
Lecture 2

EECS 598-008 & EECS 498-008:

Intelligent Programming Systems

1

Announcements

• A0 due midnight Monday, September 6

• A0 tutorial released on Canvas (see zoom recordings)

• Friday discussion on September 3 converted to remote office hour

2

Today’s Agenda

• History of Program Synthesis

• Syntax-Guided Synthesis (SYGUS)

• Context-Free Grammars (CFGs)

3

What is program synthesis?

4

Slide from Roopsha Samanta

1950’s - 1990’s

5

Slide from Roopsha Samanta

John Backus

1950’s: Fortran

Backus et al., The FORTRAN Automatic Coding System, 1957

Much of my work has come from being lazy.
I didn't like writing programs, and so, when I
was working on the IBM 701, writing
programs for computing missile trajectories,
I started work on a programming system to
make it easier to write programs.

Essentially, compilation!

6

Slide from Roopsha Samanta

Alonzo Church

1950’s, 1960’s: Church’s Synthesis Problem
 Ongoing/Reactive Programs

Church, Application of Recursive Arithmetic to the Problem of Circuit Synthesis, 1957

Church, Logic, Arithmetic and Automata, 1962

Programs represented as circuits/finite automata

7

Slide from Roopsha Samanta

Environment Reactive
System

Inputs

Outputs

The goal of reactive synthesis is to generate a reactive system whose behavior satisfies a
temporal specification, in the presence of continuous interaction with an environment

8

Slide from Roopsha Samanta

Julius Richard Buchi Lawrence Landwebber

Buchi and Landwebber, Solving Sequential Conditions by Finite-State Strategies, 1967

1960’s, 1970’s: Church’s Synthesis Problem Solved!

Rabin, Automata on infinite objects and Church’s Problem, 1972

Michael O. Rabin

Extract program from
finite-state winning strategy

of an
infinite two-player game

9

Slide from Roopsha Samanta

Zohar Manna Richard Waldinger

Manna and Waldinger, Synthesis: Dreams Programs, 1979 ⇒

1960’s, 1970’s: Deductive Synthesis
 Transformational/Functional Programs

Green, Application of Theorem Proving to Problem Solving, 1963

Cordell Green

Extract LISP-y program from
proof of satisfiability of

formal specification

10

Slide from Roopsha Samanta

 Programs

Dreams

11

Slide from Roopsha Samanta

Programs

Complete
Formal

Specifications

12

Slide from Roopsha Samanta

∀x,y,z .
 x ≤ max(x,y,z) ∧

y ≤ max(x,y,z) ∧
z ≤ max(x,y,z) ∧
(max(x,y,z)=x ∨
max(x,y,z)=y ∨
 max(x,y,z)=z)

int max (int x,int y,int z)
 int m = z;
 if (z <= y) m = y;
 if (m < x) m = x;
 return m;

Easier?
Easier?

13

Slide from Roopsha Samanta

int max (int x,int y,int z)
 int m = z;
 if (z <= y) m = y;
 if (m < x) m = x;
 return m;

 (0, 10, 2) 10

 (-1, 10, 20) 20

 (-1, -2, -3) -1

↦

↦

↦

Easier!

14

Slide from Roopsha Samanta

Summers, A Methodology for LISP Program
Construction from Examples, 1977

1970’s: Inductive Programming
 Transformational Programs

Biermann, Inference of Regular LISP Programs from
Examples, 1978

15

Slide from Roopsha Samanta

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

1980’s: Synthesis of Reactive Programs
Clarke Emerson

Extract program (model) from
algorithmically-constructed witness to

satisfiability of formal specification.

16

Slide from Roopsha Samanta

Pnueli & Rosner, On the Synthesis of a Reactive Module, 1989

1980’s: Synthesis of Reactive Programs
Pnueli

Better algorithms than Buchi, Landwebber, Rabin

Still an active research area!

17

Slide from Roopsha Samanta

Charles Rich Richard C. Waters

Rich and Waters, Programmer’s Apprentice, MIT 1987

1980’s: Programmer’s Apprentice

▸ Codify expert knowledge on
 how to solve programming problems
▸ User guided synthesis

18

Slide from Roopsha Samanta

Assist, not replace!

Tessa Lau

Lau and Weld, Programming by Demonstration: An Inductive Learning Framework,
1998

1990’s: Inductive Learning
 Transformational Programs

Replaced ad-hoc approaches for PBE/PBD with
techniques based on version space generalization
 and inductive logic programming

19

Slide from Roopsha Samanta

Post 2000: Modern Program Synthesis

20

Slide from Roopsha Samanta

 Programs

Transformational program synthesis: A search problem

Input-output
examples
Logical specifications
Equivalent programs
Natural language

Grammar
DSL
Partial program
Components

Find a program in search space
consistent with specificationSearch space

21

Slide from Roopsha Samanta

Dimensions in modern program synthesis
User intent
How do you tell the system what you want?

Search strategy
How does the system find the
program you actually want? Search space

What is the space of
programs to explore?

[Gulwani 2010]

22

Slide from Roopsha Samanta

“Specification”

“Program”

“Synthesis”

“Specification” “Program”

“Synthesis”

Dimensions in modern program synthesis
User intent
How do you tell the system what you want?
Specification formalism?
Interaction model?
Ambiguity?

Search space
What is the space of
programs to explore?
How do you represent
domain knowledge?
Built-in or user-defined?

Search strategy
How does the system find the
program you actually want?
How do you guide the system
towards relevant programs?
How does the system exploit the
structure of the search space?

23

Slide from Roopsha Samanta

Dimensions in modern program synthesis
User intent
Input-output examples
Logical specifications
Equivalent programs
Natural language

Search space
Grammars/DSLs
Generators
Components

Search strategy
Enumerative search + pruning
Constraint-based search
Representation-based search
Stochastic search
ML-based
… 24

Slide from Roopsha Samanta

Armando-Solar Lezamma

Solar-Lezamma et al., Combinatorial Sketching for Finite Programs, 2006

2006: Sketch

User intent
Input-output examples
Logical specifications
Equivalent programs

Search space
Generators

Search strategy
Constraint-based search

25

Slide from Roopsha Samanta

Sumit Gulwani

Gulwani, Automatic String Processing in Spreadsheets using Input-Output Examples,
2011

2011: FlashFill

User intent
Input-output examples

Search space
Grammars
DSLs

Search strategy
Representation-based search
(Version space algebras)

26

Slide from Roopsha Samanta

Today’s Agenda

• History of Program Synthesis

• Syntax-Guided Synthesis (SYGUS)

• Context-Free Grammars (CFGs)

27

Syntax-Guided Synthesis (SYGUS)

28

• SYGUS is an instan\a\on of our program synthesis defini\on

“Specification” “Program”

“Synthesis”

Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en

• E.g., FlashFill uses a domain-specific language for string transforma\ons

29

Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en

• E.g., FlashFill uses a domain-specific language for string transforma\ons

• Key idea 2: Search in the space of programs constrained by this language

• This enables aggressive op\miza\ons to accelerate search/synthesis

• Typically use Context-Free Grammars (CFGs) to represent a space of programs

30

Syntax-Guided Synthesis (SYGUS)

• Key idea 1: Restrict the programming language in which a program is wri`en

• E.g., FlashFill uses a domain-specific language for string transforma\ons

• Key idea 2: Search in the space of programs constrained by this language

• This enables aggressive op\miza\ons to accelerate search/synthesis

• Typically use Context-Free Grammars (CFGs) to represent a space of programs

• Key idea 3: Specifica\ons are provided as logical formulas

• Some\mes can be relaxed

31

Syntax-Guided Synthesis (SYGUS)

“Specifica\on” “Program”

Search-based technique

in a CFG

32

Logical formulas

Today’s Agenda

• History of Program Synthesis

• Syntax-Guided Synthesis (SYGUS)

• Context-Free Grammars (CFGs)

33

Context-Free Grammars (CFGs)

• Formal grammars are used to describe strings in a formal language

• E.g., regular grammars/languages, tree grammars/languages, CFGs

• Different from grammars of natural languages such as English

• In this course, use CFGs to describe programs (which are also strings)

• CFGs define syntax of programs (how to write programs)

• CFGs do not define seman\cs of programs (what programs mean)

• We will talk about seman\cs in a few lectures

34

CFG Formalisms

• Consider this CFG example: S → 01 | 0S1

35

• Terminals: Symbols of the alphabet of the language being defined.

•

• Variables (non-terminals): A finite set of other symbols. Each of these symbols represents a language. A
variable can be replaced.

•

• Start symbol: A special variable whose language is the language being defined.

•

• Produc\on rules (produc\ons, subs\tu\on rules, rules): These rules define how a variable can get
replaced. A produc\on has the form: variable (head) —> a string of variables and terminals (body)

• Lei hand side is the variable that is to be replaced. Right hand side is the “content” to replace with.

•

{0,1}

S

S

{ S → 01, S → 0S1 }

CFG Formalisms

• Consider this CFG example: S → 01 | 0S1

36

• Terminals:

• Non-terminals:

• Start symbol:

• Produc\ons:

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG?

CFG Formalisms

• Consider this CFG example: S → 01 | 0S1

37

• Terminals:

• Non-terminals:

• Start symbol:

• Produc\ons:

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG?

• { 0n1n | n ≥ 1 }

CFG Formalisms

• Consider this CFG example: S → 01 | 0S1

38

• Terminals:

• Non-terminals:

• Start symbol:

• Produc\ons:

{0,1}
S

S
{ S → 01, S → 0S1 }

• What’s the language that’s represented by this CFG?

•

• Why? How to “generate” these strings from CFG?

• is the “base case” and is the “recursive case”

{ 0n1n | n ≥ 1 }

S → 01 S → 0S1

Formal CFG Defini\on

• A Context-Free Grammar is a 4-tuple

• is a set of non-terminals (variables)

• is a set of terminals that is disjoint from

• is a finite set of produc\on rules

• is the start symbol (variable)

(N, T, P, S)
N
T V
P ⊆ N × {N ∪ T}*
S ⊆ N

39

Generate Strings from CFG: Deriva\ons

• Given a CFG , we can derive strings in the language defined by

• Start with the start symbol, and repeatedly replace some variable by the body of
one of its produc\ons, un\l no replacement is possible (only terminals)

G L G

40

Generate Strings from CFG: Deriva\ons

• Given a CFG , we can derive strings in the language defined by

• Start with the start symbol, and repeatedly replace some variable by the body of
one of its produc\ons, un\l no replacement is possible (only terminals)

• E.g., how to derive from previous CFG?

G L G

000111 S → 01 | 0S1

41

Generate Strings from CFG: Deriva\ons

• Given a CFG , we can derive strings in the language defined by

• Start with the start symbol, and repeatedly replace some variable by the body of
one of its produc\ons, un\l no replacement is possible (only terminals)

• E.g., how to derive from previous CFG?

•

• Can you derive from previous CFG?

G L G

000111 S → 01 | 0S1
S ⇒ 0S1 ⇒ 00S11 ⇒ 000111

00011

42

Generate Strings from CFG: Deriva\ons

• Given a CFG , we can derive strings in the language defined by

• Start with the start symbol, and repeatedly replace some variable by the body of
one of its produc\ons, un\l no replacement is possible (only terminals)

• E.g., how to derive from previous CFG?

•

• Can you derive from previous CFG?

• Deriva\ons may not be unique. There may be mul\ple ways to derive the same string

G L G

000111
S ⇒ 0S1 ⇒ 00S11 ⇒ 000111

00011

43

Language Defined by CFG

• Given a CFG , the language defined by , denoted , is the set of all strings that

can be derived from , i.e.,

• E.g., consider previous CFG with produc\ons

• Both define the same language, though they are different grammars

G G L(G)
G L(G) = { w | S ⇒* w }

S → ϵ, S → 0S1

44

Another CFG Example

df ::= x | gather(df, k, k, s, s) | unite(df, k, k, s)
k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

• Terminals?

• Non-terminals?

• Start symbol?

• Produc\ons?

• A (small) subset of R language

45

Abstract Syntax Trees (ASTs)

• Use AST as a tree representa\on of the abstract syntac\c structure of a program

• Each AST node denotes an operator in the program

46

• If CFG describes a language of programs, each string in CFG corresponds to a program

Abstract Syntax Trees (ASTs)

• Use AST as a tree representa\on of the abstract syntac\c structure of a program

• Each AST node denotes an operator in the program

k ::= 1 | 2 | 3 | 4
s ::= tmp1 | tmp2 | tmp3

df ::= x | gather(df, k, k, s, s) | unite(df, k, k, s)

• Consider: gather(unite(x, tmp1,1,2), tmp2,tmp3,3,4)

gather

unite

2tmp1

tmp2 tmp3 3

x 1
47

• If CFG describes a language of programs, each string in CFG corresponds to a program

• Consider CFG:

4

Transform String to Tree: Parsing

• Broadly, transforming strings (unstructured data) into trees (structured data)

• Depending on concrete problems, trees may be defined differently

• In this course, we mostly use Abstract Syntax Trees (ASTs)

• E.g., consider , parse tree for

• Parsing itself is a research area but is not focus of this course

S ::= 01 | 0S1 0011

S

0 1S

0 1

48

Today’s Agenda

• History of Program Synthesis

• Syntax-Guided Synthesis (SYGUS)

• Context-Free Grammars

• Revisit SYGUS

49

Revisit SYGUS

“Specifica\on” “Program”

Search-based technique

in a CFG

50

Logical formulas

Formal Defini\on of SYGUS

• Given a first-order formula in a background theory and a CFG , the syntax-

guided synthesis problem is to find an expression such that formula is

valid in theory .

ϕ T G
e ∈ G ϕ[f/e]

T

51

Formal Defini\on of SYGUS

• Given a first-order formula in a background theory and a CFG , the syntax-

guided synthesis problem is to find an expression such that formula is

valid in theory .

ϕ T G
e ∈ G ϕ[f/e]

T

52

“Specifica\on” “Program”

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Search-based technique

Formal Defini\on of SYGUS

• Given a first-order formula in a background theory and a CFG , the syntax-

guided synthesis problem is to find an expression such that formula is

valid in theory .

ϕ T G
e ∈ G ϕ[f/e]

T

53

“Specifica\on” “Program”

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Search-based technique

Theory of Integer Linear Arithme\c

Formal Defini\on of SYGUS

• Given a first-order formula in a background theory and a CFG , the syntax-

guided synthesis problem is to find an expression such that formula is

valid in theory .

ϕ T G
e ∈ G ϕ[f/e]

T

54

“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

f(x) = x + 1
Poten\al Solu\ons:Theory of Integer Linear Arithme\c

1+1 is valid in ILA

Formal Defini\on of SYGUS

• Given a first-order formula in a background theory and a CFG , the syntax-

guided synthesis problem is to find an expression such that formula is

valid in theory .

ϕ T G
e ∈ G ϕ[f/e]

T

55

“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

f(x) = x + 1
f(x) = x + x

Poten\al Solu\ons:Theory of Integer Linear Arithme\c

1+1 is valid in ILA

SYGUS Recap

“Specifica\on” “Program”

Search-based technique

in a CFG

e ::= x | 1 | e + e
f(1) = 2

Syntac\c Constraint
Seman\c Constraint

f(x) = x + 1
f(x) = x + x

Poten\al Solu\ons:

56

Summary

• History of Program Synthesis

• Deduc\ve synthesis —> Induc\ve synthesis

• Syntax-Guided Synthesis (SYGUS)

• Key idea: Search within a constrained space of programs defined by grammars

• Context-Free Grammars (CFGs)

57

