EECS 598-008 \& EECS 498-008: Intelligent Programming Systems

Lecture 5

Announcements

- A1 due midnight Tuesday September 14 (today)
- A2 out today (due midnight Monday September 27)
- More challenging! Start early!
- Remote OH 3-4pm Friday September 17
- Z3 setup and tutorial (video recording released by Thursday), A2 (briefly)

Propositional Logic Review

- Syntax
- propositional variables, logical connectives
- Semantics
- Evaluated under an interpretation
- Satisfiability and validity
- Duality between satisfiability and validity
- Deciding satisfiability and validity
- Truth table method, semantic argument method
- Automated solvers such as Microsoft Z3

Agenda

- Propositional Logic
- First-Order Logic
- First-Order Theories

First-Order Logic

- E.g., $\forall x . P(x) \wedge Q(x)$
- FOL is more expressive than propositional logic:
- More constants beyond only True and False, e.g., Jack, Apple, Blue, ...
- Functions, e.g., MotherOf, ColorOf, ...
- Predicates, e.g., Loves, BiggerThan, ...
- Quantifiers, e.g., "for all", "there exists"
- Variables

First-Order Logic Syntax

- Basic building blocks
- Object constants (a, b, c, \ldots)
- E.g., people \{Jack, Smith, ...\}, numbers \{..., -1, 0, 1, ...\}

First-Order Logic Syntax

- Basic building blocks
- Object constants (a, b, c, ...)
- E.g., people \{Jack, Smith, ...\}, numbers \{..., -1, 0, 1, ...\}
- Function constants (f, g, h, \ldots)
- E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
- Functions are "uninterpreted", i.e., you can assign any meanings to a function

First-Order Logic Syntax

- Basic building blocks
- Object constants (a, b, c, ...)
- E.g., people \{Jack, Smith, ...\}, numbers \{..., -1, 0, 1, ...\}
- Function constants (f, g, h, ...)
- E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
- Functions are "uninterpreted", i.e., you can assign any meanings to a function
- Relation constants (p, q, r, \ldots)
- Relations between objects, or properties of objects, also called predicates
- E.g., Loves, IsBiggerThan
- Uninterpreted

First-Order Logic Syntax

- Basic building blocks
- Object constants (a, b, c, ...)
- E.g., people \{Jack, Smith, ...\}, numbers \{..., -1, 0, 1, ...\}
- Function constants (f, g, h, ...)
- E.g., MotherOf (unary), AgeOf (unary), Plus (binary)
- Functions are "uninterpreted", i.e., you can assign any meanings to a function
- Relation constants (p, q, r, \ldots)
- Relations between objects, or properties of objects, also called predicates
- E.g., Loves, IsBiggerThan
- Uninterpreted
- Variables (x, y, z, \ldots)
- These are "object variables". They cannot refer to functions.

First-Order Logic Syntax

- Building blocks:
- Object constants
- Function constants
- Relation constants
- Variables (x, y, z, ...)
- First, use building blocks to create terms:
- Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y
- Compound terms: Function constants applied to terms, e.g., MotherOf(Jack)

First-Order Logic Syntax

- Building blocks:
- Object constants
- Function constants
- Relation constants
- Variables (x, y, z, ...)
- First, use building blocks to create terms:
- Basic terms: Any object constant or a variable, e.g., Jack, Apple, x, y
- Compound terms: Function constants applied to terms, e.g., MotherOf(Jack)
- Then, build formulas:
- Base case: Relation constant applied to terms, e.g., isOlder(motherOf(Jack), Jack)
- Inductive case:
- If F_{1}, F_{2} are formulas, then $F_{1} \star F_{2}$ is also formula $(\star \in\{\wedge, \vee, \rightarrow, \leftrightarrow\})$
- If F is formula, then $(F), \neg F$ are also formulas
- If F is formula and x is variable, then $\forall x . F, \exists x . F$ are also formulas

First-Order Logic Syntax

- Example: $\forall x . p(a, f(b)) \wedge q(x)$
- Object constants?
- Function constants?
- Relation constants?
- Variables?

First-Order Logic Syntax

- Express the following sentence in FOL using function constant size, relation constant biggerThan.
"For any x, y, z, if x is bigger than y and y is bigger than z, then x is bigger than $z . "$

First-Order Logic Semantics

- What truth value does a FOL formula evaluate to?

First-Order Logic Semantics

- What truth value does a FOL formula evaluate to?
- Similar to propositional logic, need an interpretation
- In addition, also need universe of discourse (i.e., universe, domain)
- Universe of discourse U
- Non-empty set of objects
- E.g., set of positive integers, all real numbers, all students in this class
- Object constants refer to objects in U
- Functions/predicates are defined over U

First-Order Logic Semantics

- First-order interpretation
- I mapping from object, function, relation constants to objects in universe U
- E.g., consider:
- $U=\{1,2,3,4\}$
- Object constants: $a, b, c \in U$
- Unary function constants: $f: U \rightarrow U$
- Binary relation constant: $p \subseteq U^{2}$

First-Order Logic Semantics

- First-order interpretation
- I mapping from object, function, relation constants to objects in universe U
- E.g., consider:
- $U=\{1,2,3,4\}$
- Object constants: $a, b, c \in U$
- Unary function constants: $f: U \rightarrow U$
- Binary relation constant: $p \subseteq U^{2}$
- A possible interpretation:

$$
\begin{aligned}
& I(a)=1, I(b)=2, I(c)=3 \quad I(f)=\{1 \mapsto 2,2 \mapsto 3,3 \mapsto 4,4 \mapsto 1\} \\
& I(p)=\{\langle 1,2\rangle,\langle 3,4\rangle\}
\end{aligned}
$$

First-Order Logic Semantics

- Now let's define how to evaluate a FOL formula, under U and I

First-Order Logic Semantics

- Now let's define how to evaluate a FOL formula, under U and I
- $U, I \vDash F$: F evaluates to T under U, I
- $U, I \not \models F$: F evaluates to \perp under U, I
- \vDash is defined inductively

First-Order Logic Semantics

- $U, I \vDash F$: F evaluates to T under $U, I \quad U, I \not \models F$: F evaluates to \perp under U, I
- \vDash is defined inductively
- Base cases: predicates
- Inductive cases: logical operators/quantifiers over predicates

First-Order Logic Semantics

- $U, I \vDash F$: F evaluates to T under $U, I \quad U, I \not \models F$: F evaluates to \perp under U, I
- \vDash is defined inductively
- Base cases
- $U, I \vDash T \quad U, I \not \vDash \perp$
- $U, I \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff predicate p holds for $\langle I\rangle\left(t_{1}\right), \ldots,\langle I\rangle\left(t_{n}\right)$

First-Order Logic Semantics

- $U, I \vDash F$: F evaluates to T under $U, I \quad U, I \not \models F$: F evaluates to \perp under U, I
- \vDash is defined inductively
- Base cases
- U,IF T U,I $\not \vDash \perp$
- $U, I \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff predicate p holds for $\langle I\rangle\left(t_{1}\right), \ldots,\langle I\rangle\left(t_{n}\right)$
- Evaluating terms
- Base cases: $\langle I\rangle(a)=I(a)$
- Inductive case: $\langle I\rangle\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=I(f)\left(\langle I\rangle\left(t_{1}\right), \ldots,\langle I\rangle\left(t_{n}\right)\right)$

First-Order Logic Semantics

- Base cases: predicates
- Inductive cases:
- $U, I \vDash \neg F$ iff $U, I \not \models F$
- $U, I \vDash F_{1} \wedge F_{2}$ iff $U, I \vDash F_{1}$ and $U, I \vDash F_{2}$
- $U, I \vDash F_{1} \vee F_{2}$ iff $U, I \vDash F_{1}$ or $U, I \vDash F_{2}$
- $U, I \vDash \forall x$. F iff for all $o \in U: U, I \vDash F[x \mapsto o]$
- $U, I \vDash \exists x$. F iff there exists $o \in U$, such that $U, I \vDash F[x \mapsto o]$

First-Order Logic Semantics

- Consider $U=\{\star, \bullet\}$ and I :

$$
\begin{aligned}
& I(a)=\bullet, I(b)=\star \\
& I(f)=\{\star \mapsto \bullet, \bullet \mapsto \star\} \\
& I(p)=\{\langle\bullet, \bullet\rangle,\langle\star, \bullet\rangle\}
\end{aligned}
$$

- Given U, I, what do these formulas evaluate to?
- $\forall x \cdot p(a, x)$
- $\forall x . p(x, a)$
- $\exists x . p(a, x)$
- $\exists x . p(f(x), f(a))$

Satisfiability and Validity

- A FOL formula F is satisfiable iff there exists a universe U and an interpretation I such that $U, I \vDash F$
- Otherwise, unsatisfiable
- F is valid iff for all universes U and interpretations I, we have $U, I \vDash F$
- Otherwise, not valid

Satisfiability and Validity

- A FOL formula F is satisfiable iff there exists a universe U and an interpretation I such that $U, I \vDash F$
- Otherwise, unsatisfiable
- F is valid iff for all universes U and interpretations I, we have $U, I \vDash F$
- Otherwise, not valid
- Is $\forall x . \exists y . p(x, y)$ satisfiable and/or valid?

Satisfiability and Validity

- A FOL formula F is satisfiable iff there exists a universe U and an interpretation I such that $U, I \vDash F$
- Otherwise, unsatisfiable
- F is valid iff for all universes U and interpretations I, we have $U, I \vDash F$
- Otherwise, not valid
- Is $\forall x . \exists y . p(x, y)$ satisfiable and/or valid?
- Is $(\forall x \cdot p(x, x)) \rightarrow(\exists y . p(y, y))$ satisfiable and/or valid?

Satisfiability and Validity

- A FOL formula F is satisfiable iff there exists a universe U and an interpretation I such that $U, I \vDash F$
- Otherwise, unsatisfiable
- F is valid iff for all universes U and interpretations I, we have $U, I \vDash F$
- Otherwise, not valid
- Is $\forall x . \exists y . p(x, y)$ satisfiable and/or valid?
- Is $(\forall x . p(x, x)) \rightarrow(\exists y . p(y, y))$ satisfiable and/or valid?
- How about Equal(Plus(a, b), Plus(b, a))?

Deciding Satisfiability and Validity

- Truth table method?
- No! because universe may be infinite

Deciding Satisfiability and Validity

- Truth table method?
- No! because universe may be infinite
- Semantic argument method
- Yes, but it is undecidable (for both satisfiability and validity)

Deciding Satisfiability and Validity

- Truth table method?
- No! because universe may be infinite
- Semantic argument method
- Yes, but it is undecidable (for both satisfiability and validity)
- Automated solvers (e.g., Microsoft Z3, CVC4) work pretty well in practice!

Microsoft Z3 Demo

- https://compsys-tools.ens-lyon.fr/z3/index.php
- Use SMT-LIB to express formulas
- https://compsys-tools.ens-lyon.fr/z3/smt-lib-reference-v2.5-r2015-06-28.pdf
- https://link.springer.com/content/pdf/bbm\%3A978-3-662-50497-0\%2F1.pdf

Microsoft Z3 Demo

- Prove $F:(\forall x \cdot p(x)) \rightarrow(\forall y \cdot p(y))$ is valid

```
; declarations
(declare-fun p (Int) Bool)
; constraints
(assert (=> (forall ((x Int)) (p x)) (forall ((y Int)) (p y))))
; solve
(check-sat)
;(get-model)
```

Microsoft Z3 Demo

- Prove $F:(\forall x \cdot(p(x) \vee q(x))) \rightarrow(\exists x \cdot p(x) \vee \forall x \cdot q(x))$ is valid
; declarations
(declare-fun p (Int) Bool)
(declare-fun q (Int) Bool)
; constraints
(assert (=> (forall ((x Int)) (or (px) (qx))) (or (forall ((x Int)) (qx)) (exists ((x Int)) (px)))))
; solve
(check-sat)
;(get-model)

Microsoft Z3 Demo

- Is $\forall x \cdot x+1=1+x$ valid?
(assert (forall ((x Int)) (=(+x1)(+1x))))
(check-sat)

Agenda

- Propositional Logic
- First-Order Logic
- First-Order Theories

First-Order Theories

- So far, propositional logic and first-order logic
- Propositional logic is limited in expressiveness
- FOL is more expressive, but functions are uninterpreted (can assign any meaning)

First-Order Theories

- So far, propositional logic and first-order logic
- Propositional logic is limited in expressiveness
- FOL is more expressive, but functions are uninterpreted (can assign any meaning)
- In many cases, we want functions to have certain meanings (e.g.,,$+=,>$)
- Theories assign meanings to symbols

First-Order Theories Syntax

- A first-order theory has
- object/function/relation constants, variables, quantifiers, logical connectives (FOL)
- axioms (new!)

First-Order Theories Syntax

- A first-order theory has
- object/function/relation constants, variables, quantifiers, logical connectives (FOL)
- axioms (new!)
- E.g., let's make up a first-order theory - theory of heights T_{H}
- T_{H} has only one relation constant called taller and no other constants
- T_{H} has one axiom $\forall x, y$. $(\operatorname{taller}(x, y) \rightarrow \neg \operatorname{taller}(y, x))$

First-Order Theories Syntax

- A first-order theory has
- object/function/relation constants, variables, quantifiers, logical connectives (FOL)
- axioms (new!)
- E.g., let's make up a first-order theory - theory of heights T_{H}
- T_{H} has only one relation constant called taller and no other constants
- T_{H} has one axiom $\forall x, y$. $(\operatorname{taller}(x, y) \rightarrow \neg \operatorname{taller}(y, x))$
- Is $\forall x . \exists y . \operatorname{taller}(y, x)$ in T_{H} ?

First-Order Theories Syntax

- A first-order theory has
- object/function/relation constants, variables, quantifiers, logical connectives (FOL)
- axioms (new!)
- E.g., let's make up a first-order theory - theory of heights T_{H}
- T_{H} has only one relation constant called taller and no other constants
- T_{H} has one axiom $\forall x, y$. $(\operatorname{taller}(x, y) \rightarrow \neg \operatorname{taller}(y, x))$
- Is $\forall x . \exists y$. $\operatorname{taller}(y, x)$ in T_{H} ?
- Is $\forall x$.taller $(J a c k, x)$ in T_{H} ?

First-Order Theories Semantics

- Axioms assign meaning to symbols
- That means: some universes/interpretations may not be consistent with axioms

First-Order Theories Semantics

- Axioms assign meaning to symbols
- That means: some universes/interpretations may not be consistent with axioms
- E.g., $U=\{A, B\}, I($ taller $)=\{\langle A, B\rangle,\langle B, A\rangle\}$ is not consistent with the axiom $\forall x, y .(\operatorname{taller}(x, y) \rightarrow \neg$ taller $(y, x))$ in T_{H}

First-Order Theories Semantics

- Axioms assign meaning to symbols
- That means: some universes/interpretations may not be consistent with axioms
- E.g., $U=\{A, B\}, I($ taller $)=\{\langle A, B\rangle,\langle B, A\rangle\}$ is not consistent with the axiom $\forall x, y .(\operatorname{taller}(x, y) \rightarrow \neg$ taller $(y, x))$ in T_{H}
- We are only interested in those interpretations that are consistent!

First-Order Theories Semantics

- Axioms assign meaning to symbols
- That means: some universes/interpretations may not be consistent with axioms
- E.g., $U=\{A, B\}, I($ taller $)=\{\langle A, B\rangle,\langle B, A\rangle\}$ is not consistent with the axiom $\forall x, y .($ taller $(x, y) \rightarrow$ taller $(y, x))$ in T_{H}
- We are only interested in those interpretations that are consistent!
- Given U, I, formula F can be evaluated in the same way as in FOL, but we only consider interpretations that are consistent with axioms

First-Order Theories Semantics

- Axioms assign meaning to symbols

- That means: some universes/interpretations may not be consistent with axioms
- E.g., $U=\{A, B\}, I($ taller $)=\{\langle A, B\rangle,\langle B, A\rangle\}$ is not consistent with the axiom $\forall x, y .(\operatorname{taller}(x, y) \rightarrow \neg$ taller $(y, x))$ in T_{H}
- We are only interested in those interpretations that are consistent!
- Given U, I, formula F can be evaluated in the same way as in FOL, but we only consider interpretations that are consistent with axioms
- ... which means some formulas not valid in FOL may be valid in first-order theories

Satisfiability and Validity Modulo Theory T

- "modulo" \approx "in terms of"

Satisfiability and Validity Modulo Theory T

- "modulo" \approx "in terms of"
- Formula F is satisfiable modulo T if there exists a universe U and an interpretation I, such that (1) U, I is consistent with axioms in T, and (2) $U, I \vDash F$

Satisfiability and Validity Modulo Theory T

- "modulo" \approx "in terms of"
- Formula F is satisfiable modulo T if there exists a universe U and an interpretation I, such that (1) U, I is consistent with axioms in T, and (2) $U, I \vDash F$
- Formula F is valid modulo T if for all universes U and interpretations I, if U, I is consistent with axioms in T then we have $U, I \vDash F$

Satisfiability and Validity Modulo Theory T

- "modulo" \approx "in terms of"
- Formula F is satisfiable modulo T if there exists a universe U and an interpretation I, such that (1) U, I is consistent with axioms in T, and (2) $U, I \vDash F$
- Formula F is valid modulo T if for all universes U and interpretations I, if U, I is consistent with axioms in T then we have $U, I \vDash F$
- Satisfiability Modulo Theory (SMT) solvers: Microsoft z3, CVC4, ...

Satisfiability and Validity Modulo Theory T

- If F is valid in FOL, is it also valid modulo T ?
- If F is not valid in FOL, is it also not valid modulo T ?

Satisfiability and Validity Modulo Theory T

- If F is valid in FOL, is it also valid modulo T ?
- If F is not valid in FOL, is it also not valid modulo T ?
- If F is satisfiable in FOL, is it also satisfiable modulo T ?
- If F is not satisfiable in FOL, is it also not satisfiable modulo T ?

Satisfiability and Validity Modulo Theory T

- If F is valid in FOL, is it also valid modulo T ?
- If F is not valid in FOL, is it also not valid modulo T ?
- If F is satisfiable in FOL, is it also satisfiable modulo T ?
- If F is not satisfiable in FOL, is it also not satisfiable modulo T ?
- If F is valid modulo T, is it also valid in FOL?
- If F is not valid modulo T, is it also not valid in FOL?

Satisfiability and Validity Modulo Theory T

- If F is valid in FOL, is it also valid modulo T ?
- If F is not valid in FOL, is it also not valid modulo T ?
- If F is satisfiable in FOL, is it also satisfiable modulo T ?
- If F is not satisfiable in FOL, is it also not satisfiable modulo T ?
- If F is valid modulo T, is it also valid in FOL?
- If F is not valid modulo T, is it also not valid in FOL?
- If F is satisfiable modulo T, is it also satisfiable in FOL?
- If F is not satisfiable modulo T, is it also not satisfiable in FOL?

