
Lecture 10

EECS 598-008 & EECS 498-008: 

Intelligent Programming Systems 



Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)  


• Zoom link on course website


• Discuss A3 


• Paper presentation assignment out by midnight today


• 15 people submitted preferences 


• 12 slots 
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So Far…
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Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec 
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Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec 


• Problems we’ve looked at: 


• Search space: how to define search space? 


• Search: how to find programs that satisfy specification? 


• Efficiency: How to efficiently search programs? 
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Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec 
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Specification Program

Goal: minimize time

• Generalization: satisfy spec  satisfy user intent


• Because inductive specification is fundamentally ambiguous 
≠

• Setup: given spec, find a program that satisfies spec 
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• Eventually, we want programs that satisfy user intent, not just examples


• For some domains, one example suffices 


• E.g., table transformations for R


• For many other domains, need multiple examples 


• E.g., regular expressions 


• Can we guarantee to satisfy user intent using inductive specifications? 


• In theory, no, b/c need (potentially in general infinitely?) many examples


• In practice, yes, with right approach




Improving Generalization
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• Ranking (inductive bias)


• Interaction 


• Multi-modality 



Inductive Bias / Ranking
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• Covered in Lecture 7 (search prioritization) 


• Occam’s razor (smallest program generalizes better) 


• Weighted search (explicit cost/ranking/scoring functions) 


• Statistical models (e.g., n-gram, neural nets) 



Improving Generalization
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• Ranking (inductive bias)


• Interaction 


• Multi-modality 
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..


• How to pick “good” specifications? 


• How to explain each  to (non-expert) users? 


• How to know  is correct? 
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Interactive Program Synthesis 
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Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..


• How to pick “good” specifications? 


• How to explain each  to (non-expert) users? 


• How to know  is correct? 


• How to reuse past computation? 


• Etc. 

Pi

Pn



How To Pick “Good” Specifications?
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How To Pick “Good” Specifications?
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• Idea: let synthesizer suggest specifications! 


• A form of “active learning” 



How To Pick “Good” Specifications?
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• Idea: let synthesizer suggest specifications! 


• A form of “active learning” 

• Active learning


• Machine learning approach 


• Interact with users to prioritize data labeling process

I1 → ? I1 → O1

P1
I2 → ? I2 → O2

... Pn



Synthesizers Suggest Input, Users Label Output
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• Related work


• Oracle-guided component-based program synthesis (ICSE’10) 


• User Interaction Models for Disambiguation in Programming by Example (UIST’15)


• Interactive Query Synthesis from Input-Output Examples (SIGMOD’17) 


• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)


• Synthesis with Abstract Examples (CAV’21) 


• Question Selection for Interactive Program Synthesis (PLDI’21) 
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• Related work


• Oracle-guided component-based program synthesis (ICSE’10) 


• User Interaction Models for Disambiguation in Programming by Example (UIST’15)


• Interactive Query Synthesis from Input-Output Examples (SIGMOD’17) 


• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)


• Synthesis with Abstract Examples (CAV’21) 


• Question Selection for Interactive Program Synthesis (PLDI’21) 


• Core problem: what input to suggest? 



FlashProg System
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• FlashProg


• PBE-based data extraction (from textual docs, spreadsheets, webpages) 


• Implemented as web application



FlashProg System
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• Two features


• Program navigation: visualize multiple synthesized programs 


• Conversational clarification: disambiguation 

• FlashProg


• PBE-based data extraction (from textual docs, spreadsheets, webpages) 


• Implemented as web application



FlashProg System
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Add examples



FlashProg System
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Input text



FlashProg System
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Extracted data



FlashProg System
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Output Preview



FlashProg System
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Synthesized 
Program



FlashProg System

33

• Consider task: given a list of papers, extract all authors 
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

Wrong program
Fix: more examples?
Fix: choose another prog?

• Consider task: given a list of papers, extract all authors 
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

Wrong program
Fix: more examples?
Fix: choose another prog?
Or, suggest prog?

• Consider task: given a list of papers, extract all authors 



FlashProg System
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• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples 

• Consider task: given a list of papers, extract all authors 
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• When ambiguity occurs: 
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• When ambiguity occurs: 


• User manually provides more examples 


• User manually selects a different program 


• System automatically suggests input examples 


• User manually labels output examples


• Effectively selects a different program

• What’re some potential limitations? 



Input Selection with Guarantees
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• Prior work “randomly” selects input examples


• What guarantees can we provide?



Question Selection for Interactive Program Synthesis 
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• Key idea: even with worst user answer, question would result in best reduction


• Technique: based on minimax branch


• Evaluation result: reduce number of questions by 2x



Improving Generalization
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• Ranking (inductive bias)


• Interaction 


• Multi-modality 
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Specification
Program

• Multi-modal specification: 


• Multiple kinds of specifications: examples, natural language, etc. 
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• Multi-modal specification: 


• Multiple kinds of specifications: examples, natural language, etc. 

• Related work

• Multi-Modal Synthesis of Regular Expressions — examples + NL 


• Interactive Program Synthesis by Augmented Examples — examples + annotations


• LooPy: Interactive Program Synthesis with Control Structures — examples + partial program 


• TF-Coder: Program Synthesis for Tensor Manipulations — examples + NL + constants 


• Etc. 



Synthesis of Regular Expressions
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• Classic problem dating back to 1980s


• Seminal L* work by Angluin 1987



L* Algorithm
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• Problem: identify regular set from examples 


• Consider positive examples (members) and negative examples (nonmembers) 
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• Problem: identify regular set from examples 


• Consider positive examples (members) and negative examples (nonmembers) 

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

Answer 1: yes/no
Answer 2: yes/no (and here is a counterexample s)
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• Main result


• Learn any regular set from examples


• Time polynomial in number of states of the corresponding minimum DFA


• Time polynomial in maximum length of any counterexample provided by Teacher

L* Algorithm



Regular Expression Synthesis Revisited
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• A lot of work recently 

• Synthesizing Regular Expressions from Examples for Introductory Automata Assignments 


• Automatic Repair of Regular Expressions 


• Multi-Modal Synthesis of Regular Expressions 


• Sketch-Driven Regular Expression Generation from Natural Language and Examples


• Automatic repair of vulnerable regular expressions 


• Interactive Program Synthesis by Augmented Examples


• Optimal Neural Program Synthesis from Multimodal Specifications 


• Multi-modal Program Inference: a Marriage of Pre-trainedLanguage Models and 
Component-based Synthesis



Regular Expressions 101
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• Regexes 


• Used for pattern matching strings 


• Given regex r and string s, r either matches s or r doesn’t match s


• https://regex101.com/ 

https://regex101.com/


Regular Expressions 101
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• a(.)*b matches strings that start with a, end with b, have anything in between
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• a(.)+b matches strings that start with a, end with b, have anything non-empty in between

Regular Expressions 101
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Regular Expressions 101
• Different dialects/variants 


• Sometimes used to find strings 


• Common features


• Character classes (e.g., \d, \w, \s)


• Klenee start and quantifiers 


• Focus on a small (but still expressive) regex DSL
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• Consider CFG (simplified): 


r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

Regular Expressions 101
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Regular Expressions 101
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• Consider CFG (simplified): 


r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

• Regular expressions in this DSL: 


• StartWith(<digit>) 


• Concat( a, Concat( KleeneStar(<any>), b ) ) 


• Repeat(<char>, 5)

Regular Expressions 101
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• Given positive and negative strings, find regex that matches all positive strings and 
none of negative strings 


r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

How To Explain A Regex?
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• Given positive and negative strings, find regex that matches all positive strings and 
none of negative strings 


• { “a”+ }, what’s a regex? 


• { “a”+, “b”- }, what’s a regex? 

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

How To Explain A Regex?

• Take-away: examples are not sufficient (under-constrained)  
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• Or, we can use natural language to describe our intent 


• Write a regex that matches only capital letters

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

How To Explain A Regex?
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• Or, we can use natural language to describe our intent 


• Write a regex that matches only capital letters

r   ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k) 


cc  ::= <digit> | <char> | <any> | .. 


k   ::= 1 | 2 | .. 

How To Explain A Regex?

• Take-away: NL is ambiguous 
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How To Explain A Regex?
• Examples + NL
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• Key insight: use both examples and natural language as specification

Regel System
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Regel System

ExamplesNL

Sketch

Regular Expression
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Regae System 

• Key insight: even richer specification modalities through UI
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Regae System 
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Regae System 
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Regae System 
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Specification
Program

• Multi-modal specification: 


• Multiple kinds of specifications: examples, natural language, etc. 
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Specification Feedback

• Multi-modal specification: 


• Multiple kinds of specifications: examples, natural language, etc. 


• Multiple kinds of feedback: synthesized programs, examples, etc. 



Multi-Modal Program Synthesis
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• Not yet well explored 
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Interpretable Program Synthesis
• Key idea: visualize synthesis process to users 
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Interactive, Multi-Modal Program Synthesis 

…


