
Lecture 10

EECS 598-008 & EECS 498-008:

Intelligent Programming Systems

Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)

• Zoom link on course website

• Discuss A3

• Paper presentation assignment out by midnight today

• 15 people submitted preferences

• 12 slots

2

So Far…

3

Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec

So Far…

4

Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec

• Problems we’ve looked at:

• Search space: how to define search space?

• Search: how to find programs that satisfy specification?

• Efficiency: How to efficiently search programs?

What’s Wrong with This Setup?

5

Specification Program

Goal: minimize time

• Setup: given spec, find a program that satisfies spec

What’s Wrong with This Setup?

6

Specification Program

Goal: minimize time

• Generalization: satisfy spec satisfy user intent

• Because inductive specification is fundamentally ambiguous
≠

• Setup: given spec, find a program that satisfies spec

Generalization

7

• Eventually, we want programs that satisfy user intent, not just examples

Generalization

8

• Eventually, we want programs that satisfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformations for R

Generalization

9

• Eventually, we want programs that satisfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformations for R

• For many other domains, need multiple examples

• E.g., regular expressions

Generalization

10

• Eventually, we want programs that satisfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformations for R

• For many other domains, need multiple examples

• E.g., regular expressions

• Can we guarantee to satisfy user intent using inductive specifications?

Generalization

11

• Eventually, we want programs that satisfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformations for R

• For many other domains, need multiple examples

• E.g., regular expressions

• Can we guarantee to satisfy user intent using inductive specifications?

• In theory, no, b/c need (potentially in general infinitely?) many examples

Generalization

12

• Eventually, we want programs that satisfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformations for R

• For many other domains, need multiple examples

• E.g., regular expressions

• Can we guarantee to satisfy user intent using inductive specifications?

• In theory, no, b/c need (potentially in general infinitely?) many examples

• In practice, yes, with right approach

Improving Generalization

13

• Ranking (inductive bias)

• Interaction

• Multi-modality

Inductive Bias / Ranking

14

• Covered in Lecture 7 (search prioritization)

• Occam’s razor (smallest program generalizes better)

• Weighted search (explicit cost/ranking/scoring functions)

• Statistical models (e.g., n-gram, neural nets)

Improving Generalization

15

• Ranking (inductive bias)

• Interaction

• Multi-modality

Interactive Program Synthesis

16

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

Interactive Program Synthesis

17

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..

• How to pick “good” specifications?

Interactive Program Synthesis

18

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..

• How to pick “good” specifications?

• How to explain each to (non-expert) users?
Pi

Interactive Program Synthesis

19

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..

• How to pick “good” specifications?

• How to explain each to (non-expert) users?

• How to know is correct?

Pi

Pn

Interactive Program Synthesis

20

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize time and n

• This new setup also introduces a few new problems..

• How to pick “good” specifications?

• How to explain each to (non-expert) users?

• How to know is correct?

• How to reuse past computation?

• Etc.

Pi

Pn

How To Pick “Good” Specifications?

21

How To Pick “Good” Specifications?

22

• Idea: let synthesizer suggest specifications!

• A form of “active learning”

How To Pick “Good” Specifications?

23

• Idea: let synthesizer suggest specifications!

• A form of “active learning”

• Active learning

• Machine learning approach

• Interact with users to prioritize data labeling process

I1 → ? I1 → O1

P1
I2 → ? I2 → O2

... Pn

Synthesizers Suggest Input, Users Label Output

24

• Related work

• Oracle-guided component-based program synthesis (ICSE’10)

• User Interaction Models for Disambiguation in Programming by Example (UIST’15)

• Interactive Query Synthesis from Input-Output Examples (SIGMOD’17)

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)

• Synthesis with Abstract Examples (CAV’21)

• Question Selection for Interactive Program Synthesis (PLDI’21)

Synthesizers Suggest Input, Users Label Output

25

• Related work

• Oracle-guided component-based program synthesis (ICSE’10)

• User Interaction Models for Disambiguation in Programming by Example (UIST’15)

• Interactive Query Synthesis from Input-Output Examples (SIGMOD’17)

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)

• Synthesis with Abstract Examples (CAV’21)

• Question Selection for Interactive Program Synthesis (PLDI’21)

• Core problem: what input to suggest?

FlashProg System

26

• FlashProg

• PBE-based data extraction (from textual docs, spreadsheets, webpages)

• Implemented as web application

FlashProg System

27

• Two features

• Program navigation: visualize multiple synthesized programs

• Conversational clarification: disambiguation

• FlashProg

• PBE-based data extraction (from textual docs, spreadsheets, webpages)

• Implemented as web application

FlashProg System

28

Add examples

FlashProg System

29

Input text

FlashProg System

30

Extracted data

FlashProg System

31

Output Preview

FlashProg System

32

Synthesized
Program

FlashProg System

33

• Consider task: given a list of papers, extract all authors

FlashProg System

34

• Consider task: given a list of papers, extract all authors
• FlashProg requires user to do this in steps

FlashProg System

35

• FlashProg requires user to do this in steps
• First, extract papers using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

36

• FlashProg requires user to do this in steps
• First, extract papers using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

37

• FlashProg requires user to do this in steps
• First, extract papers using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

38

• FlashProg requires user to do this in steps
• First, extract papers using examples

Wrong program
Fix: provide another example

• Consider task: given a list of papers, extract all authors

FlashProg System

39

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

40

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

41

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?

• Consider task: given a list of papers, extract all authors

FlashProg System

42

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?
Or, choose a different program?

• Consider task: given a list of papers, extract all authors

FlashProg System

43

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?
Or, choose a different program?

• Consider task: given a list of papers, extract all authors

FlashProg System

44

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

45

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

46

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

47

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program
Fix: more examples?
Fix: choose another prog?

• Consider task: given a list of papers, extract all authors

FlashProg System

48

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program
Fix: more examples?
Fix: choose another prog?
Or, suggest prog?

• Consider task: given a list of papers, extract all authors

FlashProg System

49

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

50

• When ambiguity occurs:

FlashProg System

51

• When ambiguity occurs:

• User manually provides more examples

FlashProg System

52

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

FlashProg System

53

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

• System automatically suggests input examples

• User manually labels output examples

• Effectively selects a different program

FlashProg System

54

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

• System automatically suggests input examples

• User manually labels output examples

• Effectively selects a different program

• What’re some potential limitations?

Input Selection with Guarantees

55

• Prior work “randomly” selects input examples

• What guarantees can we provide?

Question Selection for Interactive Program Synthesis

56

• Key idea: even with worst user answer, question would result in best reduction

• Technique: based on minimax branch

• Evaluation result: reduce number of questions by 2x

Improving Generalization

57

• Ranking (inductive bias)

• Interaction

• Multi-modality

Multi-Modal Program Synthesis

58

Specification
Program

• Multi-modal specification:

• Multiple kinds of specifications: examples, natural language, etc.

Multi-Modal Program Synthesis

59

• Multi-modal specification:

• Multiple kinds of specifications: examples, natural language, etc.

• Related work

• Multi-Modal Synthesis of Regular Expressions — examples + NL

• Interactive Program Synthesis by Augmented Examples — examples + annotations

• LooPy: Interactive Program Synthesis with Control Structures — examples + partial program

• TF-Coder: Program Synthesis for Tensor Manipulations — examples + NL + constants

• Etc.

Synthesis of Regular Expressions

60

• Classic problem dating back to 1980s

• Seminal L* work by Angluin 1987

L* Algorithm

61

• Problem: identify regular set from examples

• Consider positive examples (members) and negative examples (nonmembers)

L* Algorithm

62

• Problem: identify regular set from examples

• Consider positive examples (members) and negative examples (nonmembers)

Learner Teacher

L* Algorithm

63

• Problem: identify regular set from examples

• Consider positive examples (members) and negative examples (nonmembers)

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

L* Algorithm

64

• Problem: identify regular set from examples

• Consider positive examples (members) and negative examples (nonmembers)

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

Answer 1: yes/no
Answer 2: yes/no (and here is a counterexample s)

65

• Main result

• Learn any regular set from examples

• Time polynomial in number of states of the corresponding minimum DFA

• Time polynomial in maximum length of any counterexample provided by Teacher

L* Algorithm

Regular Expression Synthesis Revisited

66

• A lot of work recently

• Synthesizing Regular Expressions from Examples for Introductory Automata Assignments

• Automatic Repair of Regular Expressions

• Multi-Modal Synthesis of Regular Expressions

• Sketch-Driven Regular Expression Generation from Natural Language and Examples

• Automatic repair of vulnerable regular expressions

• Interactive Program Synthesis by Augmented Examples

• Optimal Neural Program Synthesis from Multimodal Specifications

• Multi-modal Program Inference: a Marriage of Pre-trainedLanguage Models and
Component-based Synthesis

Regular Expressions 101

67

• Regexes

• Used for pattern matching strings

• Given regex r and string s, r either matches s or r doesn’t match s

• https://regex101.com/

https://regex101.com/

Regular Expressions 101

68

• a(.)*b matches strings that start with a, end with b, have anything in between

69

• a(.)+b matches strings that start with a, end with b, have anything non-empty in between

Regular Expressions 101

70

Regular Expressions 101

71

Regular Expressions 101

72

Regular Expressions 101

73

Regular Expressions 101
• Different dialects/variants

• Sometimes used to find strings

74

Regular Expressions 101
• Different dialects/variants

• Sometimes used to find strings

• Common features

• Character classes (e.g., \d, \w, \s)

• Klenee start and quantifiers

75

Regular Expressions 101
• Different dialects/variants

• Sometimes used to find strings

• Common features

• Character classes (e.g., \d, \w, \s)

• Klenee start and quantifiers

• Focus on a small (but still expressive) regex DSL

76

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

Regular Expressions 101

77

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

Regular Expressions 101

78

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

• Concat(a, Concat(KleeneStar(<any>), b))

Regular Expressions 101

79

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

• Concat(a, Concat(KleeneStar(<any>), b))

• Repeat(<char>, 5)

Regular Expressions 101

80

• Given positive and negative strings, find regex that matches all positive strings and
none of negative strings

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

81

• Given positive and negative strings, find regex that matches all positive strings and
none of negative strings

• { “a”+ }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

82

• Given positive and negative strings, find regex that matches all positive strings and
none of negative strings

• { “a”+ }, what’s a regex?

• { “a”+, “b”- }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

83

• Given positive and negative strings, find regex that matches all positive strings and
none of negative strings

• { “a”+ }, what’s a regex?

• { “a”+, “b”- }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

• Take-away: examples are not sufficient (under-constrained)

84

• Or, we can use natural language to describe our intent

• Write a regex that matches only capital letters

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

85

• Or, we can use natural language to describe our intent

• Write a regex that matches only capital letters

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

• Take-away: NL is ambiguous

86

How To Explain A Regex?
• Examples + NL

87

• Key insight: use both examples and natural language as specification

Regel System

88

Regel System

ExamplesNL

Sketch

Regular Expression

89

Regae System

• Key insight: even richer specification modalities through UI

90

Regae System

91

Regae System

92

Regae System

Multi-Modal Program Synthesis

93

Specification
Program

• Multi-modal specification:

• Multiple kinds of specifications: examples, natural language, etc.

Multi-Modal Program Synthesis

94

Specification Feedback

• Multi-modal specification:

• Multiple kinds of specifications: examples, natural language, etc.

• Multiple kinds of feedback: synthesized programs, examples, etc.

Multi-Modal Program Synthesis

95

• Not yet well explored

96

97

Interpretable Program Synthesis
• Key idea: visualize synthesis process to users

98

Interactive, Multi-Modal Program Synthesis

…

