
Lecture 7

EECS 598-008 & EECS 498-008:
Intelligent Programming Systems

Announcements

• CFPP out, due midnight Tuesday September 28

• How paper assignment, review, presentaHon work

• 0 points in final grade but very important

• Create HotCRP account

• Submit your paper presenta7on preferences

• Live, remote discussion 3-4pm Friday September 24

• Zoom link on course website

• Discuss A2 (due midnight September 27)

• Course survey (sent in Slack channel)

• Used to improve the course

• Everyone gets 1 extra point if >80% of the class take it
2

Today’s Agenda

• Pruning (review)

• Search prioriHzaHon

3

Previous Lecture
• SMT-based deducHon to prune parHal programs in top-down search

• Goal: speed up search

• Prune space of programs without exploring the space

4

Previous Lecture
• SMT-based deducHon to prune parHal programs in top-down search

• Goal: speed up search

• Prune space of programs without exploring the space

• Idea: given a parHal program, encode it as an SMT formula, check SAT

• If SAT: cannot prune away parHal program

• If UNSAT: no need to explore concrete programs derived from parHal program

5

SMT-based Pruning

6

• Step 1: define abstract semanHcs of each DSL operator in SMT

SMT-based Pruning

7

• Step 1: define abstract semanHcs of each DSL operator in SMT

• Step 2: given parHal program P, generate an SMT formula that encodes abstract
behavior of P

ϕP

SMT-based Pruning

8

• Step 1: define abstract semanHcs of each DSL operator in SMT

• Step 2: given parHal program P, generate an SMT formula that encodes abstract
behavior of P

• Step 3: encode input-output example as SMT formula

ϕP

ϕE

SMT-based Pruning

9

• Step 1: define abstract semanHcs of each DSL operator in SMT

• Step 2: given parHal program P, generate an SMT formula that encodes abstract
behavior of P

• Step 3: encode input-output example as SMT formula

• Step 4: SAT()

ϕP

ϕE

ϕP ∧ ϕE

SMT-based Pruning

10

e ::= x | c | e + e | e − e c ::= 1 | 2 | ⋯ | 10

1 ≤ y ≤ 10 y = x1 + x2
y = x1 − x2

y = x1

Example: 5 —> 20

• Step 1: define abstract semanHcs of each DSL operator in SMT

SMT-based Pruning

11

• Step 2: given parHal program P, generate an SMT formula that encodes abstract
behavior of P

ϕP

ϕP : (y1 = x) ∧ (1 ≤ y2 ≤ 10) ∧ (y = y1 − y2)

−

x c
y = x1 1 ≤ y ≤ 10

y = x1 − x2

SMT-based Pruning

12

• Step 3: encode input-output example as SMT formula ϕE

ϕE : (x = 5) ∧ (y = 20)

SMT-based Pruning

13

• Step 4: SAT() ϕP ∧ ϕE

ϕP ∧ ϕE : (y1 = x) ∧ (1 ≤ y2 ≤ 10) ∧ (y = y1 − y2) ∧ (x = 5) ∧ (y = 20)

SMT-based Pruning

14

• Step 4: SAT() ϕP ∧ ϕE

ϕP ∧ ϕE : (y1 = x) ∧ (1 ≤ y2 ≤ 10) ∧ (y = y1 − y2) ∧ (x = 5) ∧ (y = 20)

UNSAT

Top-Down Search Algorithm with DeducHon-based Pruning

15

Top-Down-Search (,):
worklist := { };
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
if (prune(AST)): con7nue; // Pruning
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Top-Down Search Algorithm with DeducHon-based Pruning

16

Top-Down-Search (,):
worklist := { };
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
if (prune(AST)): con7nue; // Pruning
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

• Pruning is sound: if pruned, it means there is no concrete program that can be derived
from the parHal program and that saHsfies the spec — we don’t miss anything

Top-Down Search Algorithm with DeducHon-based Pruning

17

Top-Down-Search (,):
worklist := { };
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
if (prune(AST)): con7nue; // Pruning
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

• Pruning is sound: if pruned, it means there is no concrete program that can be derived
from the parHal program and that saHsfies the spec — we don’t miss anything

• Pruning may be incomplete: if there is no program from the parHal program P that
saHsfies the spec, we may not be able to prune P — false alarms

Today’s Agenda

• Pruning (review)

• Search priori7za7on

18

Pruning Alone is Not Sufficient
• So far, mostly about pruning

• Which programs that we provably don’t need to inspect?

• Guarantee: not miss any programs that saHsfy the spec

19

Pruning Alone is Not Sufficient
• So far, mostly about pruning

• Which programs that we provably don’t need to inspect?

• Guarantee: not miss any programs that saHsfy the spec

• Top-down: prune “infeasible" (parHal) programs

• Bonom-up: prune “redundant” programs

20

Pruning Alone is Not Sufficient
• So far, mostly about pruning

• Which programs that we provably don’t need to inspect?

• Guarantee: not miss any programs that saHsfy the spec

• Top-down: prune “infeasible" (parHal) programs

• Bonom-up: prune “redundant” programs

• OqenHmes, pruning alone is not sufficient

• In addiHon to pruning, search order is also important

• Priori7ze search!

21

Search PrioriHzaHon
• Search prioriHzaHon: in what order do we search programs?

22

Search PrioriHzaHon
• Search prioriHzaHon: in what order do we search programs?

• Why do we need search prioriHzaHon?

• Accelera7on: speed up search to find a program that saHsfies the spec

• Generaliza7on: use fewer examples to find a program that saHsfies user intent

23

GeneralizaHon
• Does the synthesized program generalize to unseen examples?

24

GeneralizaHon
• Does the synthesized program generalize to unseen examples?

• For instance, consider

• What’s the intended program?

{2 ↦ 4, 3 ↦ 6}

25

GeneralizaHon
• Does the synthesized program generalize to unseen examples?

• For instance, consider

• What’s the intended program?

• Why do we need to generalize?

• Because inducHve specs are under-constrained

• Not focus on today’s lecture (but we’ll talk about this next week)

{2 ↦ 4, 3 ↦ 6}

26

Search PrioriHzaHon
• Search prioriHzaHon: in what order do we search programs?

• Why do we need search prioriHzaHon?

• Accelera7on: speed up search to find a program that saHsfies the spec

• Generaliza7on: use fewer examples to find a program that saHsfies user intent

• AcceleraHon and generalizaHon are not always orthogonal to each other

• Share techniques

• AcceleraHon may help generalizaHon and vice versa

27

Search PrioriHzaHon
• Search prioriHzaHon: in what order do we search programs?

• Why do we need search prioriHzaHon?

• Accelera7on: speed up search to find a program that saHsfies the spec

• Generaliza7on: use fewer examples to find a program that saHsfies user intent

• AcceleraHon and generalizaHon are not always orthogonal to each other

• Share techniques

• AcceleraHon may help generalizaHon and vice versa

• Today’s lecture

• Focus on acceleraHon

• Don’t differenHate acceleraHon and generalizaHon
28

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

29

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

30

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

31

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

32

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

33

…

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

34

…

… … …
Concrete program

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

35

…

… … …
Concrete program

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

36

…

… … …

Concrete program

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Idea 1: DFS-Style Search

37

…

… … …

Concrete program

Idea 1: DFS-Style Search

38

• ImplementaHon

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

Top-Down-Search (,):
worklist := { }; // Use a stack (first in last out)
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Idea 1: DFS-Style Search

39

• ImplementaHon

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

• Pros: simple, easy to implement

Idea 1: DFS-Style Search

40

• ImplementaHon

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

• What could go wrong?

• Pros: simple, easy to implement

Idea 1: DFS-Style Search

41

• ImplementaHon

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

• What could go wrong?

• Have to bound “depth” of each branch; otherwise, not terminate

• Pros: simple, easy to implement

Idea 1: DFS-Style Search

42

• ImplementaHon

• Idea: exhausHvely search “one branch”, then backtrack and go to another branch

• What could go wrong?

• Have to bound “depth” of each branch; otherwise, not terminate

• May miss simpler soluHons

• Pros: simple, easy to implement

43

• Idea 1: DFS-style

• Idea 2: BFS-style

Search PrioriHzaHon

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

44

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

45

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

46

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

47

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

48

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

49

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

50

• ImplementaHon

Top-Down-Search (,):
worklist := { }; // Use a queue (first in first out)
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

51

• ImplementaHon

• Pros

• PrioriHze based on program size: find simplest soluHon first

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

52

• ImplementaHon

• Pros

• PrioriHze based on program size: find simplest soluHon first

• Occam’s Razor: “the simplest explanaHon is usually the best one”

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

53

• ImplementaHon

• Pros

• PrioriHze based on program size: find simplest soluHon first

• Occam’s Razor: “the simplest explanaHon is usually the best one”

• PotenHal problems?

• Idea: simultaneously make progress on all branches

Idea 2: BFS-Style Search

54

• ImplementaHon

• Pros

• PrioriHze based on program size: find simplest soluHon first

• Occam’s Razor: “the simplest explanaHon is usually the best one”

• PotenHal problems?

• Treat all operators more or less equally

• But some operators may be less useful..

55

• Idea 1: DFS-style

• Idea 2: BFS-style

• Idea 3: Weighted search

Search PrioriHzaHon

Idea 3: Weighted Search

56

• Idea: different DSL operators have different weights

Idea 3: Weighted Search

57

• Idea: different DSL operators have different weights

• Higher weights: higher costs

• Cost of a program = “sum” of operator costs

• Find a program with smallest cost

Idea 3: Weighted Search

58

• Idea: different DSL operators have different weights

• Higher weights: higher costs

• Cost of a program = “sum” of operator costs

• Find a program with smallest cost

• ImplementaHon

Top-Down-Search (,):
worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Idea 3: Weighted Search

59

• ImplementaHon

• Need to define cost for par7al programs

Idea 3: Weighted Search

60

• ImplementaHon

• Need to define cost for par7al programs

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

, where is a grammar symbol
, where is a DSL operator

Cost(s) = int s
Cost(f) = int f
Cost(f(P1, …, Pn)) = g(Cost(f), Cost(P1), …, Cost(Pn))

Idea 3: Weighted Search

61

• ImplementaHon

• Need to define cost for par7al programs

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

, where is a grammar symbol
, where is a DSL operator

Cost(s) = int s
Cost(f) = int f
Cost(f(P1, …, Pn)) = g(Cost(f), Cost(P1), …, Cost(Pn))

• Cost funcHon definiHons are very flexible, but they are typically “composiHonal”

Idea 3: Weighted Search

62

• ImplementaHon

• Need to define cost for par7al programs

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

, where is a grammar symbol
, where is a DSL operator

Cost(s) = int s
Cost(f) = int f
Cost(f(P1, …, Pn)) = g(Cost(f), Cost(P1), …, Cost(Pn))

• Cost funcHon definiHons are very flexible, but they are typically “composiHonal”
• QuesHon: is it guaranteed to return a program with smallest cost?

Idea 3: Weighted Search

63

• ImplementaHon

• QuesHon: is it guaranteed to return a program with smallest cost?

Top-Down-Search (,):
worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Idea 3: Weighted Search

64

• ImplementaHon

• QuesHon: is it guaranteed to return a program with smallest cost?

• Or: how to design cost funcHon such that it’s guaranteed?

Top-Down-Search (,):
worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Idea 3: Weighted Search

65

• ImplementaHon

• QuesHon: is it guaranteed to return a program with smallest cost?

• Or: how to design cost funcHon such that it’s guaranteed?

• Here is one definiHon:

Top-Down-Search (,):
worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

 Cost(s) = 0 Cost(f) = 1 Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Symbol essenHally
corresponds to a “hole”
in a parHal program

s

Idea 3: Weighted Search

66

• ImplementaHon

• QuesHon: is it guaranteed to return a program with smallest cost?

• Or: how to design cost funcHon such that it’s guaranteed?

• Here is one definiHon:

Top-Down-Search (,):
worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

 Cost(s) = 0 Cost(f) = 1 Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)

• Why?

Idea 3: Weighted Search

67

• Consider: Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

• Why is smallest cost guaranteed?

Cost(f) = 1

Idea 3: Weighted Search

68

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

69

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

70

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

71

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

72

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Find parHal program in W from which can be derivedP′ ′ P′

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

73

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Find parHal program in W from which can be derivedP′ ′ P′

• Claim: Cost(P′ ′) ≤ Cost(P′)

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

74

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Find parHal program in W from which can be derivedP′ ′ P′

• Claim: Cost(P′ ′) ≤ Cost(P′)
• Claim: Cost(P) ≤ Cost(P′ ′)

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

75

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Find parHal program in W from which can be derivedP′ ′ P′

• Claim: Cost(P′ ′) ≤ Cost(P′)
• Claim: Cost(P) ≤ Cost(P′ ′)
• Claim: Cost(P) ≤ Cost(P′)

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

76

Top-Down-Search (,):

worklist := { }; // Use a priority queue (smallest cost first)
while (worklist is not empty):

AST := worklist.remove();

if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E• Why is smallest cost guaranteed?
• Proof by contradicHon
• Suppose we synthesized program using top-down searchP

TimeWorklist is W

P

• Suppose there exists concrete program such that P′ Cost(P′) < Cost(P)
• Claim: must not be in WP′

• Find parHal program in W from which can be derivedP′ ′ P′

• Claim: Cost(P′ ′) ≤ Cost(P′)
• Claim: Cost(P) ≤ Cost(P′ ′)
• Claim: Cost(P) ≤ Cost(P′)
• Contradic7on!

• Consider:

Cost(f(P1, …, Pn)) = Cost(f) + Cost(P1) + … + Cost(Pn)
Cost(s) = 0

Idea 3: Weighted Search

77

• Idea: different DSL operators have different weights

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

• ImplementaHon

• Pros

• more general than BFS/DFS

• Used by many synthesizers

Idea 3: Weighted Search

78

• Pros

• more general than BFS/DFS

• Used by many synthesizers

Idea 3: Weighted Search

79

• Pros

• more general than BFS/DFS

• Used by many synthesizers

Idea 3: Weighted Search

80

• Pros

• more general than BFS/DFS

• Used by many synthesizers

Idea 3: Weighted Search

81

• Pros

• more general than BFS/DFS

• Used by many synthesizers

Idea 3: Weighted Search

82

• Idea: different DSL operators have different weights

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

• ImplementaHon

• Pros

• more general than BFS/DFS

• Used by many synthesizers

• Cons?

Idea 3: Weighted Search

83

• Idea: different DSL operators have different weights

• Use cost funcHon (aka. ranking funcHon, scoring funcHon)

• ImplementaHon

• Pros

• more general than BFS/DFS

• Used by many synthesizers

• Cons?

• “cost” “program size”

• So, sHll find program with smallest “size”

• EssenHally sHll use “size” as proxy for “likelihood of saHsfying spec”

≈

84

• Idea 1: DFS-style

• Idea 2: BFS-style

• Idea 3: Weighted search

• Idea 4: Use staHsHcal models

Search PrioriHzaHon

Idea 4: Use StaHsHcal Models

85

• Idea: explore programs in the order of likelihood, instead of size

Idea 4: Use StaHsHcal Models

86

• Idea: explore programs in the order of likelihood, instead of size

• PrioriHze branches that are more likely to lead to correct programs

Idea 4: Use StaHsHcal Models

87

• Idea: explore programs in the order of likelihood, instead of size

• PrioriHze branches that are more likely to lead to correct programs

• Learn a staHsHcal (probabilisHc) model from a corpus of programs

• Likelihood of a branch is measured quanHtaHvely by the model

Idea 4: Use StaHsHcal Models

88

• Idea: explore programs in the order of likelihood, instead of size

• PrioriHze branches that are more likely to lead to correct programs

• Learn a staHsHcal (probabilisHc) model from a corpus of programs

• Likelihood of a branch is measured quanHtaHvely by the model

• ImplementaHon
Top-Down-Search (,):

worklist := { }; // Priority queue but costs are given by model
while (worklist is not empty):

AST := worklist.remove();
if (AST is complete & AST sa7sfies): return AST;
worklist.addAll(expand(AST));

(T, N, P, S) E
S

E

Idea 4: Use StaHsHcal Models

89

• Idea: explore programs in the order of likelihood, instead of size

• Learn a staHsHcal (probabilisHc) model from a corpus of programs
• ImplementaHon

• Key: learn a staHsHcal model from a corpus of programs

Idea 4: Use StaHsHcal Models

90

• ImplementaHon

• Key: learn a staHsHcal model from a corpus of programs

• Data:

• Models:

• Idea: explore programs in the order of likelihood, instead of size

• Learn a staHsHcal (probabilisHc) model from a corpus of programs

Idea 4: Use StaHsHcal Models

91

• ImplementaHon

• Key: learn a staHsHcal model from a corpus of programs

• Data:

• Programs wrinen by real-world users (e.g., from Github repos, MOOCs)

• SyntheHc data (e.g., programs from DSL)

• Models:

• Idea: explore programs in the order of likelihood, instead of size

• Learn a staHsHcal (probabilisHc) model from a corpus of programs

Idea 4: Use StaHsHcal Models

92

• ImplementaHon

• Key: learn a staHsHcal model from a corpus of programs

• Data:

• Programs wrinen by real-world users (e.g., from Github repos, MOOCs)

• SyntheHc data (e.g., programs from DSL)

• Models:

• N-gram models

• Neural networks

• Idea: explore programs in the order of likelihood, instead of size

• Learn a staHsHcal (probabilisHc) model from a corpus of programs

Use N-gram Models

93

• StaHsHcal Language Models

• Probability distribuHon over sentences in a language:

• Used in Natural Language Processing

Prob(s) for s ∈ L

Use N-gram Models

94

• StaHsHcal Language Models

• Probability distribuHon over sentences in a language:

• Used in Natural Language Processing

Prob(s) for s ∈ L

• Concept in computaHonal linguisHcs and probability

• An n-gram is a sequence of n items from a given sample of text or speech

• 1 item: unigram

• 2 items: bigram

• 3 items: trigram

• An n-gram model predicts the next item given the first n-1 items

• One can train such models from data

95

• The quick brown ? jumped.
• ? = Fox
• ? = Dog
• ? = Computer

Use N-gram Models

96

• The quick brown ? jumped
• ? = Fox
• ? = Dog
• ? = Computer

• 2-gram model predicts the next word based on the current word

Use N-gram Models

97

• The quick brown ? jumped
• ? = Fox
• ? = Dog
• ? = Computer

• 2-gram model predicts the next word based on the current word

• Model is trained from pairs of words (training data): <brown, fox>, <brown, dog>, ..

• If word preceding ? is a, fill the hole with word x, such that <a, x> is bigram in the
training data

Use N-gram Models

98

• Programs = Sentences

• Predict parts of program given other parts

Use N-gram Models

99

• Programs = Sentences

• Predict parts of program given other parts

• Idea first explored in SLANG for code compleHon (which is a form of program synthesis)

Use N-gram Models

SLANG

100

Input: incomplete code snippet

Output: completed code

AutomaHcally find
compleHons using
staHsHcal model

Use N-gram Models

101

• Idea first explored in SLANG for code compleHon (which is a form of program synthesis)

• Idea then applied in many program synthesizers such as Morpheus

Morpheus

102

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

Morpheus

103

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

Morpheus

104

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

• Data: StackOverflow

Morpheus

105

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

• Data: StackOverflow
• ParHal programs are ordered

according to the model

Morpheus

106

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

• Works well in pracHce

Morpheus

107

• Synthesize R programs from input-output examples

• Top-down search

• SMT-based deducHon for pruning

• 2-gram model for priori7za7on

• Works well in pracHce

• Discuss Morpheus next lecture

108

• Idea 1: DFS-style

• Idea 2: BFS-style

• Idea 3: Weighted search

• Idea 4: StaHsHcal models

• N-gram models

• Neural networks

Idea 4: Use StaHsHcal Models

Use Neural Nets

109

• Neural net: neurons connected to each other that collecHvely perform certain tasks

• Image recogniHon

• Language translaHon

• Medical diagnosis

• Etc.

Use Neural Nets

110

• Neural net: neurons connected to each other that collecHvely perform certain tasks

• Image recogniHon

• Language translaHon

• Medical diagnosis

• Etc.

• First train a net, then use it for predicHons

Use Neural Nets

111

• Idea first explored in DeepCoder

Use Neural Nets

112

• Idea first explored in DeepCoder
• First, given examples, neural net predicts “properHes” of desired programs

Input: examples

Likelihood of operators

Use Neural Nets

113

• Idea first explored in DeepCoder
• First, given examples, neural net predicts “properHes” of desired programs

• Then, use this informaHon to search

Input: examples

Likelihood of operators

Synthesized program

Use Neural Nets

114

• Idea first explored in DeepCoder

• Predict a distribuHon of properHes given examples , then search over
programs ordered by .

q(a |E) E
P q(A(P) |E)

Use Neural Nets

115

• Idea first explored in DeepCoder

• Predict a distribuHon of properHes given examples , then search over
programs ordered by .

• Training: Generate tuples where is a program, is a set of properHes, is
a set of examples

• SyntheHc data: first construct programs, then construct examples for programs

q(a |E) E
P q(A(P) |E)

(P, a, E) P a E

Use Neural Nets

116

• Idea first explored in DeepCoder

• Predict a distribuHon of properHes given examples , then search over
programs ordered by .

• Training: Generate tuples where is a program, is a set of properHes, is
a set of examples

• SyntheHc data: first construct programs, then construct examples for programs

q(a |E) E
P q(A(P) |E)

(P, a, E) P a E

117

• Idea 1: DFS-style

• Idea 2: BFS-style

• Idea 3: Weighted search

• Idea 4: StaHsHcal models

• N-gram models

• Neural networks

• Others (see resources from course schedule)

Idea 4: Use StaHsHcal Models

Summary

118

• Search prioriHzaHon

• DFS-style: have to use bound

• BFS-style: Occam’s razor

• Cost funcHon (ranking, scoring): more general

• StaHsHcal models: likelihood of saHsfying spec

