
Lecture 2

EECS 598-008 & EECS 498-008:  

Intelligent Programming Systems 
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Announcements

• A0 due midnight Monday, September 6 

• A0 tutorial released on Canvas (see zoom recordings) 

• Friday discussion on September 3 converted to remote office hour
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Today’s Agenda

• History of Program Synthesis  

• Syntax-Guided Synthesis (SYGUS)  

• Context-Free Grammars (CFGs) 
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What is program synthesis?
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1950’s - 1990’s
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John Backus

1950’s: Fortran

Backus et al., The FORTRAN Automatic Coding System, 1957

Much of my work has come from being lazy.  
I didn't like writing programs, and so, when I 
was working on the IBM 701, writing 
programs for computing missile trajectories, 
I started work on a programming system to 
make it easier to write programs. 

Essentially, compilation!
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Alonzo Church

1950’s, 1960’s: Church’s Synthesis Problem 
                            Ongoing/Reactive Programs

Church, Application of Recursive Arithmetic to the Problem of Circuit Synthesis, 1957

Church, Logic, Arithmetic and Automata, 1962

Programs represented as circuits/finite automata
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Environment Reactive 
System

Inputs

Outputs

The goal of reactive synthesis is to generate a reactive system whose behavior satisfies a 
temporal specification, in the presence of continuous interaction with an environment
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Julius Richard Buchi Lawrence Landwebber

Buchi and Landwebber, Solving Sequential Conditions by Finite-State Strategies, 1967 

1960’s, 1970’s: Church’s Synthesis Problem Solved!

Rabin,  Automata on infinite objects and Church’s Problem, 1972 

Michael O. Rabin

Extract program from  
finite-state winning strategy 

of an 
infinite two-player game
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Zohar Manna Richard Waldinger

Manna and Waldinger,  Synthesis: Dreams  Programs, 1979 ⇒

1960’s, 1970’s: Deductive Synthesis  
                            Transformational/Functional Programs

Green, Application of Theorem Proving to Problem Solving, 1963 

Cordell Green

Extract LISP-y program from 
proof of satisfiability of  

formal specification
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 Programs 
  

Dreams
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Programs 
  

Complete 
Formal  

Specifications 
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∀x,y,z .   
  x ≤ max(x,y,z)  ∧  

y ≤ max(x,y,z)  ∧
z ≤ max(x,y,z)  ∧
(max(x,y,z)=x  ∨  
max(x,y,z)=y ∨
 max(x,y,z)=z)

int max (int x,int y,int z) 
 int m = z; 
 if (z <= y) m = y; 
 if (m <  x) m = x; 
 return m; 
  

Easier?
Easier?
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int max (int x,int y,int z) 
 int m = z; 
 if (z <= y) m = y; 
 if (m <  x) m = x; 
 return m; 
  

 ( 0,  10,    2 )       10 

 (-1,  10,  20)       20 

 (-1,   -2,   -3)        -1

↦

↦

↦

Easier!
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Summers,  A Methodology for LISP Program 
Construction from Examples, 1977 

1970’s: Inductive Programming  
              Transformational Programs

Biermann,  Inference of Regular LISP Programs from 
Examples, 1978 
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Clarke  & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

1980’s: Synthesis of Reactive Programs
Clarke Emerson

Extract program (model) from 
algorithmically-constructed witness to 

satisfiability of formal specification.
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Pnueli & Rosner, On the Synthesis of a Reactive Module, 1989

1980’s: Synthesis of Reactive Programs
Pnueli

Better algorithms than Buchi, Landwebber, Rabin

Still an active research area!
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Charles Rich Richard C. Waters

Rich and Waters, Programmer’s Apprentice, MIT 1987

1980’s: Programmer’s Apprentice

▸ Codify expert knowledge on  
     how to solve programming problems 
▸ User guided synthesis

18

Slide from Roopsha Samanta

Assist, not replace!



Tessa Lau

Lau and Weld, Programming by Demonstration: An Inductive Learning Framework, 
1998

1990’s: Inductive Learning 
             Transformational Programs

Replaced ad-hoc approaches for PBE/PBD with  
techniques based on version space generalization 
 and inductive logic programming
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Post 2000: Modern Program Synthesis
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 Programs 
  

Transformational program synthesis: A search problem

Input-output 
examples 
Logical specifications 
Equivalent programs 
Natural language

Grammar 
DSL 
Partial program 
Components

Find a program in search space 
consistent with specificationSearch space
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Dimensions in modern program synthesis
User intent 
How do you tell the system what you want?  

Search strategy 
How does the system find the 
program you actually want? Search space 

What is the space of 
programs to explore? 

[Gulwani 2010]
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“Specification”

“Program”

“Synthesis”

“Specification” “Program”

“Synthesis”



Dimensions in modern program synthesis
User intent 
How do you tell the system what you want? 
Specification formalism?  
Interaction model?  
Ambiguity?  

Search space 
What is the space of 
programs to explore? 
How do you represent 
domain knowledge? 
Built-in or user-defined? 

Search strategy 
How does the system find the 
program you actually want? 
How do you guide the system 
towards relevant programs? 
How does the system exploit the 
structure of the search space? 
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Dimensions in modern program synthesis
User intent 
Input-output examples 
Logical specifications 
Equivalent programs 
Natural language 

Search space 
Grammars/DSLs 
Generators 
Components 

Search strategy 
Enumerative search + pruning 
Constraint-based search 
Representation-based search  
Stochastic search 
ML-based 
… 24
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Armando-Solar Lezamma

Solar-Lezamma et al., Combinatorial Sketching for Finite Programs, 2006

2006: Sketch

User intent 
Input-output examples 
Logical specifications 
Equivalent programs 

Search space 
Generators 

Search strategy 
Constraint-based search 
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Sumit Gulwani

Gulwani,  Automatic String Processing in Spreadsheets using Input-Output Examples, 
2011

2011: FlashFill

User intent 
Input-output examples 

Search space 
Grammars 
DSLs 

Search strategy 
Representation-based search 
(Version space algebras) 
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Today’s Agenda

• History of Program Synthesis  

• Syntax-Guided Synthesis (SYGUS)  

• Context-Free Grammars (CFGs) 
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Syntax-Guided Synthesis (SYGUS)
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• SYGUS is an instan\a\on of our program synthesis defini\on

“Specification” “Program”

“Synthesis”



Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en  

• E.g., FlashFill uses a domain-specific language for string transforma\ons 
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Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en  

• E.g., FlashFill uses a domain-specific language for string transforma\ons 

• Key idea 2: Search in the space of programs constrained by this language  

• This enables aggressive op\miza\ons to accelerate search/synthesis  

• Typically use Context-Free Grammars (CFGs) to represent a space of programs 

30



Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en  

• E.g., FlashFill uses a domain-specific language for string transforma\ons 

• Key idea 2: Search in the space of programs constrained by this language  

• This enables aggressive op\miza\ons to accelerate search/synthesis  

• Typically use Context-Free Grammars (CFGs) to represent a space of programs  

• Key idea 3: Specifica\ons are provided as logical formulas  

• Some\mes can be relaxed

31



Syntax-Guided Synthesis (SYGUS)

“Specifica\on” “Program”

Search-based technique

in a CFG
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Logical formulas



Today’s Agenda

• History of Program Synthesis  

• Syntax-Guided Synthesis (SYGUS)  

• Context-Free Grammars (CFGs) 

33



Context-Free Grammars (CFGs)

• Formal grammars are used to describe strings in a formal language  

• E.g., regular grammars/languages, tree grammars/languages, CFGs  

• Different from grammars of natural languages such as English  

• In this course, use CFGs to describe programs (which are also strings)  

• CFGs define syntax of programs (how to write programs)  

• CFGs do not define seman\cs of programs (what programs mean)  

• We will talk about seman\cs in a few lectures
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CFG Formalisms 

• Consider this CFG example: S → 01 | 0S1
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• Terminals: Symbols of the alphabet of the language being defined.  

•   

• Variables (non-terminals): A finite set of other symbols. Each of these symbols represents a language. A 
variable can be replaced.  

•   

• Start symbol: A special variable whose language is the language being defined.  

•  

• Produc\on rules (produc\ons, subs\tu\on rules, rules): These rules define how a variable can get 
replaced. A produc\on has the form: variable (head) —> a string of variables and terminals (body) 

• Lei hand side is the variable that is to be replaced. Right hand side is the “content” to replace with.  

•

{0,1}

S

S

{ S → 01, S → 0S1 }



CFG Formalisms 

• Consider this CFG example: S → 01 | 0S1
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• Terminals:   

• Non-terminals:   

• Start symbol:  

• Produc\ons: 

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG?



CFG Formalisms 

• Consider this CFG example: S → 01 | 0S1
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• Terminals:   

• Non-terminals:   

• Start symbol:  

• Produc\ons: 

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG? 

• { 0n1n | n ≥ 1 }



CFG Formalisms 

• Consider this CFG example: S → 01 | 0S1
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• Terminals:   

• Non-terminals:   

• Start symbol:  

• Produc\ons: 

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG? 

•  

• Why? How to “generate” these strings from CFG?  

•  is the “base case” and  is the “recursive case” 

{ 0n1n | n ≥ 1 }

S → 01 S → 0S1



Formal CFG Defini\on

• A Context-Free Grammar is a 4-tuple  

•  is a set of non-terminals (variables)  

•  is a set of terminals that is disjoint from  

•  is a finite set of produc\on rules  

•  is the start symbol (variable) 

(N, T, P, S)
N
T V
P ⊆ N × {N ∪ T}*
S ⊆ N
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Generate Strings from CFG: Deriva\ons 

• Given a CFG , we can derive strings in the language  defined by   

• Start with the start symbol, and repeatedly replace some variable by the body of 
one of its produc\ons, un\l no replacement is possible (only terminals) 

G L G
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Generate Strings from CFG: Deriva\ons 

• Given a CFG , we can derive strings in the language  defined by   

• Start with the start symbol, and repeatedly replace some variable by the body of 
one of its produc\ons, un\l no replacement is possible (only terminals)  

• E.g., how to derive  from previous CFG? 

G L G

000111 S → 01 | 0S1
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Generate Strings from CFG: Deriva\ons 

• Given a CFG , we can derive strings in the language  defined by   

• Start with the start symbol, and repeatedly replace some variable by the body of 
one of its produc\ons, un\l no replacement is possible (only terminals)  

• E.g., how to derive  from previous CFG?  

•  

• Can you derive  from previous CFG? 

G L G

000111 S → 01 | 0S1
S ⇒ 0S1 ⇒ 00S11 ⇒ 000111

00011
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Generate Strings from CFG: Deriva\ons 

• Given a CFG , we can derive strings in the language  defined by   

• Start with the start symbol, and repeatedly replace some variable by the body of 
one of its produc\ons, un\l no replacement is possible (only terminals)  

• E.g., how to derive  from previous CFG?  

•  

• Can you derive  from previous CFG? 

• Deriva\ons may not be unique. There may be mul\ple ways to derive the same string

G L G

000111
S ⇒ 0S1 ⇒ 00S11 ⇒ 000111

00011
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Language Defined by CFG

• Given a CFG , the language defined by , denoted , is the set of all strings that 

can be derived from , i.e.,  

• E.g., consider previous CFG with produc\ons  

• Both define the same language, though they are different grammars 

G G L(G)
G L(G) = { w | S ⇒* w }

S → ϵ, S → 0S1
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Another CFG Example

df ::= x | gather(df, k, k, s, s) | unite(df, k, k, s)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Terminals?  

• Non-terminals?  

• Start symbol?  

• Produc\ons? 

• A (small) subset of R language 
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Abstract Syntax Trees (ASTs)

• Use AST as a tree representa\on of the abstract syntac\c structure of a program  

• Each AST node denotes an operator in the program 

46

• If CFG describes a language of programs, each string in CFG corresponds to a program



Abstract Syntax Trees (ASTs)

• Use AST as a tree representa\on of the abstract syntac\c structure of a program  

• Each AST node denotes an operator in the program 

k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

df ::= x | gather(df, k, k, s, s) | unite(df, k, k, s)

• Consider: gather(unite(x, tmp1,1,2), tmp2,tmp3,3,4)

gather

unite

2tmp1

tmp2 tmp3 3

x 1
47

• If CFG describes a language of programs, each string in CFG corresponds to a program

• Consider CFG:
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Transform String to Tree: Parsing

• Broadly, transforming strings (unstructured data) into trees (structured data)  

• Depending on concrete problems, trees may be defined differently  

• In this course, we mostly use Abstract Syntax Trees (ASTs) 

• E.g., consider , parse tree for  

• Parsing itself is a research area but is not focus of this course

S ::= 01 | 0S1 0011

S

0 1S

0 1
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Today’s Agenda

• History of Program Synthesis  

• Syntax-Guided Synthesis (SYGUS)  

• Context-Free Grammars 

• Revisit SYGUS
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Revisit SYGUS

“Specifica\on” “Program”

Search-based technique

in a CFG
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Logical formulas



Formal Defini\on of SYGUS

• Given a first-order formula  in a background theory  and a CFG , the syntax-

guided synthesis problem is to find an expression  such that formula  is 

valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e]

T
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Formal Defini\on of SYGUS

• Given a first-order formula  in a background theory  and a CFG , the syntax-

guided synthesis problem is to find an expression  such that formula  is 

valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e]

T
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“Specifica\on” “Program”

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Search-based technique



Formal Defini\on of SYGUS

• Given a first-order formula  in a background theory  and a CFG , the syntax-

guided synthesis problem is to find an expression  such that formula  is 

valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e]

T
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“Specifica\on” “Program”

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Search-based technique

Theory of Integer Linear Arithme\c



Formal Defini\on of SYGUS

• Given a first-order formula  in a background theory  and a CFG , the syntax-

guided synthesis problem is to find an expression  such that formula  is 

valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e]

T
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“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

f(x) = x + 1
Poten\al Solu\ons:Theory of Integer Linear Arithme\c

1+1 is valid in ILA



Formal Defini\on of SYGUS

• Given a first-order formula  in a background theory  and a CFG , the syntax-

guided synthesis problem is to find an expression  such that formula  is 

valid in theory . 

ϕ T G
e ∈ G ϕ[ f/e]

T
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“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

f(x) = x + 1
f(x) = x + x

Poten\al Solu\ons:Theory of Integer Linear Arithme\c

1+1 is valid in ILA



SYGUS Recap

“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Syntac\c Constraint
Seman\c Constraint

f(x) = x + 1
f(x) = x + x

Poten\al Solu\ons:
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Summary

• History of Program Synthesis  

• Deduc\ve synthesis —> Induc\ve synthesis  

• Syntax-Guided Synthesis (SYGUS)  

• Key idea: Search within a constrained space of programs defined by grammars  

• Context-Free Grammars (CFGs) 
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