
Lecture 10

EECS 598-008 & EECS 498-008:  
Intelligent Programming Systems 



Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)   

• Zoom link on course website 

• Discuss A3  

• Paper presentaMon assignment out by midnight today 

• 15 people submiOed preferences  

• 12 slots 
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So Far…
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SpecificaMon Program

Goal: minimize .me

• Setup: given spec, find a program that saMsfies spec  
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SpecificaMon Program

Goal: minimize .me

• Setup: given spec, find a program that saMsfies spec  

• Problems we’ve looked at:  

• Search space: how to define search space?  

• Search: how to find programs that saMsfy specificaMon?  

• Efficiency: How to efficiently search programs? 
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SpecificaMon Program

Goal: minimize .me

• GeneralizaMon: saMsfy spec  saMsfy user intent 

• Because inducMve specificaMon is fundamentally ambiguous 
≠

• Setup: given spec, find a program that saMsfies spec 



GeneralizaMon
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• Eventually, we want programs that saMsfy user intent, not just examples 
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• Eventually, we want programs that saMsfy user intent, not just examples 

• For some domains, one example suffices  

• E.g., table transformaMons for R 

• For many other domains, need mulMple examples  

• E.g., regular expressions  

• Can we guarantee to saMsfy user intent using inducMve specificaMons?  

• In theory, no, b/c need (potenMally in general infinitely?) many examples 

• In pracMce, yes, with right approach 



Improving GeneralizaMon
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• Ranking (induc.ve bias) 

• InteracMon  

• MulM-modality 



InducMve Bias / Ranking
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• Covered in Lecture 7 (search prioriMzaMon)  

• Occam’s razor (smallest program generalizes beOer)  

• Weighted search (explicit cost/ranking/scoring funcMons)  

• StaMsMcal models (e.g., n-gram, neural nets) 



Improving GeneralizaMon

15

• Ranking (inducMve bias) 

• Interac.on  

• MulM-modality 
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems.. 

• How to pick “good” specificaMons?  

• How to explain each  to (non-expert) users?  

• How to know  is correct?  

Pi

Pn



InteracMve Program Synthesis 
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems.. 

• How to pick “good” specificaMons?  

• How to explain each  to (non-expert) users?  

• How to know  is correct?  

• How to reuse past computaMon?  

• Etc. 

Pi

Pn



How To Pick “Good” SpecificaMons?
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How To Pick “Good” SpecificaMons?
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• Idea: let synthesizer suggest specificaMons!  

• A form of “acMve learning” 
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• Idea: let synthesizer suggest specificaMons!  

• A form of “acMve learning” 

• AcMve learning 

• Machine learning approach  

• Interact with users to prioriMze data labeling process

I1 → ? I1 → O1

P1
I2 → ? I2 → O2

... Pn



Synthesizers Suggest Input, Users Label Output
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• Related work 

• Oracle-guided component-based program synthesis (ICSE’10)  

• User InteracMon Models for DisambiguaMon in Programming by Example (UIST’15) 

• InteracMve Query Synthesis from Input-Output Examples (SIGMOD’17)  

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18) 

• Synthesis with Abstract Examples (CAV’21)  

• QuesMon SelecMon for InteracMve Program Synthesis (PLDI’21)  
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• Related work 

• Oracle-guided component-based program synthesis (ICSE’10)  

• User InteracMon Models for DisambiguaMon in Programming by Example (UIST’15) 

• InteracMve Query Synthesis from Input-Output Examples (SIGMOD’17)  

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18) 

• Synthesis with Abstract Examples (CAV’21)  

• QuesMon SelecMon for InteracMve Program Synthesis (PLDI’21)  

• Core problem: what input to suggest? 
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• FlashProg 

• PBE-based data extracMon (from textual docs, spreadsheets, webpages)  

• Implemented as web applicaMon



FlashProg System
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• Two features 

• Program navigaMon: visualize mulMple synthesized programs  

• ConversaMonal clarificaMon: disambiguaMon 

• FlashProg 

• PBE-based data extracMon (from textual docs, spreadsheets, webpages)  

• Implemented as web applicaMon



FlashProg System
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Add examples



FlashProg System
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Input text



FlashProg System
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Extracted data



FlashProg System
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Output Preview



FlashProg System
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Synthesized 
Program
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• Consider task: given a list of papers, extract all authors 
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

Wrong program
Fix: more examples?
Fix: choose another prog?

• Consider task: given a list of papers, extract all authors 
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

Wrong program
Fix: more examples?
Fix: choose another prog?
Or, suggest prog?

• Consider task: given a list of papers, extract all authors 
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

• Consider task: given a list of papers, extract all authors 
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• When ambiguity occurs:  
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• When ambiguity occurs:  

• User manually provides more examples  

• User manually selects a different program  

• System automaMcally suggests input examples  

• User manually labels output examples 

• EffecMvely selects a different program

• What’re some potenMal limitaMons? 



Input SelecMon with Guarantees
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• Prior work “randomly” selects input examples 

• What guarantees can we provide?



QuesMon SelecMon for InteracMve Program Synthesis 
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• Key idea: even with worst user answer, quesMon would result in best reducMon 

• Technique: based on minimax branch 

• EvaluaMon result: reduce number of quesMons by 2x



Improving GeneralizaMon
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• Ranking (inducMve bias) 

• InteracMon  

• Mul.-modality 
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SpecificaMon
Program

• MulM-modal specificaMon:  

• MulMple kinds of specificaMons: examples, natural language, etc. 
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• MulM-modal specificaMon:  

• MulMple kinds of specificaMons: examples, natural language, etc. 

• Related work 
• MulM-Modal Synthesis of Regular Expressions — examples + NL  

• InteracMve Program Synthesis by Augmented Examples — examples + annotaMons 

• LooPy: InteracMve Program Synthesis with Control Structures — examples + parMal program  

• TF-Coder: Program Synthesis for Tensor ManipulaMons — examples + NL + constants  

• Etc. 



Synthesis of Regular Expressions
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• Classic problem daMng back to 1980s 

• Seminal L* work by Angluin 1987



L* Algorithm

61

• Problem: idenMfy regular set from examples  

• Consider posiMve examples (members) and negaMve examples (nonmembers) 
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• Problem: idenMfy regular set from examples  

• Consider posiMve examples (members) and negaMve examples (nonmembers) 

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?
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• Problem: idenMfy regular set from examples  

• Consider posiMve examples (members) and negaMve examples (nonmembers) 

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

Answer 1: yes/no
Answer 2: yes/no (and here is a counterexample s)
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• Main result 

• Learn any regular set from examples 

• Time polynomial in number of states of the corresponding minimum DFA 

• Time polynomial in maximum length of any counterexample provided by Teacher

L* Algorithm



Regular Expression Synthesis Revisited
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• A lot of work recently  
• Synthesizing Regular Expressions from Examples for Introductory Automata Assignments  

• AutomaMc Repair of Regular Expressions  

• MulM-Modal Synthesis of Regular Expressions  

• Sketch-Driven Regular Expression GeneraMon from Natural Language and Examples 

• AutomaMc repair of vulnerable regular expressions  

• InteracMve Program Synthesis by Augmented Examples 

• OpMmal Neural Program Synthesis from MulMmodal SpecificaMons  

• MulM-modal Program Inference: a Marriage of Pre-trainedLanguage Models and 
Component-based Synthesis
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• Regexes  

• Used for paOern matching strings  

• Given regex r and string s, r either matches s or r doesn’t match s 

• hOps://regex101.com/ 

https://regex101.com/


Regular Expressions 101
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• a(.)*b matches strings that start with a, end with b, have anything in between
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• a(.)+b matches strings that start with a, end with b, have anything non-empty in between

Regular Expressions 101
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Regular Expressions 101
• Different dialects/variants  

• SomeMmes used to find strings 
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• SomeMmes used to find strings  

• Common features 

• Character classes (e.g., \d, \w, \s) 

• Klenee start and quanMfiers  
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Regular Expressions 101
• Different dialects/variants  

• SomeMmes used to find strings  

• Common features 

• Character classes (e.g., \d, \w, \s) 

• Klenee start and quanMfiers  

• Focus on a small (but sMll expressive) regex DSL
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• Consider CFG (simplified):  

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

Regular Expressions 101
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• Consider CFG (simplified):  

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

• Regular expressions in this DSL:  

• StartWith(<digit>)  

• Concat( a, Concat( KleeneStar(<any>), b ) )  

Regular Expressions 101
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• Consider CFG (simplified):  

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

• Regular expressions in this DSL:  

• StartWith(<digit>)  

• Concat( a, Concat( KleeneStar(<any>), b ) )  

• Repeat(<char>, 5)

Regular Expressions 101
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• Given posiMve and negaMve strings, find regex that matches all posiMve strings and 
none of negaMve strings  

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

How To Explain A Regex?
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• Given posiMve and negaMve strings, find regex that matches all posiMve strings and 
none of negaMve strings  

• { “a”+ }, what’s a regex?  

• { “a”+, “b”- }, what’s a regex? 

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

How To Explain A Regex?

• Take-away: examples are not sufficient (under-constrained)  
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• Or, we can use natural language to describe our intent  

• Write a regex that matches only capital leOers

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

How To Explain A Regex?
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• Or, we can use natural language to describe our intent  

• Write a regex that matches only capital leOers

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)  

cc  ::= <digit> | <char> | <any> | ..  

k   ::= 1 | 2 | .. 

How To Explain A Regex?

• Take-away: NL is ambiguous 
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How To Explain A Regex?
• Examples + NL
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• Key insight: use both examples and natural language as specificaMon

Regel System
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Regel System

ExamplesNL

Sketch

Regular Expression
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Regae System 

• Key insight: even richer specificaMon modaliMes through UI
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Regae System 
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Regae System 
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Regae System 



MulM-Modal Program Synthesis
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SpecificaMon
Program

• MulM-modal specificaMon:  

• MulMple kinds of specificaMons: examples, natural language, etc. 
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SpecificaMon Feedback

• MulM-modal specificaMon:  

• MulMple kinds of specificaMons: examples, natural language, etc.  

• MulMple kinds of feedback: synthesized programs, examples, etc. 



MulM-Modal Program Synthesis
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• Not yet well explored 
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Interpretable Program Synthesis
• Key idea: visualize synthesis process to users 
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InteracMve, MulM-Modal Program Synthesis 

…


