \cup \mathcal{H}^{\prime}$
return \perp

Synthesis Algorithm

```
procedure SYNTHESIZE( \(\mathcal{E}, \Lambda\) )
    input: Input-output example \(\mathcal{E}\) and components \(\Lambda\)
    output: Synthesized program or \(\perp\) if failure
    \(W:=\left\{?_{0}: \mathrm{tb} \mathrm{l}\right\}\)
    while \(W \neq \emptyset\) do
        choose \(\mathcal{H} \in W\);
        \(W:=W \backslash\{\mathcal{H}\}\)
        if \(\operatorname{DEdUCE}(\mathcal{H}, \mathcal{E})=\perp\) then \(\quad \triangleright\) Contradiction
                goto refine;
                \(\triangleright\) No contradiction
        for \(\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)\) do
            \(\mathcal{P}:=\operatorname{FiLLSKETCH}(\mathcal{S}, \mathcal{E})\)
            for \(p \in \mathcal{P}\) do
                if \(\operatorname{CHECK}(p, \mathcal{E})\) then return \(p\)
        refine: \(\quad \triangleright\) Hypothesis refinement
        for \(\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{Leaves}(\mathcal{H})\) do
            \(\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]\)
            \(W:=W \cup \mathcal{H}^{\prime}\)
    return \(\perp\)
```


Deduction

```
procedure SYNTHESIZE( \(\mathcal{E}, \Lambda\) )
    input: Input-output example \(\mathcal{E}\) and components \(\Lambda\)
    output: Synthesized program or \(\perp\) if failure
    \(W:=\left\{?_{0}:\right.\) tbl \(\}\)
        \(\triangleright\) Init worklist
    while \(W \neq \emptyset\) do
        choose \(\mathcal{H} \in W\);
        \(W:=W \backslash\{\mathcal{H}\}\)
        if \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})=\perp\) then \(\quad \triangleright\) Contradiction
        goto refine;
                        \(\triangleright\) No contradiction
        for \(\mathcal{S} \in \operatorname{Sketches}\left(\mathcal{H}, \mathcal{E}_{i n}\right)\) do
            \(\mathcal{P}:=\operatorname{FilLsketch}(\mathcal{S}, \mathcal{E})\)
            for \(p \in \mathcal{P}\) do
                if \(\operatorname{CHECK}(p, \mathcal{E})\) then return \(p\)
        refine: \(\quad \triangleright\) Hypothesis refinement
        for \(\mathcal{X} \in \Lambda_{\mathrm{T}},\left(?_{i}: \mathrm{tbl}\right) \in \operatorname{Leaves}(\mathcal{H}) \mathbf{d o}\)
            \(\mathcal{H}^{\prime}:=\mathcal{H}\left[?_{j}^{\mathcal{X}}\left(?_{j}: \vec{\tau}\right) / ?_{i}\right]\)
            \(W:=W \cup \mathcal{H}^{\prime}\)
    return \(\perp\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
2: input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
    3: \(\quad\) output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
    4: \(\quad \mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
    5: \(\quad \varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
    6: \(\quad \varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
    7: \(\quad \psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
    8: \(\quad\) return \(\operatorname{SAT}(\psi)\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{Deduce}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\bigwedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E} ; \top\) otherwise
    4: \(\quad \mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
    5: \(\quad \varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
    6: \(\quad \varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))\)
    7: \(\quad \psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
    8: return \(\operatorname{SAT}(\psi)\)
```

S is set of table-typed leaf nodes in H

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
```

Algorithm 2 SMT-based Deduction Algorithm

```
```

Algorithm 2 SMT-based Deduction Algorithm
1: procedure $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})$
1: procedure $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})$
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with $\mathcal{E} ; \top$ otherwise
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with $\mathcal{E} ; \top$ otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\begin{array}{ll}\text { 4: } & \mathcal{S}:=\left\{?_{j} \mid ?_{j}: \text { tbl } \in \text { LEAVES }\right. \\ \text { 5: } & \varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\end{array}$
$\begin{array}{ll}\text { 4: } & \mathcal{S}:=\left\{?_{j} \mid ?_{j}: \text { tbl } \in \text { LEAVES }\right. \\ \text { 5: } & \varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\end{array}$
6: $\quad \varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))$
6: $\quad \varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))$
7: $\quad \psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{i n}}\left(\alpha\left(\mathrm{~T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
7: $\quad \psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{i n}}\left(\alpha\left(\mathrm{~T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
8: return $\operatorname{SAT}(\psi)$

```
```

 8: return \(\operatorname{SAT}(\psi)\)
    ```
```

x_{i} is the i th table in input example $E_{\text {in }}$ is all input tables in input example $\varphi_{i n}$ essentially encodes all possible sketches (recall: table-typed leaf nodes in sketch must be concrete)

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{Deduce}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
    6: \(\quad \varphi_{\text {out }}:=(y=\operatorname{ROOTVAR}(\mathcal{H}))\)
7: \(\quad \psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
    return \(\operatorname{SAT}(\psi)\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{Deduce}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
            \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
            \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\bigwedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
            return \(\operatorname{SAT}(\psi)\)
```

Compose constraints to form constraint of entire program

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{Deduce}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
            \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
            \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
            return \(\operatorname{SAT}(\psi)\)
```

Constraint for table-typed leaf nodes

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
            \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
            \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
            return \(\operatorname{SAT}(\psi)\)
```

Constraint for output of entire program

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    1: procedure \(\operatorname{Deduce}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
            \(\varphi_{\text {out }}:=(y=\operatorname{Rootvar}(\mathcal{H}))\)
            \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\bigwedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
            return \(\operatorname{SAT}(\psi)\)
```


Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
            output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
            \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
            \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
            \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
            \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
            return \(\operatorname{SAT}(\psi)\)
```

Constraint for hypothesis

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
Algorithm 2 SMT-based Deduction Algorithm
    : procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
            input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{ParTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\mathrm{T} \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$ |

Constraint for hypothesis

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
```

Algorithm 2 SMT-based Deduction Algorithm

```
```

Algorithm 2 SMT-based Deduction Algorithm
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

```
```

 return \(\operatorname{SAT}(\psi)\)
    ```
```

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{T} \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \vec{x}_{i}\right]$

Leaf nodes (base case)

Constraint for hypothesis

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
```

Algorithm 2 SMT-based Deduction Algorithm

```
```

Algorithm 2 SMT-based Deduction Algorithm
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

```
```

 return \(\operatorname{SAT}(\psi)\)
    ```
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRtIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\top \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \vec{x}_{i}\right]$ |

Concrete program (base case)
Execute, produce a concrete output table, abstract output table using abstraction function α

Constraint for hypothesis

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
```

Algorithm 2 SMT-based Deduction Algorithm

```
```

Algorithm 2 SMT-based Deduction Algorithm
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

```
```

 return \(\operatorname{SAT}(\psi)\)
    ```
```

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PartiAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{T} \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$

Make use of "partial evaluation"

Constraint for hypothesis

Deduction

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{T} \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, \overrightarrow{?_{i}} / \overrightarrow{x_{i}}\right]$

Partial evaluation of H_{i}
Idea: if some sub-program in H_{i} is already concrete, evaluate it to a concrete table

Deduction

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{T} \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$

Partial evaluation of H_{i}
Idea: if some sub-program in H_{i} is already concrete, evaluate it to a concrete table

$$
\begin{gathered}
\llbracket\left(?_{i}: \tau\right) \rrbracket_{\partial}=?_{i} \\
\llbracket ?_{i}^{\chi}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right) \rrbracket_{\partial}=\left\{\left(?_{i}: \tau\right) @(x, \mathrm{~T}) \rrbracket_{\partial}=\mathrm{T}\right. \\
\mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) \\
\llbracket \mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) \rrbracket \\
\text { if } \exists i \in[1, n] . \text { otherwise }
\end{gathered}
$$

Deduction

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{else}$ if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$

Partial evaluation of H_{i}

Idea: if some sub-program in H_{i} is already concrete, evaluate it to a concrete table

If can be concrete, be concrete (base case)

$\llbracket\left(?_{i}: \tau\right) \rrbracket_{\partial}=?_{i}$
$\llbracket ?_{i}^{\chi}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right) \rrbracket_{\partial}=\left\{\begin{array}{cl}\mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket(x, \mathrm{~T}) \rrbracket_{\partial}=\mathrm{T}\right. \\ \llbracket \mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{\partial} \rrbracket_{\partial}\right) \rrbracket & \text { if } \exists i \in[1, n] . \text { PARTIAL }\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\ \text { otherwise }\end{array}\right.$

Deduction

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{else}$ if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$

Partial evaluation of H_{i}

Idea: if some sub-program in H_{i} is already concrete, evaluate it to a concrete table

If cannot be concrete, keep holes (base case)

$$
\begin{gathered}
\llbracket\left(?_{i}: \tau\right) \rrbracket_{\partial}=?_{i} \\
\llbracket ?_{i}^{\chi}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right) \rrbracket_{\partial}=\left\{\begin{array}{cl}
\llbracket\left(?_{i}: \tau\right) @(x, \mathrm{~T}) \rrbracket_{\partial}=\mathrm{T} & \llbracket\left(?_{i}: \tau\right) @ t \rrbracket_{\partial}=t \\
\mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) & \text { if } \exists i \in[1, n] . \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\llbracket\left(\left[\mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) \rrbracket\right. & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Deduction

$\Phi\left(\mathcal{H}_{i}\right)$	$=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$
$\Phi\left(\mathcal{H}_{i}\right)$	$=\mathrm{else}$ if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$
$\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$	$=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$

Partial evaluation of H_{i}

Idea: if some sub-program in H_{i} is already concrete, evaluate it to a concrete table

$$
\begin{array}{cll}
\llbracket\left(?_{i}: \tau\right) \rrbracket_{\partial}=?_{i} & \llbracket\left(?_{i}: \tau\right) @(x, \mathrm{~T}) \rrbracket_{\partial}=\mathrm{T} & \llbracket\left(?_{i}: \tau\right) @ t \rrbracket_{\partial}=t \\
\llbracket ?_{i}^{\chi}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right) \rrbracket_{\partial}= \begin{cases}\mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) & \text { if } \exists i \in[1, n] . \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\llbracket \mathcal{X}\left(\llbracket \mathcal{H}_{1} \rrbracket_{\partial}, \ldots, \llbracket \mathcal{H}_{n} \rrbracket_{\partial}\right) \rrbracket & \text { otherwise }\end{cases}
\end{array}
$$

Recursive case

Deduction

- Given hypothesis H, generate SMT formula that corresponds to sketches of H, and check against example

```
```

Algorithm 2 SMT-based Deduction Algorithm

```
```

Algorithm 2 SMT-based Deduction Algorithm
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
input: Hypothesis \mathcal{H}, input-output example \mathcal{E}
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
output: \perp if cannot be unified with \mathcal{E}; \rceil otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

```
```

 return \(\operatorname{SAT}(\psi)\)
    ```
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\mathrm{T}$ |
| else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ | |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$ |

Subtree (recursive case)
Use specification for operator, need renaming

Constraint for hypothesis

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```


$$
\begin{array}{|clc|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if ISLEAF }\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \vec{x}_{i}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

70 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E} ; ~ T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1<i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

$$
\begin{array}{|cl|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{ParTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

71 Input Example

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure Deduce $(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3: | output: \perp if cannot be unified with \mathcal{E}; \top otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5: | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6: | $\varphi_{\text {out }}:=(y=\operatorname{Rootvar}(\mathcal{H})$) |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| | return $\operatorname{SAT}(\psi)$ |

72 Input Example

$$
\begin{array}{|cl|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{ParTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \\
\text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \vec{x}_{i}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

Output Example

$$
y=?_{0}
$$

$$
?_{3}=x_{1}
$$

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{DEduce}(\mathcal{H}, \mathcal{E})$ | |
| 2: | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3: | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5: | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6: | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H})$) |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| | return $\operatorname{SAT}(\psi)$ |

73 Input Example

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \vec{x}_{i}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

Output Example

$$
y=?_{0}
$$

$$
?_{3}=x_{1}
$$

1

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\top\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq \leq \mathcal{E}_{i n} \mid}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\bigwedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\top \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$ |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

74 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

$$
\begin{array}{|cl}
\Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if ISLEAF }\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

75 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\top \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$ |

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \text { col }=4 \text { ^ } y . \text { row }=2 \wedge y . c o l=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

76 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

77 Input Example

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

$$
?_{3}=x_{1}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot r o w=2 \wedge y \cdot \operatorname{col}=4
$$

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

$$
\begin{array}{cl}
\Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \mathrm{col}=4 \text { ^ y. row }=2 \wedge y . \mathrm{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

78 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket{ }_{\partial}\right)\left[?_{i} / x\right]$ if $\neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right)$ |
| :---: | :--- |
| $\Phi\left(\mathcal{H}_{i}\right)$ | $=\top \quad$ else if $\operatorname{ISLEAF}\left(\mathcal{H}_{i}\right)$ |
| $\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right)$ | $=\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]$ |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

79 Input Example

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} . \operatorname{col}
\end{gathered}
$$

$$
?_{3}=x_{1}
$$

$$
x_{1} \cdot \operatorname{row}=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot r o w=2 \wedge y \cdot \operatorname{col}=4
$$

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(T\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
        return \(\operatorname{SAT}(\psi)\)
```

$$
\begin{array}{|clc|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

80 Input Example

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| $3:$ | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid{ }^{\prime}{ }_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| $5:$ | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6: | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$ |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| 8: | return $\operatorname{SAT}(\psi)$ |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \text { row } \wedge ?_{0} \cdot \mathrm{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; \top otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \\
\text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \mathrm{col}=4 \text { 人 } y . \text { row }=2 \wedge y \cdot \mathrm{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$ | |
| 2: | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| $3:$ | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid{ }^{\prime}{ }_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| $5:$ | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6: | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H})$) |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| 8: | return $\operatorname{SAT}(\psi)$ |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; T otherwise
$\wedge ?_{1} \cdot \operatorname{col}=?_{3} \cdot \operatorname{col} ?_{?_{1}}^{?_{1}^{\sigma}: \text { tbl }}$

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot \text { row }=2 \wedge y \cdot \operatorname{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3: | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid{ }^{\prime}{ }_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5. | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6 : | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$ |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| 8: | return $\operatorname{SAT}(\psi)$ |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; T otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

$$
\begin{array}{|cll}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} & \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \mathrm{col}=4 \text { ^ y. row }=2 \wedge y . \mathrm{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{Deduce}(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3: | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid{ }^{\prime}{ }_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5. | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6 : | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$ |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| 8: | return $\operatorname{SAT}(\psi)$ |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; \top otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

$$
\begin{array}{|clc|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right] \\
\hline
\end{array}
$$

$$
x_{1} \cdot r o w=3 \wedge x_{1} \cdot c o l=4 \wedge y . r o w=2 \wedge y . c o l=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

84 Input Example

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure DEduce $(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3: | output: \perp if cannot be unified with \mathcal{E}; \top otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid{ }_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5 : | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6 : | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$ |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| | return SAT (ψ) |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; T otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PaRTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \\
\text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot r o w=2 \wedge y \cdot \operatorname{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |
| Output Example | | | |

85 Input Example

Use an Example to Explain Deduction

| Algorithm 2 SMT-based Deduction Algorithm | |
| :---: | :---: |
| 1: procedure $\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})$ | |
| 2 : | input: Hypothesis \mathcal{H}, input-output example \mathcal{E} |
| 3 : | output: \perp if cannot be unified with \mathcal{E}; T otherwise |
| 4: | $\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$ |
| 5: | $\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq\left\|\mathcal{E}_{i n}\right\|}\left(?_{j}=x_{i}\right)$ |
| 6 : | $\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$ |
| | $\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$ |
| | return $\operatorname{SAT}(\psi)$ |

$$
\begin{gathered}
y=?_{0} \\
?_{0} \cdot \text { row }=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \mathrm{col}
\end{gathered}
$$

input: Hypothesis \mathcal{H}, input-output example \mathcal{E} output: \perp if cannot be unified with \mathcal{E}; \top otherwise
$\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.$ tbl $\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}$
$\varphi_{i n}:=\bigwedge_{?_{j} \in \mathcal{S}} \bigvee_{1 \leq i \leq \leq \mathcal{E}_{i n} \mid}\left(?_{j}=x_{i}\right)$
$\varphi_{\text {out }}:=(y=\operatorname{RootvaR}(\mathcal{H}))$
$\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}$
return $\operatorname{SAT}(\psi)$

$$
\begin{array}{|cl}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket \partial\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\mathrm{T} \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

$$
x_{1} \cdot \text { row }=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot r o w=2 \wedge y \cdot \operatorname{col}=4
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

Where do we use partial evaluation?

86 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
8: return \(\operatorname{SAT}(\psi)\)
```

 \(\wedge x_{1} \cdot r o w=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot r o w=2 \wedge y \cdot \operatorname{col}=4\)
 $$
\begin{aligned}
& ?_{1} \cdot \operatorname{row}<?_{3} \cdot \operatorname{row} \wedge ?_{1} \cdot \operatorname{col}=?_{3} \cdot \operatorname{col} \\
& \wedge ?_{0} \cdot \operatorname{row}=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \operatorname{col}
\end{aligned} \wedge ?_{3}=x_{1} \quad \wedge y=?_{0}
$$

$$
x_{1} \cdot r o w=3 \wedge x_{1} \cdot c o l=4 \wedge y \cdot r o w=2 \wedge y \cdot c o l=4
$$

$$
\begin{array}{|clc|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if } \operatorname{ISLEAF}\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

Output Example

87 Input Example

Use an Example to Explain Deduction

```
Algorithm 2 SMT-based Deduction Algorithm
    procedure \(\operatorname{DEDUCE}(\mathcal{H}, \mathcal{E})\)
        input: Hypothesis \(\mathcal{H}\), input-output example \(\mathcal{E}\)
        output: \(\perp\) if cannot be unified with \(\mathcal{E}\); \(\rceil\) otherwise
        \(\mathcal{S}:=\left\{?_{j} \mid ?_{j}:\right.\) tbl \(\left.\in \operatorname{LEAVES}(\mathcal{H})\right\}\)
        \(\varphi_{i n}:=\bigwedge_{?, j \in \mathcal{S}} \bigvee_{1 \leq i \leq\left|\mathcal{E}_{i n}\right|}\left(?_{j}=x_{i}\right)\)
        \(\varphi_{\text {out }}:=(y=\operatorname{RoOTVAR}(\mathcal{H}))\)
        \(\psi:=\binom{\Phi(\mathcal{H}) \wedge \varphi_{\text {in }} \wedge \varphi_{\text {out }} \wedge}{\wedge_{\mathrm{T}_{i} \in \mathcal{E}_{\text {in }}}\left(\alpha\left(\mathrm{T}_{i}\right)\left[x_{i} / x\right]\right) \wedge \alpha\left(\mathrm{T}_{\text {out }}\right)[y / x]}\)
```

UNSAT

$$
\begin{gathered}
?_{1} \cdot \operatorname{row}<?_{3} \cdot \operatorname{row} \wedge ?_{1} \cdot \operatorname{col}=?_{3} \cdot \operatorname{col} \\
\wedge ?_{0} \cdot \operatorname{row}=?_{1} \cdot \operatorname{row} \wedge ?_{0} \cdot \operatorname{col}<?_{1} \cdot \operatorname{col} \wedge ?_{3}=x_{1} \wedge y=?_{0} \\
\wedge x_{1} \cdot \operatorname{row}=3 \wedge x_{1} \cdot \operatorname{col}=4 \wedge y \cdot \operatorname{row}=2 \wedge y \cdot \operatorname{col}=4
\end{gathered}
$$

$$
\begin{array}{|clc|}
\hline \Phi\left(\mathcal{H}_{i}\right) & =\alpha\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right)\left[?_{i} / x\right] \text { if } \neg \operatorname{PARTIAL}\left(\llbracket \mathcal{H}_{i} \rrbracket_{\partial}\right) \\
\Phi\left(\mathcal{H}_{i}\right) & =\top \quad \text { else if ISLEAF }\left(\mathcal{H}_{i}\right) \\
\Phi\left(?_{0}^{\mathcal{X}}\left(\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right)\right) & =\bigwedge_{1 \leq i \leq n} \Phi\left(\mathcal{H}_{i}\right) \wedge \phi_{\chi}\left[?_{0} / y, ?_{i} / \overrightarrow{x_{i}}\right]
\end{array}
$$

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 1 | Alice | 8 | 4.0 |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

| id | name | age | GPA |
| :---: | :---: | :---: | :---: |
| 2 | Bob | 18 | 3.2 |
| 3 | Tom | 12 | 3.0 |

Output Example

88 Input Example

Sketch Completion

```
: procedure SYNTHESIZE (\mathcal{E},\Lambda)
    input: Input-output example }\mathcal{E}\mathrm{ and components }
    output: Synthesized program or }\perp\mathrm{ if failure
    W : = \{ ? _ { 0 } : \mathrm { tbl } \} \quad \triangleright ~ I n i t ~ w o r k l i s t
    while }W\not=\emptyset\mathrm{ do
        choose \mathcal{H}\inW;
        W:=W\{\mathcal{H}}
        if DEDUCE}(\mathcal{H},\mathcal{E})=\perp\mathrm{ then }\quad\triangleright\mathrm{ Contradiction
            goto refine;
                \triangleright ~ N o ~ c o n t r a d i c t i o n ~
        for }\mathcal{S}\in\operatorname{Sketches}(\mathcal{H},\mp@subsup{\mathcal{E}}{in}{})\mathrm{ do
                \mathcal { P } : = \operatorname { F i l l s k e t c h ( S , \mathcal { E } }
        for }p\in\mathcal{P}\mathrm{ do
            if CHECK}(p,\mathcal{E})\mathrm{ then return }
        refine: }\quad\mathrm{ Hypothesis refinement
        for }\mathcal{X}\in\mp@subsup{\Lambda}{\textrm{T}}{},(\mp@subsup{?}{i}{}:\mathrm{ : tbl ) }\in\operatorname{LEAVES}(\mathcal{H})\mathrm{ do
        \mathcal{H}
        W:=W\cup\mathcal{H}
    return \perp
```


Sketch Completion

- Given a sketch, fill holes with value transformers

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

- To fill ? ${ }_{4}$, need to know table $?_{3}$

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

- To fill ? ${ }_{4}$, need to know table ? ${ }_{3}$
- To fill $?_{2}$, need to know intermediate table at $?_{1}$

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

- To fill ? ${ }_{4}$, need to know table ? ${ }_{3}$
- To fill ? ${ }_{2}$, need to know intermediate table at $?_{1}$
- We want: fill $?_{4}$ first, then $?_{2}$

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

- To fill ? ${ }_{4}$, need to know table ? ${ }_{3}$
- To fill ? ${ }_{2}$, need to know intermediate table at $?_{1}$
- We want: fill $?_{4}$ first, then $?_{2}$
- Be "bottom-up" to leverage partial evaluation

Sketch Completion

- Given a sketch, fill holes with value transformers
- Table-driven type inhabitation
- Make sure enumerate only (sub-)programs that are well-typed

- Skip details
- To fill ? ${ }_{4}$, need to know table $?_{3}$
- To fill ? ${ }_{2}$, need to know intermediate table at $?_{1}$
- We want: fill $?_{4}$ first, then $?_{2}$
- Be "bottom-up" to leverage partial evaluation

Synthesis Algorithm Recap

- Initial hypothesis is a hole

Synthesis Algorithm Recap

- Initial hypothesis is a hole
- Pruning: consider sketches corresponding to hypothesis

Synthesis Algorithm Recap

- Initial hypothesis is a hole
- Pruning: consider sketches corresponding to hypothesis
- Can prune: refine hypothesis

Synthesis Algorithm Recap

- Initial hypothesis is a hole
- Pruning: consider sketches corresponding to hypothesis
- Can prune: refine hypothesis
- Can't prune: convert to sketches, complete sketches, if program found, return; otherwise, refine hypothesis

Use N-gram Models for Search Prioritization

- Not a major contribution of this paper: application of standard technique
- Implementation section

> Recall from Section 5 that MORPHEUS uses a cost model for picking the "best" hypothesis from the worklist. Inspired by previous work on code completion [28], we use a cost model based on a statistical analysis of existing code. Specifically, MORPHEUS analyzes existing code snippets that use components from Λ_{\top} and represents each snippet as a 'sentence' where 'words' correspond to components in Λ_{T}. Given this representation, MORPHEUS uses the 2-gram model in SRILM [34] to assign a score to each hypothesis. Specifically, we train our language model by collecting approximately 15,000 code snippets from Stackoverflow using the search keywords tidyr and dplyr. For each code snippet, we ignore its control flow and represent it using a "sentence" where each "word" corresponds to an API call. Based on this training data, the hypotheses in the worklist W from Algorithm 1 are then ordered using the scores obtained from the n-gram model.

How To Present A Research Paper?

- What's the problem? Why is it important?
- Why is the problem challenging?
- How does the paper solve the problem? What's the key idea?
- Explain technique in more detail
- Evaluation
- Related work

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?
- Ablation study
- How much does SMT-based deduction help?
- How much does partial evaluation help?
- How much does n-gram model help?

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?
- Ablation study
- How much does SMT-based deduction help?
- How much does partial evaluation help?
- How much does n-gram model help?
- Comparison against baselines
- Comparison against λ^{2} [1]
- Comparison against SQLSynthesizer [2]

Evaluation

- Benchmarks
- 80 data preparation tasks in R from StackOverflow
- 20 components from tidyr and dplyr packages

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?
- Ablation study
- How much does SMT-based deduction help?
- How much does partial evaluation help?
- How much does n-gram model help?
- Comparison against baselines
- Comparison against λ^{2} [1]
- Comparison against SQLSynthesizer [2]

Evaluate Morpheus

Evaluate Morpheus

| Category | Description | \# | | Spec 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Category | | | | \#Solved | Time |
| C1 | Reshaping dataframes from either "long" to "wide" or "wide" to "long" | 4 | | 4 | 6.70 |
| C2 | Arithmetic computations that produce values not present in the input tables | 7 | | 7 | 0.59 |
| C3 | Combination of reshaping and string manipulation of cell contents | 34 | | 34 | 1.63 |
| C4 | Reshaping and arithmetic computations | 14 | | 12 | 15.35 |
| C5 | Combination of arithmetic computations and consolidation of information from multiple tables into a single table | 11 | | 11 | 3.17 |
| C6 | Arithmetic computations and string manipulation tasks | 2 | Take-away: Morpheus can | | |
| C7 | Reshaping and consolidation tasks | 1 | | | |
| C8 | Combination of reshaping, arithmetic computations and string manipulation | 6 | solve almost all benchmarks within seconds | | |
| C9 | Combination of reshaping, arithmetic computations and consolidation | 1 | | | |
| | Total | 80 | | $\begin{gathered} 78 \\ (97.5 \%) \\ \hline \end{gathered}$ | 3.59 |

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?
- Ablation study
- How much does SMT-based deduction help?
- How much does partial evaluation help?
- How much does n-gram model help?
- Comparison against baselines
- Comparison against λ^{2} [1]
- Comparison against SQLSynthesizer [2]

Evaluate Usefulness of SMT-based Deduction

- Evaluate impact of different specifications on performance
- No spec
- Spec 1: less precise
- Spec 2: more precise

Evaluate Usefulness of SMT-based Deduction

- Evaluate impact of different specifications on performance
- No spec
- Spec 1: less precise
- Spec 2: more precise

Evaluate Usefulness of SMT-based Deduction

- Evaluate impact of different specifications on performance
- No spec
- Spec 1: less precise
- Spec 2: more precise

Take-away: more precise, better performance

Evaluate Usefulness of Partial Evaluation

- Evaluate impact of partial evaluation
- Spec 1: w/ and w/o PE
- Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

- Evaluate impact of partial evaluation
- Spec 1: w/ and w/o PE
- Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

- Evaluate impact of partial evaluation
- Spec 1: w/ and w/o PE
- Spec 2: w/ and w/o PE

Evaluate Usefulness of Partial Evaluation

- Evaluate impact of partial evaluation
- Spec 1: w/ and w/o PE
- Spec 2: w/ and w/o PE

Take-away: PE helps speed up search

Evaluate Usefulness of N-gram Model

- Evaluate impact of n-gram model
- No deduction, w/ and w/o n-gram model
- Spec 2, w/ and w/o n-gram model

Evaluate Usefulness of N-gram Model

- Evaluate impact of n-gram model
- No deduction, w/ and w/o n-gram model
- Spec 2, w/ and w/o n-gram model

Take-away: n-gram model helps speed up search

Evaluation

- Research questions
- How well does Morpheus work on real-world table transformation tasks?
- Ablation study
- How much does SMT-based deduction help?
- How much does partial evaluation help?
- How much does n-gram model help?
- Comparison against baselines
- Comparison against λ^{2} [1]
- Comparison against SQLSynthesizer [2]

Morpheus vs. λ^{2}

- λ^{2} solves 0 out of 80 benchmarks
- Because λ^{2} uses a DSL that's not tailored towards table transformations in R
- Take-away: having the right DSL (abstraction) is very important for synthesis!

Synthesizing Data Structure Transformations from Input-Output Examples*

John Feser
Rice University feser@rice.edu

Swarat Chaudhuri
Rice University
swarat@rice.edu

Isil Dillig
UT Austin
isil@cs.utexas.edu

Morpheus vs. SQLSynthesizer

- On 80 R benchmarks, 1 (SQLSynthesizer) vs. 78 (Morpheus)
- On 28 SQLSynthesizer benchmarks, 20 (SQLSynthesizer) vs. 27 (Morpheus)
- Morpheus technique is better than prior techniques

Summary

- What's the problem? Why is it important?
- High-level, use examples
- Why is the problem challenging?
- High-level, use examples
- How does the paper solve the problem? What's the key idea?
- One single key idea
- More detail, still relatively high-level, use examples
- Explain technique in more detail
- Great detail, organized, use examples
- Evaluation
- Summarize results and take-aways

