
Lecture 5

EECS 598-008 & EECS 498-008:
Intelligent Programming Systems

Announcements

• A1 due midnight Tuesday September 14 (today)
• A2 out today (due midnight Monday September 27)

• More challenging! Start early!
• Remote OH 3-4pm Friday September 17

• Z3 setup and tutorial (video recording released by Thursday), A2 (briefly)

2

ProposiRonal Logic Review

• Syntax
• proposiRonal variables, logical connecRves

• SemanRcs
• Evaluated under an interpretaRon

• SaRsfiability and validity
• Duality between saRsfiability and validity

• Deciding saRsfiability and validity
• Truth table method, semanRc argument method
• Automated solvers such as MicrosoX Z3

3

Agenda

• ProposiRonal Logic
• First-Order Logic

• First-Order Theories

4

First-Order Logic

5

• E.g.,

• FOL is more expressive than proposiRonal logic:
• More constants beyond only True and False, e.g., Jack, Apple, Blue, …
• FuncRons, e.g., MotherOf, ColorOf, …
• Predicates, e.g., Loves, BiggerThan, …
• QuanRfiers, e.g., “for all”, “there exists”
• Variables

∀x . P(x) ∧ Q(x)

First-Order Logic Syntax

6

• Basic building blocks
• Object constants (a, b, c, …)

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}

First-Order Logic Syntax

7

• Basic building blocks
• Object constants (a, b, c, …)

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}
• FuncHon constants (f, g, h, …)

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon

First-Order Logic Syntax

8

• Basic building blocks
• Object constants (a, b, c, …)

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}
• FuncHon constants (f, g, h, …)

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon

• RelaHon constants (p, q, r, …)
• RelaRons between objects, or properRes of objects, also called predicates
• E.g., Loves, IsBiggerThan
• Uninterpreted

First-Order Logic Syntax

9

• Basic building blocks
• Object constants (a, b, c, …)

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}
• FuncHon constants (f, g, h, …)

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon

• RelaHon constants (p, q, r, …)
• RelaRons between objects, or properRes of objects, also called predicates
• E.g., Loves, IsBiggerThan
• Uninterpreted

• Variables (x, y, z, …)
• These are “object variables”. They cannot refer to funcRons.

First-Order Logic Syntax

10

• Building blocks:
• Object constants
• FuncRon constants
• RelaRon constants
• Variables (x, y, z, …)

• First, use building blocks to create terms:
• Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y
• Compound terms: FuncRon constants applied to terms, e.g., MotherOf(Jack)

First-Order Logic Syntax

11

• Building blocks:
• Object constants
• FuncRon constants
• RelaRon constants
• Variables (x, y, z, …)

• First, use building blocks to create terms:
• Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y
• Compound terms: FuncRon constants applied to terms, e.g., MotherOf(Jack)

• Then, build formulas:
• Base case: RelaRon constant applied to terms, e.g., isOlder(motherOf(Jack), Jack)
• InducRve case:

• If are formulas, then is also formula ()

• If is formula, then are also formulas
• If is formula and is variable, then are also formulas

F1, F2 F1 ⋆ F2 ⋆ ∈ { ∧ , ∨ , → , ↔ }
F (F), ¬F
F x ∀x . F, ∃x . F

First-Order Logic Syntax

12

• Example:

• Object constants?

• FuncRon constants?

• RelaRon constants?

• Variables?

∀x . p(a, f(b)) ∧ q(x)

First-Order Logic Syntax

13

• Express the following sentence in FOL using funcRon constant size, relaRon constant
biggerThan.

 “For any , if is bigger than and is bigger than , then is bigger than .” x, y, z x y y z x z

First-Order Logic SemanRcs

14

• What truth value does a FOL formula evaluate to?

First-Order Logic SemanRcs

15

• What truth value does a FOL formula evaluate to?

• Similar to proposiRonal logic, need an interpretaCon
• In addiRon, also need universe of discourse (i.e., universe, domain)

• Universe of discourse

• Non-empty set of objects
• E.g., set of posiRve integers, all real numbers, all students in this class

• Object constants refer to objects in

• FuncRons/predicates are defined over

U

U
U

First-Order Logic SemanRcs

16

• First-order interpretaRon

• mapping from object, funcRon, relaRon constants to objects in universe

• E.g., consider:

•

• Object constants:

• Unary funcRon constants:

• Binary relaRon constant:

I U

U = {1,2,3,4}
a, b, c ∈ U

f : U → U

p ⊆ U2

First-Order Logic SemanRcs

17

• First-order interpretaRon

• mapping from object, funcRon, relaRon constants to objects in universe

• E.g., consider:

•

• Object constants:

• Unary funcRon constants:

• Binary relaRon constant:

• A possible interpretaRon:

I U

U = {1,2,3,4}
a, b, c ∈ U

f : U → U

p ⊆ U2

I(a) = 1,I(b) = 2,I(c) = 3 I(f) = {1 ↦ 2,2 ↦ 3,3 ↦ 4,4 ↦ 1}
I(p) = {⟨1,2⟩, ⟨3,4⟩}

First-Order Logic SemanRcs

18

• Now let’s define how to evaluate a FOL formula, under and U I

First-Order Logic SemanRcs

19

• Now let’s define how to evaluate a FOL formula, under and

• : evaluates to under

• : evaluates to under

• is defined inducRvely

U I

U, I ⊨ F F ⊤ U, I
U, I ⊭ F F ⊥ U, I

⊨

First-Order Logic SemanRcs

20

• : evaluates to under : evaluates to under
• is defined inducRvely

• Base cases: predicates
• InducRve cases: logical operators/quanRfiers over predicates

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨

First-Order Logic SemanRcs

21

• : evaluates to under : evaluates to under
• is defined inducRvely

• Base cases
•

• iff predicate holds for

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨

U, I ⊨ ⊤ U, I ⊭ ⊥
U, I ⊨ p(t1, …, tn) p ⟨I⟩(t1), …, ⟨I⟩(tn)

First-Order Logic SemanRcs

22

• : evaluates to under : evaluates to under
• is defined inducRvely

• Base cases
•

• iff predicate holds for

• EvaluaRng terms

• Base cases:

• InducRve case:

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨

U, I ⊨ ⊤ U, I ⊭ ⊥
U, I ⊨ p(t1, …, tn) p ⟨I⟩(t1), …, ⟨I⟩(tn)

⟨I⟩(a) = I(a)
⟨I⟩(f(t1, …, tn)) = I(f)(⟨I⟩(t1), …, ⟨I⟩(tn))

First-Order Logic SemanRcs

23

• Base cases: predicates

• InducRve cases:

• iff

• iff

• iff

• iff for all

• iff there exists

U, I ⊨ ¬F U, I ⊭ F

U, I ⊨ F1 ∧ F2 U, I ⊨ F1 and U, I ⊨ F2

U, I ⊨ F1 ∨ F2 U, I ⊨ F1 or U, I ⊨ F2

U, I ⊨ ∀x . F o ∈ U : U, I ⊨ F[x ↦ o]
U, I ⊨ ∃x . F o ∈ U, such that U, I ⊨ F[x ↦ o]

First-Order Logic SemanRcs

24

• Consider and U = { ⋆ , ∙ } I :
I(a) = ∙ , I(b) = ⋆
I(f) = { ⋆ ↦ ∙ , ∙ ↦ ⋆ }
I(p) = {⟨ ∙ , ∙ ⟩, ⟨ ⋆ , ∙ ⟩}

• Given , what do these formulas evaluate to? U, I

• ∀x . p(a, x)
• ∀x . p(x, a)
• ∃x . p(a, x)
• ∃x . p(f(x), f(a))

SaRsfiability and Validity

25

• A FOL formula is saCsfiable iff there exists a universe and an interpretaRon
such that

• Otherwise, unsaRsfiable

• is valid iff for all universes and interpretaRons , we have

• Otherwise, not valid

F U I
U, I ⊨ F

F U I U, I ⊨ F

SaRsfiability and Validity

26

• A FOL formula is saCsfiable iff there exists a universe and an interpretaRon
such that

• Otherwise, unsaRsfiable

• is valid iff for all universes and interpretaRons , we have

• Otherwise, not valid

• Is saRsfiable and/or valid?

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)

SaRsfiability and Validity

27

• A FOL formula is saCsfiable iff there exists a universe and an interpretaRon
such that

• Otherwise, unsaRsfiable

• is valid iff for all universes and interpretaRons , we have

• Otherwise, not valid

• Is saRsfiable and/or valid?

• Is saRsfiable and/or valid?

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)
(∀x . p(x, x)) → (∃y . p(y, y))

SaRsfiability and Validity

28

• A FOL formula is saCsfiable iff there exists a universe and an interpretaRon
such that

• Otherwise, unsaRsfiable

• is valid iff for all universes and interpretaRons , we have

• Otherwise, not valid

• Is saRsfiable and/or valid?

• Is saRsfiable and/or valid?

• How about Equal(Plus(a, b), Plus(b, a))?

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)
(∀x . p(x, x)) → (∃y . p(y, y))

Deciding SaRsfiability and Validity

29

• Truth table method?
• No! because universe may be infinite

Deciding SaRsfiability and Validity

30

• Truth table method?
• No! because universe may be infinite

• SemanRc argument method
• Yes, but it is undecidable (for both saRsfiability and validity)

Deciding SaRsfiability and Validity

31

• Truth table method?
• No! because universe may be infinite

• SemanRc argument method
• Yes, but it is undecidable (for both saRsfiability and validity)

• Automated solvers (e.g., MicrosoX Z3, CVC4) work prety well in pracRce!

MicrosoX Z3 Demo

32

• htps://compsys-tools.ens-lyon.fr/z3/index.php
• Use SMT-LIB to express formulas

• htps://compsys-tools.ens-lyon.fr/z3/smt-lib-reference-v2.5-r2015-06-28.pdf
• htps://link.springer.com/content/pdf/bbm%3A978-3-662-50497-0%2F1.pdf

https://compsys-tools.ens-lyon.fr/z3/index.php
https://compsys-tools.ens-lyon.fr/z3/smt-lib-reference-v2.5-r2015-06-28.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-662-50497-0%2F1.pdf

MicrosoX Z3 Demo

33

• Prove is valid F : (∀x . p(x)) → (∀y . p(y))
; declaraRons
(declare-fun p (Int) Bool)

; constraints
(assert (=> (forall ((x Int)) (p x)) (forall ((y Int)) (p y))))

; solve
(check-sat)
;(get-model)

MicrosoX Z3 Demo

34

• Prove is valid F : (∀x . (p(x) ∨ q(x))) → (∃x . p(x) ∨ ∀x . q(x))
; declaraRons
(declare-fun p (Int) Bool)
(declare-fun q (Int) Bool)

; constraints
(assert (=> (forall ((x Int)) (or (p x) (q x))) (or (forall ((x Int)) (q x)) (exists ((x Int)) (p x)))))

; solve
(check-sat)
;(get-model)

MicrosoX Z3 Demo

35

• Is valid?∀x . x + 1 = 1 + x

(assert (forall ((x Int)) (= (+ x 1) (+ 1 x))))

(check-sat)

Agenda

• ProposiRonal Logic
• First-Order Logic
• First-Order Theories

36

First-Order Theories

37

• So far, proposiRonal logic and first-order logic
• ProposiRonal logic is limited in expressiveness
• FOL is more expressive, but funcRons are uninterpreted (can assign any meaning)

First-Order Theories

38

• So far, proposiRonal logic and first-order logic
• ProposiRonal logic is limited in expressiveness
• FOL is more expressive, but funcRons are uninterpreted (can assign any meaning)

• In many cases, we want funcRons to have certain meanings (e.g., +, =, >)
• Theories assign meanings to symbols

First-Order Theories Syntax

39

• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

First-Order Theories Syntax

40

• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

• has only one relaRon constant called and no other constants TH taller
• has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))

First-Order Theories Syntax

41

• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

• has only one relaRon constant called and no other constants TH taller
• has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))
• Is in ? ∀x . ∃y . taller(y, x) TH

First-Order Theories Syntax

42

• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

• has only one relaRon constant called and no other constants TH taller
• has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))
• Is in ? ∀x . ∃y . taller(y, x) TH

• Is in ?∀x . taller(Jack, x) TH

First-Order Theories SemanRcs

43

• Axioms assign meaning to symbols

• That means: some universes/interpretaRons may not be consistent with axioms

First-Order Theories SemanRcs

44

• Axioms assign meaning to symbols

• That means: some universes/interpretaRons may not be consistent with axioms

• E.g., is not consistent with the axiom
 in

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

First-Order Theories SemanRcs

45

• Axioms assign meaning to symbols

• That means: some universes/interpretaRons may not be consistent with axioms

• E.g., is not consistent with the axiom
 in

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!

First-Order Theories SemanRcs

46

• Axioms assign meaning to symbols

• That means: some universes/interpretaRons may not be consistent with axioms

• E.g., is not consistent with the axiom
 in

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!

• Given , formula can be evaluated in the same way as in FOL, but we only
consider interpretaRons that are consistent with axioms

U, I F

First-Order Theories SemanRcs

47

• Axioms assign meaning to symbols

• That means: some universes/interpretaRons may not be consistent with axioms

• E.g., is not consistent with the axiom
 in

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!

• Given , formula can be evaluated in the same way as in FOL, but we only
consider interpretaRons that are consistent with axioms

U, I F

• … which means some formulas not valid in FOL may be valid in first-order theories

SaRsfiability and Validity Modulo Theory T

48

• “modulo” “in terms of”≈

SaRsfiability and Validity Modulo Theory T

49

• Formula is saCsfiable modulo if there exists a universe and an interpretaRon ,
such that (1) , is consistent with axioms in , and (2)

F T U I
U I T U, I ⊨ F

• “modulo” “in terms of”≈

SaRsfiability and Validity Modulo Theory T

50

• Formula is saCsfiable modulo if there exists a universe and an interpretaRon ,
such that (1) , is consistent with axioms in , and (2)

F T U I
U I T U, I ⊨ F

• Formula is valid modulo if for all universes and interpretaRons , if , is
consistent with axioms in then we have

F T U I U I
T U, I ⊨ F

• “modulo” “in terms of”≈

SaRsfiability and Validity Modulo Theory T

51

• Formula is saCsfiable modulo if there exists a universe and an interpretaRon ,
such that (1) , is consistent with axioms in , and (2)

F T U I
U I T U, I ⊨ F

• Formula is valid modulo if for all universes and interpretaRons , if , is
consistent with axioms in then we have

F T U I U I
T U, I ⊨ F

• “modulo” “in terms of”≈

• SaRsfiability Modulo Theory (SMT) solvers: MicrosoX z3, CVC4, …

SaRsfiability and Validity Modulo Theory T

52

• If is valid in FOL, is it also valid modulo ? F T
• If is not valid in FOL, is it also not valid modulo ? F T

SaRsfiability and Validity Modulo Theory T

53

• If is valid in FOL, is it also valid modulo ? F T
• If is not valid in FOL, is it also not valid modulo ? F T
• If is saRsfiable in FOL, is it also saRsfiable modulo ? F T

• If is not saRsfiable in FOL, is it also not saRsfiable modulo ? F T

SaRsfiability and Validity Modulo Theory T

54

• If is valid in FOL, is it also valid modulo ? F T
• If is not valid in FOL, is it also not valid modulo ? F T
• If is saRsfiable in FOL, is it also saRsfiable modulo ? F T

• If is not saRsfiable in FOL, is it also not saRsfiable modulo ? F T

• If is valid modulo , is it also valid in FOL? F T
• If is not valid modulo , is it also not valid in FOL? F T

SaRsfiability and Validity Modulo Theory T

55

• If is valid in FOL, is it also valid modulo ? F T
• If is not valid in FOL, is it also not valid modulo ? F T
• If is saRsfiable in FOL, is it also saRsfiable modulo ? F T

• If is not saRsfiable in FOL, is it also not saRsfiable modulo ? F T

• If is valid modulo , is it also valid in FOL? F T
• If is not valid modulo , is it also not valid in FOL? F T
• If is saRsfiable modulo , is it also saRsfiable in FOL? F T
• If is not saRsfiable modulo , is it also not saRsfiable in FOL? F T

