
Lecture 3

EECS 598-008 & EECS 498-008: 

Intelligent Programming Systems 



Announcements

• A1 out, due midnight Tuesday September 14 


• Implement top-down search algorithm. More interesting. Start early! 


• Grade will be displayed in percentage on Canvas


• Submit you assignment as a single .zip file (instead of .java and .pdf separately) 


• Remote & live discussion section 3-4pm Friday September 10


• Discussion zoom password same as lecture zoom password  


• Primarily walk through top-down search algorithm lecture, A1, also briefly Z3


• See schedule for details


• Piazza for questions 


• GSI and instructor will monitor for questions 
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Agenda

• Inductive program synthesis, in particular, Programming-by-Example 


• Domain-Specific Languages (DSLs)  


• Abstract Syntax Trees (ASTs) 


• Overview of search techniques
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Inductive Program Synthesis

“Specification” “Program”
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Inductive



Inductive Program Synthesis 

• Specification is “inductive” (topic today)


• Inductive: incomplete, under-specified


• E.g., test cases, input-output examples, under-constrained logical formulas, etc. 


• Counterpart: complete specifications (will talk about this in a few lectures)
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Inductive Program Synthesis 

• Specification is “inductive” (topic today)


• Inductive: incomplete, under-specified


• E.g., test cases, input-output examples, under-constrained logical formulas, etc. 


• Counterpart: complete specifications (will talk about this in a few lectures)


• Why inductive specification? Simple!


• A broader class of users can provide 


• One of the simplest interfaces for program synthesis 
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Inductive Program Synthesis 

• E.g., 1 —> 2 


• Say, the CFG is   


• What are some programs in this CFG that satisfy the spec? 

e ::= x | e + e | e × e | 1 |2 | 3 | 4

7



Inductive Program Synthesis 

• E.g., 1 —> 2 


• Say, the CFG is   


• What are some programs in this CFG that satisfy the spec? 


• How about this CFG  

e ::= x | e + e | e × e | 1 |2 | 3 | 4

e ::= x | e + e | e × e | e − e | 1 |2 | 3 | 4
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Inductive Program Synthesis 

• Does an inductive program synthesizer always give back the “correct” program? 
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Inductive Program Synthesis 

• Does an inductive program synthesizer always give back the “correct” program? 


• Yes, it always gives back a program that satisfies the spec 


• No, it may not give back a program that actually meets the user’s intent
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Inductive Program Synthesis 

• Does an inductive program synthesizer always give back the “correct” program? 


• Yes, it always gives back a program that satisfies the spec 


• No, it may not give back a program that actually meets the user’s intent


• Known as the “overfitting” or “generalization” problem


• Inductive spec is a partial representation of the user’s intent 


• We’ll talk about this later in the course 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 


• Search: How to find a program that satisfies the spec? (Top-down search, bottom-up 
search, etc.) 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 


• Search: How to find a program that satisfies the spec? (Top-down search, bottom-up 
search, etc.) 


• Efficiency: How to efficiently find a program that satisfies the spec? (Pruning, 
prioritization, etc.) 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 


• Search: How to find a program that satisfies the spec? (Top-down search, bottom-up 
search, etc.) 


• Efficiency: How to efficiently find a program that satisfies the spec? (Pruning, 
prioritization, etc.) 


• Search space: How to define the space of programs in the first place? (Domain-specific 
languages, CFGs, functional languages, etc.) 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 


• Search: How to find a program that satisfies the spec? (Top-down search, bottom-up 
search, etc.) 


• Efficiency: How to efficiently find a program that satisfies the spec? (Pruning, 
prioritization, etc.) 


• Search space: How to define the space of programs in the first place? (Domain-specific 
languages, CFGs, functional languages, etc.) 


• Specs: How to support different inductive specs? (Examples, types, demonstrations, etc.) 
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Problems in Inductive Program Synthesis
• Generalization: Is the program you found the one that you’re actually looking for? 

(Constrained search space, ranking, etc.) 


• Search: How to find a program that satisfies the spec? (Top-down search, bottom-up 
search, etc.) 


• Efficiency: How to efficiently find a program that satisfies the spec? (Pruning, 
prioritization, etc.) 


• Search space: How to define the space of programs in the first place? (Domain-specific 
languages, CFGs, functional languages, etc.) 


• Specs: How to support different inductive specs? (Examples, types, demonstrations, etc.) 


• Etc. such as noise, multi-modality, interaction, … 

17



Programming-by-Example (PBE) 
• Most lectures in this course focus on PBE 


• A particular form of inductive synthesis where specs are examples 
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Programming-by-Example (PBE) 
• Most lectures in this course focus on PBE 


• A particular form of inductive synthesis where specs are examples 


• Still work with syntax-guided synthesis (SYGUS) paradigm 


• Spec: examples (which can be represented as logical formulas) 


• Search space: CFGs, in particular, functional domain-specific languages (DSLs) 


• Search: we will talk about different search techniques 
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Agenda

• Inductive program synthesis, in particular, Programming-by-Example 


• Domain-Specific Languages (DSLs)  


• Abstract Syntax Trees (ASTs) 


• Overview of search techniques
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Domain-Specific Languages (DSLs)
• DSLs are PLs, but more specialized and less universal 
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Domain-Specific Languages (DSLs)
• DSLs are PLs, but more specialized and less universal 


• What’s a program? 


• What’s a programming language? 
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Domain-Specific Languages (DSLs)
• DSLs are PLs, but more specialized and less universal 


• What’s a program? 


• A description of how to perform a computation 


• What’s a programming language? 
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Domain-Specific Languages (DSLs)
• DSLs are PLs, but more specialized and less universal 


• What’s a program? 


• A description of how to perform a computation 


• What’s a programming language? 


• A description of many computations by compositing individual syntactic elements 
each with well-defined meaning. 


• Syntax: How to write a program in a PL? 


• Semantics: What does this program mean? 

24



Domain-Specific Languages (DSLs)
• Examples of “universal” PLs: Python, Java, C/C++, … 


• Describe many computations: add numbers, sort lists, transform trees, … 
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Domain-Specific Languages (DSLs)
• Examples of “universal” PLs: Python, Java, C/C++, … 


• Describe many computations: add numbers, sort lists, transform trees, … 


• DSLs: PLs specialized to specific tasks and not universal 


• Describe different computations by composing individual syntactic elements each 
with well defined meaning 


• E.g., SQL 


• E.g., arithmetic expressions    


• Or could be defined by you 

e ::= x | e + e | e × e | 1 |2 | 3 | 4
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Domain-Specific Languages (DSLs)
• To define a DSL 


• Syntax: CFG (operators and compositions) 


• Semantics: What does every operator and composition mean? 


• Often it’s enough to use examples to define semantics 


• Or translating into a general-purpose PL 


• But to fully specify semantics, need formal semantics (not this course) 


• This course: use informal semantics 
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Functional Programming Languages 
• Programming paradigms: functional (e.g., Haskell), imperative (e.g., C), … 
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Functional Programming Languages 
• Programming paradigms: functional (e.g., Haskell), imperative (e.g., C), … 


• We will mainly use functional PLs for synthesis, because: 


• No side effects. Computation in functional PLs is by evaluating pure functions, without 
side effects or mutations. This greatly simplifies synthesis. 
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List reverseList(List input) {

List output = new ArrayList(); 

for (int i = 0; I < input.size(); i ++) {

  output.add(input.get(input.size() - 1 - i);

}

return output;


}

reverse l = case l of 

[] -> [] 

head : rest -> (reverse rest) ++ [head]



Functional Programming Languages 
• Programming paradigms: functional (e.g., Haskell), imperative (e.g., C), … 


• We will mainly use functional PLs for synthesis, because: 


• No side effects. Computation in functional PLs is by evaluating pure functions, without 
side effects or mutations. This greatly simplifies synthesis. 


• Concise language.  


• Expressiveness. 

30

List reverseList(List input) {

List output = new ArrayList(); 

for (int i = 0; I < input.size(); i ++) {

  output.add(input.get(input.size() - 1 - i);

}

return output;


}

reverse l = case l of 

[] -> [] 

head : rest -> (reverse rest) ++ [head]



Example DSL 
• Consider the following DSL 


• Syntax in CFG 
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k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• What are some programs in this DSL? 

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)



Example DSL 
• Consider the following DSL 


• Syntax in CFG 
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k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Semantics 


• What does every DSL construct/operator mean? What does it evaluate to? 


• E.g.,  function: http://statseducation.com/Introduction-to-R/modules/
tidy%20data/gather/ 

gather

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)

http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/


Example DSL 

33

• Semantics 


• What does every DSL construct/operator mean? What does it evaluate to? 

This is really the syntax of gather



Example DSL 
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• Semantics 


• What does every DSL construct/operator mean? What does it evaluate to?

This example gives you an idea 
what  actually doesgather



Example DSL 
• Consider the following DSL (which is used in assignments) 


• Syntax in CFG 
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df ::= x | gather(df, k, k, s, s) | unite(df, k, k, s)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Semantics 


• What does every DSL construct/operator mean? What does it evaluate to? 


• E.g.,  function: http://statseducation.com/Introduction-to-R/modules/
tidy%20data/gather/ 


• Note that  is recursive: the first parameter  can also be a  function

gather

gather df gather

http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/


Agenda

• Inductive program synthesis, in particular, Programming-by-Example 


• Domain-Specific Languages (DSLs)  


• Abstract Syntax Trees (ASTs) 


• Overview of search techniques
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DSL Programs as Abstract Syntax Trees (ASTs) 
• In actual programming, programs are strings/text with indentation, special chars, etc. 


• When reasoning about programs: 


• Programs are presented as data structures 


• A common one is Abstract Syntax Trees (ASTs) 


• Abstract: ASTs ignore uninteresting details such has spacing, parenthesis, … 


• Syntax: No semantic information 


• Tree: It’s essentially a tree 
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DSL Programs as Abstract Syntax Trees (ASTs) 
• Consider the following CFG 
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k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Consider program gather(x, tmp1,tmp2,1,2)

gather

x tmp1 tmp2 1 2

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)



DSL Programs as Abstract Syntax Trees (ASTs) 
• Consider the following CFG 
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df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Consider program gather(unite(x, tmp3,3,4), tmp1,tmp2,1,2)

gather

x

tmp1 tmp2 1 2unite

tmp3 3 4



Agenda

• Inductive program synthesis, in particular, Programming-by-Example 


• Domain-Specific Languages (DSLs)  


• Abstract Syntax Trees (ASTs) 


• Overview of search techniques 
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Overview of Search Techniques for PBE

• PBE Problem: Given a DSL with predefined syntax (in a CFG ) and semantics and 
given a set  of input-output examples, find a program  such that  satisfies 

G
E P ∈ G P E
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Overview of Search Techniques for PBE

• PBE Problem: Given a DSL with predefined syntax (in a CFG ) and semantics and 
given a set  of input-output examples, find a program  such that  satisfies 

G
E P ∈ G P E

42

• SYGUS: Given a first-order formula  in a background theory  and a CFG , the syntax-guided 
synthesis problem is to find an expression  such that formula  is valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e] T



Overview of Search Techniques for PBE

• PBE Problem: Given a DSL with predefined syntax (in a CFG ) and semantics and 
given a set  of input-output examples, find a program  such that  satisfies 


• Different search techniques: 


• Enumeration-based techniques: Top-down and bottom-up search (Today)


• Representation-based techniques: Version Space Algebra, Finite Tree Automata 


• Constraint-based approaches


• Stochastic search: MCMC 


• Many other techniques such as using genetic programming, NN, RL, … 

G
E P ∈ G P E
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• Key question: How to systematically enumerate all programs/ASTs in a given CFG? 


• Another perspective: How to systematically generate ASTs? 


• Then, we just need to check each AST against examples 

Enumeration-based Approaches
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• Key question: How to systematically generate an AST?  


• Two ideas: Top-down and bottom-up 

Enumeration-based Approaches

45

gather

x

tmp1 tmp2 1 2unite

tmp3 3 4

Top-down Bottom-up

First generate parents, 

then children, 

then grandchildren, 

etc…

First leaves, 

then parents, 

then grandparents, 

etc…



• Key idea: A parent node was generated before its children are generated 


• Or, generate high(er) level structures first, then fill it with low(er) level fragments 

Top-Down Search
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gather

? ? ? ? ?

gather

? ? ? ?unite

? ? ? ?

gather

? ? ? ?unite

? ? ?x

gather

x

tmp1 tmp2 1 2unite

tmp3 3 4

…



Top-Down Search Algorithm
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Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 

if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E

• Given a CFG  and a set  of examples:G = (T, N, P, S) E

• High-level idea: An iterative algorithm that manipulates ASTs and creates more ASTs



Top-Down Search Algorithm
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Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 


if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E

A set of ASTs. We allow AST nodes to be “holes” 
labeled with the associated grammar symbol. 

gather

? ? ? ? ?
df s

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

s k k

?
df



Top-Down Search Algorithm
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Get an AST from the worklist. 

Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 


if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3



Top-Down Search Algorithm
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We’re done if it satisfies the given examples!

Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 


if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3



Top-Down Search Algorithm

51

Otherwise, we pick a hole in the AST, “expand” the hole, and add 
new ASTs into the worklist. There may be multiple ways to expand.

?
df

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

gather

? ? ? ? ?
df s s k k

unite

? ? ? ?
df s k k

x

Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 


if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E

Expand Expand Expand



Top-Down Search Algorithm
e := x | 1 | e + e• CFG:

• Example: (1,2)

• Worklist (at end of iterations)
iter 0:    e
iter 1:               x 1 e + e

iter 2:          1 e + e
iter 3:    e + e

iter 4:             

                      

x + e 1 + e e + e + e
e + x e + 1 e + e + e

iter 6:    return  x + x

iter 5:            

                    

                      

x + x x + 1 x + e + e
1 + e e + e + e
e + x e + 1 e + e + e
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Top-Down-Search ( ,  ): 

worklist := {  };  

while ( worklist is not empty ): 


AST := worklist.remove(); 


if ( AST is complete & AST satisfies  ): return AST; 

worklist.addAll( expand( AST ) ); 

(T, N, P, S) E
S

E



Top-Down Search Algorithm
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• One way to “visualize” this algorithm: df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

?

x
gather(?,?,?,?,?)

unite(?,?,?,?)

gather(x,?,?,?,?)

gather( gather(?,?,?,?,?),?,?,?,?)

gather( unite(?,?,?,?),?,?,?,?)

gather(x,tmp1,?,?,?) gather(x,tmp2,?,?,?) gather(x,tmp3,?,?,?)

unite(x,?,?,?)

unite( gather(x, ?,?,?,?,?),?,?,?)

unite( unite(x, ?,?,?,?),?,?,?)

…



Bottom-Up Search Algorithm
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• Key idea: Generate children first, then generate parents 


• First discover low(er) level components and then discover how to assemble them

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

x
1 2 3 4

tmp1 tmp2 tmp3



Bottom-Up Search Algorithm
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• Key idea: Generate children first, then generate parents 


• First discover low(er) level components and then discover how to assemble them

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

x
1 2 3 4

tmp1 tmp2 tmp3

gather(x, tmp1, tmp2, 1, 2)
gather(x, tmp1, tmp2, 1, 3)
gather(x, tmp1, tmp2, 1, 4)
gather(x, tmp1, tmp2, 2, 3)
gather(x, tmp1, tmp2, 2, 4)

unite(x, tmp1, 1, 2)

…

unite(x, tmp1, 1, 3)
unite(x, tmp1, 1, 4)
unite(x, tmp1, 2, 3)
…



Bottom-Up Search Algorithm
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• Key idea: Generate children first, then generate parents 


• First discover low(er) level components and then discover how to assemble them

df ::= x | gather(df, s, s, k, k) | unite(df, s, k, k)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

x
1 2 3 4

tmp1 tmp2 tmp3

gather(x, tmp1, tmp2, 1, 2)
gather(x, tmp1, tmp2, 1, 3)
gather(x, tmp1, tmp2, 1, 4)
gather(x, tmp1, tmp2, 2, 3)
gather(x, tmp1, tmp2, 2, 4)

unite(x, tmp1, 1, 2)

…

unite(x, tmp1, 1, 3)
unite(x, tmp1, 1, 4)
unite(x, tmp1, 2, 3)
…

gather( gather(x, tmp1, tmp2, 1, 2), tmp1, tmp2, 1, 2)
gather( gather(x, tmp1, tmp2, 1, 2), tmp1, tmp2, 1, 3)
gather( gather(x, tmp1, tmp2, 1, 2), tmp1, tmp2, 1, 4)
gather( gather(x, tmp1, tmp2, 1, 2), tmp1, tmp2, 2, 3)

…

unite( gather(x, tmp1, tmp2, 1, 2), tmp1, 1, 2)
unite( gather(x, tmp1, tmp2, 1, 2), tmp1, 1, 3)
unite( gather(x, tmp1, tmp2, 1, 2), tmp1, 1, 4)
unite( gather(x, tmp1, tmp2, 1, 2), tmp1, 2, 3)

…



Bottom-Up Search Algorithm
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• Given a CFG  and a set  of examples:G = (T, N, P, S) E

Bottom-Up-Search( ,  ): 

worklist := ; 

while ( true ): 


foreach AST in worklist: if ( AST is complete & AST satisfies  ): return AST;  

worklist.addAll( grow( worklist ) ); 

(T, N, P, S) E
{ t | t ∈ T }

E



Summary
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• Programming-by-Example 


• Search space as DSL (syntax + semantics) 


• Programs as ASTs 


• Search Techniques: Top-Down and Bottom-Up 


