
Lecture 5

EECS 598-008 & EECS 498-008:  
Intelligent Programming Systems 



Announcements 

• A1 due midnight Tuesday September 14 (today) 
• A2 out today (due midnight Monday September 27) 

• More challenging! Start early!  
• Remote OH 3-4pm Friday September 17  

• Z3 setup and tutorial (video recording released by Thursday), A2 (briefly)  
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ProposiRonal Logic Review 

• Syntax  
• proposiRonal variables, logical connecRves  

• SemanRcs  
• Evaluated under an interpretaRon  

• SaRsfiability and validity  
• Duality between saRsfiability and validity  

• Deciding saRsfiability and validity  
• Truth table method, semanRc argument method 
• Automated solvers such as MicrosoX Z3 
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Agenda

• ProposiRonal Logic  
• First-Order Logic  

• First-Order Theories
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First-Order Logic
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• E.g.,   

• FOL is more expressive than proposiRonal logic:  
• More constants beyond only True and False, e.g., Jack, Apple, Blue, …   
• FuncRons, e.g., MotherOf, ColorOf, …  
• Predicates, e.g., Loves, BiggerThan, …  
• QuanRfiers, e.g., “for all”, “there exists”  
• Variables 

∀x . P(x) ∧ Q(x)



First-Order Logic Syntax
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• Basic building blocks 
• Object constants (a, b, c, …)  

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …} 



First-Order Logic Syntax
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• Basic building blocks 
• Object constants (a, b, c, …)  

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}  
• FuncHon constants (f, g, h, …)  

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)  
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon



First-Order Logic Syntax
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• Basic building blocks 
• Object constants (a, b, c, …)  

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}  
• FuncHon constants (f, g, h, …)  

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)  
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon 

• RelaHon constants (p, q, r, …)  
• RelaRons between objects, or properRes of objects, also called predicates   
• E.g., Loves, IsBiggerThan 
• Uninterpreted



First-Order Logic Syntax
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• Basic building blocks 
• Object constants (a, b, c, …)  

• E.g., people {Jack, Smith, …}, numbers {…, -1, 0, 1, …}  
• FuncHon constants (f, g, h, …)  

• E.g., MotherOf (unary), AgeOf (unary), Plus (binary)  
• FuncRons are “uninterpreted”, i.e., you can assign any meanings to a funcRon 

• RelaHon constants (p, q, r, …)  
• RelaRons between objects, or properRes of objects, also called predicates   
• E.g., Loves, IsBiggerThan 
• Uninterpreted 

• Variables (x, y, z, …)  
• These are “object variables”. They cannot refer to funcRons. 



First-Order Logic Syntax
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• Building blocks:  
• Object constants 
• FuncRon constants 
• RelaRon constants 
• Variables (x, y, z, …)  

• First, use building blocks to create terms:  
• Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y  
• Compound terms: FuncRon constants applied to terms, e.g., MotherOf(Jack)



First-Order Logic Syntax
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• Building blocks:  
• Object constants 
• FuncRon constants 
• RelaRon constants 
• Variables (x, y, z, …)  

• First, use building blocks to create terms:  
• Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y  
• Compound terms: FuncRon constants applied to terms, e.g., MotherOf(Jack) 

• Then, build formulas:  
• Base case: RelaRon constant applied to terms, e.g., isOlder(motherOf(Jack), Jack)  
• InducRve case:  

• If  are formulas, then  is also formula ( ) 

• If  is formula, then  are also formulas  
• If  is formula and  is variable, then  are also formulas 

F1, F2 F1 ⋆ F2 ⋆ ∈ { ∧ , ∨ , → , ↔ }
F (F), ¬F
F x ∀x . F, ∃x . F



First-Order Logic Syntax
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• Example:   

• Object constants?  

• FuncRon constants?  

• RelaRon constants?  

• Variables? 

∀x . p(a, f(b)) ∧ q(x)



First-Order Logic Syntax
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• Express the following sentence in FOL using funcRon constant size, relaRon constant 
biggerThan.  

 “For any , if  is bigger than  and  is bigger than , then  is bigger than .”  x, y, z x y y z x z



First-Order Logic SemanRcs
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• What truth value does a FOL formula evaluate to? 



First-Order Logic SemanRcs
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• What truth value does a FOL formula evaluate to?  

• Similar to proposiRonal logic, need an interpretaCon   
• In addiRon, also need universe of discourse (i.e., universe, domain)  

• Universe of discourse  

• Non-empty set of objects  
• E.g., set of posiRve integers, all real numbers, all students in this class 

• Object constants refer to objects in  

• FuncRons/predicates are defined over 

U

U
U



First-Order Logic SemanRcs
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• First-order interpretaRon  

•  mapping from object, funcRon, relaRon constants to objects in universe  

• E.g., consider:  

•  

• Object constants:  

• Unary funcRon constants:   

• Binary relaRon constant: 

I U

U = {1,2,3,4}
a, b, c ∈ U

f : U → U

p ⊆ U2



First-Order Logic SemanRcs
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• First-order interpretaRon  

•  mapping from object, funcRon, relaRon constants to objects in universe  

• E.g., consider:  

•  

• Object constants:  

• Unary funcRon constants:   

• Binary relaRon constant:  

• A possible interpretaRon: 

I U

U = {1,2,3,4}
a, b, c ∈ U

f : U → U

p ⊆ U2

I(a) = 1,I(b) = 2,I(c) = 3 I( f ) = {1 ↦ 2,2 ↦ 3,3 ↦ 4,4 ↦ 1}
I(p) = {⟨1,2⟩, ⟨3,4⟩}



First-Order Logic SemanRcs
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• Now let’s define how to evaluate a FOL formula, under  and  U I



First-Order Logic SemanRcs
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• Now let’s define how to evaluate a FOL formula, under  and   

• :  evaluates to  under   

• :  evaluates to  under  

•  is defined inducRvely 

U I

U, I ⊨ F F ⊤ U, I
U, I ⊭ F F ⊥ U, I

⊨



First-Order Logic SemanRcs
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• :  evaluates to  under                :  evaluates to  under  
•  is defined inducRvely  

• Base cases: predicates  
• InducRve cases: logical operators/quanRfiers over predicates 

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨



First-Order Logic SemanRcs
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• :  evaluates to  under                :  evaluates to  under  
•  is defined inducRvely  

• Base cases 
•            

•    iff   predicate  holds for  

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨

U, I ⊨ ⊤ U, I ⊭ ⊥
U, I ⊨ p(t1, …, tn) p ⟨I⟩(t1), …, ⟨I⟩(tn)



First-Order Logic SemanRcs
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• :  evaluates to  under                :  evaluates to  under  
•  is defined inducRvely  

• Base cases 
•            

•    iff   predicate  holds for   

• EvaluaRng terms  

• Base cases:     

• InducRve case: 

U, I ⊨ F F ⊤ U, I U, I ⊭ F F ⊥ U, I
⊨

U, I ⊨ ⊤ U, I ⊭ ⊥
U, I ⊨ p(t1, …, tn) p ⟨I⟩(t1), …, ⟨I⟩(tn)

⟨I⟩(a) = I(a)
⟨I⟩(f(t1, …, tn)) = I( f )(⟨I⟩(t1), …, ⟨I⟩(tn))



First-Order Logic SemanRcs
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• Base cases: predicates  

• InducRve cases:  

•  iff  

•  iff  

•  iff  

•  iff for all  

•  iff there exists 

U, I ⊨ ¬F U, I ⊭ F

U, I ⊨ F1 ∧ F2 U, I ⊨ F1 and U, I ⊨ F2

U, I ⊨ F1 ∨ F2 U, I ⊨ F1 or U, I ⊨ F2

U, I ⊨ ∀x . F o ∈ U : U, I ⊨ F[x ↦ o]
U, I ⊨ ∃x . F o ∈ U,  such that U, I ⊨ F[x ↦ o]



First-Order Logic SemanRcs
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• Consider  and U = { ⋆ , ∙ } I :
I(a) = ∙ , I(b) = ⋆
I( f ) = { ⋆ ↦ ∙ , ∙ ↦ ⋆ }
I(p) = {⟨ ∙ , ∙ ⟩, ⟨ ⋆ , ∙ ⟩}

• Given , what do these formulas evaluate to? U, I

• ∀x . p(a, x)
• ∀x . p(x, a)
• ∃x . p(a, x)
• ∃x . p( f(x), f(a))



SaRsfiability and Validity 
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• A FOL formula  is saCsfiable iff there exists a universe  and an interpretaRon   
such that  

• Otherwise, unsaRsfiable  

•  is valid iff for all universes  and interpretaRons , we have  

• Otherwise, not valid

F U I
U, I ⊨ F

F U I U, I ⊨ F



SaRsfiability and Validity 
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• A FOL formula  is saCsfiable iff there exists a universe  and an interpretaRon   
such that  

• Otherwise, unsaRsfiable  

•  is valid iff for all universes  and interpretaRons , we have  

• Otherwise, not valid 

• Is  saRsfiable and/or valid? 

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)



SaRsfiability and Validity 
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• A FOL formula  is saCsfiable iff there exists a universe  and an interpretaRon   
such that  

• Otherwise, unsaRsfiable  

•  is valid iff for all universes  and interpretaRons , we have  

• Otherwise, not valid 

• Is  saRsfiable and/or valid?  

• Is  saRsfiable and/or valid? 

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)
(∀x . p(x, x)) → (∃y . p(y, y))



SaRsfiability and Validity 
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• A FOL formula  is saCsfiable iff there exists a universe  and an interpretaRon   
such that  

• Otherwise, unsaRsfiable  

•  is valid iff for all universes  and interpretaRons , we have  

• Otherwise, not valid 

• Is  saRsfiable and/or valid?  

• Is  saRsfiable and/or valid?  

• How about Equal(Plus(a, b), Plus(b, a))? 

F U I
U, I ⊨ F

F U I U, I ⊨ F

∀x . ∃y . p(x, y)
(∀x . p(x, x)) → (∃y . p(y, y))



Deciding SaRsfiability and Validity 
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• Truth table method?  
• No! because universe may be infinite 



Deciding SaRsfiability and Validity 
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• Truth table method?  
• No! because universe may be infinite 

• SemanRc argument method  
• Yes, but it is undecidable (for both saRsfiability and validity) 



Deciding SaRsfiability and Validity 
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• Truth table method?  
• No! because universe may be infinite 

• SemanRc argument method  
• Yes, but it is undecidable (for both saRsfiability and validity)  

• Automated solvers (e.g., MicrosoX Z3, CVC4) work prety well in pracRce! 



MicrosoX Z3 Demo
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• htps://compsys-tools.ens-lyon.fr/z3/index.php  
• Use SMT-LIB to express formulas  

• htps://compsys-tools.ens-lyon.fr/z3/smt-lib-reference-v2.5-r2015-06-28.pdf  
• htps://link.springer.com/content/pdf/bbm%3A978-3-662-50497-0%2F1.pdf 

https://compsys-tools.ens-lyon.fr/z3/index.php
https://compsys-tools.ens-lyon.fr/z3/smt-lib-reference-v2.5-r2015-06-28.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-662-50497-0%2F1.pdf


MicrosoX Z3 Demo
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• Prove  is valid F : (∀x . p(x)) → (∀y . p(y))
; declaraRons 
(declare-fun p (Int) Bool) 

; constraints 
(assert (=> (forall ((x Int)) (p x)) (forall ((y Int)) (p y)))) 

; solve 
(check-sat) 
;(get-model)



MicrosoX Z3 Demo
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• Prove  is valid F : (∀x . (p(x) ∨ q(x))) → (∃x . p(x) ∨ ∀x . q(x))
; declaraRons 
(declare-fun p (Int) Bool) 
(declare-fun q (Int) Bool) 

; constraints 
(assert (=> (forall ((x Int)) (or (p x) (q x))) (or (forall ((x Int)) (q x)) (exists ((x Int)) (p x))))) 

; solve 
(check-sat) 
;(get-model)



MicrosoX Z3 Demo
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• Is  valid?∀x . x + 1 = 1 + x

(assert (forall ((x Int)) (= (+ x 1) (+ 1 x)))) 

(check-sat)



Agenda

• ProposiRonal Logic  
• First-Order Logic  
• First-Order Theories
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First-Order Theories
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• So far, proposiRonal logic and first-order logic  
• ProposiRonal logic is limited in expressiveness  
• FOL is more expressive, but funcRons are uninterpreted (can assign any meaning)



First-Order Theories
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• So far, proposiRonal logic and first-order logic  
• ProposiRonal logic is limited in expressiveness  
• FOL is more expressive, but funcRons are uninterpreted (can assign any meaning) 

• In many cases, we want funcRons to have certain meanings (e.g., +, =, >)  
• Theories assign meanings to symbols



First-Order Theories Syntax
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• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)



First-Order Theories Syntax
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• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

•  has only one relaRon constant called  and no other constants TH taller
•  has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))



First-Order Theories Syntax
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• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

•  has only one relaRon constant called  and no other constants TH taller
•  has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))
• Is  in ? ∀x . ∃y . taller(y, x) TH



First-Order Theories Syntax
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• A first-order theory has

• object/funcRon/relaRon constants, variables, quanRfiers, logical connecRves (FOL)
• axioms (new!)

• E.g., let’s make up a first-order theory — theory of heights TH

•  has only one relaRon constant called  and no other constants TH taller
•  has one axiom TH ∀x, y . (taller(x, y) → ¬taller(y, x))
• Is  in ? ∀x . ∃y . taller(y, x) TH

• Is  in ?∀x . taller(Jack, x) TH



First-Order Theories SemanRcs 
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• Axioms assign meaning to symbols 

• That means: some universes/interpretaRons may not be consistent with axioms 



First-Order Theories SemanRcs 
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• Axioms assign meaning to symbols 

• That means: some universes/interpretaRons may not be consistent with axioms 

• E.g.,  is not consistent with the axiom 
 in 

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH



First-Order Theories SemanRcs 
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• Axioms assign meaning to symbols 

• That means: some universes/interpretaRons may not be consistent with axioms 

• E.g.,  is not consistent with the axiom 
 in 

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!



First-Order Theories SemanRcs 
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• Axioms assign meaning to symbols 

• That means: some universes/interpretaRons may not be consistent with axioms 

• E.g.,  is not consistent with the axiom 
 in 

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!

• Given , formula  can be evaluated in the same way as in FOL, but we only 
consider interpretaRons that are consistent with axioms 

U, I F



First-Order Theories SemanRcs 
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• Axioms assign meaning to symbols 

• That means: some universes/interpretaRons may not be consistent with axioms 

• E.g.,  is not consistent with the axiom 
 in 

U = {A, B}, I(taller) = {⟨A, B⟩, ⟨B, A⟩}
∀x, y . (taller(x, y) → ¬taller(y, x)) TH

• We are only interested in those interpretaCons that are consistent!

• Given , formula  can be evaluated in the same way as in FOL, but we only 
consider interpretaRons that are consistent with axioms 

U, I F

• … which means some formulas not valid in FOL may be valid in first-order theories 



SaRsfiability and Validity Modulo Theory T
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• “modulo”  “in terms of”≈



SaRsfiability and Validity Modulo Theory T
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• Formula  is saCsfiable modulo  if there exists a universe  and an interpretaRon , 
such that (1) ,  is consistent with axioms in , and (2) 

F T U I
U I T U, I ⊨ F

• “modulo”  “in terms of”≈



SaRsfiability and Validity Modulo Theory T
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• Formula  is saCsfiable modulo  if there exists a universe  and an interpretaRon , 
such that (1) ,  is consistent with axioms in , and (2) 

F T U I
U I T U, I ⊨ F

• Formula  is valid modulo  if for all universes  and interpretaRons , if ,  is 
consistent with axioms in  then we have 

F T U I U I
T U, I ⊨ F

• “modulo”  “in terms of”≈



SaRsfiability and Validity Modulo Theory T
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• Formula  is saCsfiable modulo  if there exists a universe  and an interpretaRon , 
such that (1) ,  is consistent with axioms in , and (2) 

F T U I
U I T U, I ⊨ F

• Formula  is valid modulo  if for all universes  and interpretaRons , if ,  is 
consistent with axioms in  then we have 

F T U I U I
T U, I ⊨ F

• “modulo”  “in terms of”≈

• SaRsfiability Modulo Theory (SMT) solvers: MicrosoX z3, CVC4, …



SaRsfiability and Validity Modulo Theory T
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• If  is valid in FOL, is it also valid modulo  ? F T
• If  is not valid in FOL, is it also not valid modulo  ? F T



SaRsfiability and Validity Modulo Theory T
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• If  is valid in FOL, is it also valid modulo  ? F T
• If  is not valid in FOL, is it also not valid modulo  ? F T
• If  is saRsfiable in FOL, is it also saRsfiable modulo  ? F T

• If  is not saRsfiable in FOL, is it also not saRsfiable modulo  ? F T



SaRsfiability and Validity Modulo Theory T
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• If  is valid in FOL, is it also valid modulo  ? F T
• If  is not valid in FOL, is it also not valid modulo  ? F T
• If  is saRsfiable in FOL, is it also saRsfiable modulo  ? F T

• If  is not saRsfiable in FOL, is it also not saRsfiable modulo  ? F T

• If  is valid modulo , is it also valid in FOL? F T
• If  is not valid modulo , is it also not valid in FOL? F T



SaRsfiability and Validity Modulo Theory T
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• If  is valid in FOL, is it also valid modulo  ? F T
• If  is not valid in FOL, is it also not valid modulo  ? F T
• If  is saRsfiable in FOL, is it also saRsfiable modulo  ? F T

• If  is not saRsfiable in FOL, is it also not saRsfiable modulo  ? F T

• If  is valid modulo , is it also valid in FOL? F T
• If  is not valid modulo , is it also not valid in FOL? F T
• If  is saRsfiable modulo , is it also saRsfiable in FOL? F T
• If  is not saRsfiable modulo , is it also not saRsfiable in FOL? F T


