
Lecture 10

EECS 598-008 & EECS 498-008:
Intelligent Programming Systems

Announcements
• Live, remote discussion 3-4pm Friday (tomorrow)

• Zoom link on course website

• Discuss A3

• Paper presentaMon assignment out by midnight today

• 15 people submiOed preferences

• 12 slots

2

So Far…

3

SpecificaMon Program

Goal: minimize .me

• Setup: given spec, find a program that saMsfies spec

So Far…

4

SpecificaMon Program

Goal: minimize .me

• Setup: given spec, find a program that saMsfies spec

• Problems we’ve looked at:

• Search space: how to define search space?

• Search: how to find programs that saMsfy specificaMon?

• Efficiency: How to efficiently search programs?

What’s Wrong with This Setup?

5

SpecificaMon Program

Goal: minimize .me

• Setup: given spec, find a program that saMsfies spec

What’s Wrong with This Setup?

6

SpecificaMon Program

Goal: minimize .me

• GeneralizaMon: saMsfy spec saMsfy user intent

• Because inducMve specificaMon is fundamentally ambiguous
≠

• Setup: given spec, find a program that saMsfies spec

GeneralizaMon

7

• Eventually, we want programs that saMsfy user intent, not just examples

GeneralizaMon

8

• Eventually, we want programs that saMsfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformaMons for R

GeneralizaMon

9

• Eventually, we want programs that saMsfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformaMons for R

• For many other domains, need mulMple examples

• E.g., regular expressions

GeneralizaMon

10

• Eventually, we want programs that saMsfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformaMons for R

• For many other domains, need mulMple examples

• E.g., regular expressions

• Can we guarantee to saMsfy user intent using inducMve specificaMons?

GeneralizaMon

11

• Eventually, we want programs that saMsfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformaMons for R

• For many other domains, need mulMple examples

• E.g., regular expressions

• Can we guarantee to saMsfy user intent using inducMve specificaMons?

• In theory, no, b/c need (potenMally in general infinitely?) many examples

GeneralizaMon

12

• Eventually, we want programs that saMsfy user intent, not just examples

• For some domains, one example suffices

• E.g., table transformaMons for R

• For many other domains, need mulMple examples

• E.g., regular expressions

• Can we guarantee to saMsfy user intent using inducMve specificaMons?

• In theory, no, b/c need (potenMally in general infinitely?) many examples

• In pracMce, yes, with right approach

Improving GeneralizaMon

13

• Ranking (induc.ve bias)

• InteracMon

• MulM-modality

InducMve Bias / Ranking

14

• Covered in Lecture 7 (search prioriMzaMon)

• Occam’s razor (smallest program generalizes beOer)

• Weighted search (explicit cost/ranking/scoring funcMons)

• StaMsMcal models (e.g., n-gram, neural nets)

Improving GeneralizaMon

15

• Ranking (inducMve bias)

• Interac.on

• MulM-modality

InteracMve Program Synthesis

16

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

InteracMve Program Synthesis

17

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems..

• How to pick “good” specificaMons?

InteracMve Program Synthesis

18

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems..

• How to pick “good” specificaMons?

• How to explain each to (non-expert) users? Pi

InteracMve Program Synthesis

19

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems..

• How to pick “good” specificaMons?

• How to explain each to (non-expert) users?

• How to know is correct?

Pi

Pn

InteracMve Program Synthesis

20

Spec1 P1 Spec2 P2
...

Pn

Goal: minimize .me and n

• This new setup also introduces a few new problems..

• How to pick “good” specificaMons?

• How to explain each to (non-expert) users?

• How to know is correct?

• How to reuse past computaMon?

• Etc.

Pi

Pn

How To Pick “Good” SpecificaMons?

21

How To Pick “Good” SpecificaMons?

22

• Idea: let synthesizer suggest specificaMons!

• A form of “acMve learning”

How To Pick “Good” SpecificaMons?

23

• Idea: let synthesizer suggest specificaMons!

• A form of “acMve learning”

• AcMve learning

• Machine learning approach

• Interact with users to prioriMze data labeling process

I1 → ? I1 → O1

P1
I2 → ? I2 → O2

... Pn

Synthesizers Suggest Input, Users Label Output

24

• Related work

• Oracle-guided component-based program synthesis (ICSE’10)

• User InteracMon Models for DisambiguaMon in Programming by Example (UIST’15)

• InteracMve Query Synthesis from Input-Output Examples (SIGMOD’17)

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)

• Synthesis with Abstract Examples (CAV’21)

• QuesMon SelecMon for InteracMve Program Synthesis (PLDI’21)

Synthesizers Suggest Input, Users Label Output

25

• Related work

• Oracle-guided component-based program synthesis (ICSE’10)

• User InteracMon Models for DisambiguaMon in Programming by Example (UIST’15)

• InteracMve Query Synthesis from Input-Output Examples (SIGMOD’17)

• FlashProfile: a framework for synthesizing data profiles (OOPSLA’18)

• Synthesis with Abstract Examples (CAV’21)

• QuesMon SelecMon for InteracMve Program Synthesis (PLDI’21)

• Core problem: what input to suggest?

FlashProg System

26

• FlashProg

• PBE-based data extracMon (from textual docs, spreadsheets, webpages)

• Implemented as web applicaMon

FlashProg System

27

• Two features

• Program navigaMon: visualize mulMple synthesized programs

• ConversaMonal clarificaMon: disambiguaMon

• FlashProg

• PBE-based data extracMon (from textual docs, spreadsheets, webpages)

• Implemented as web applicaMon

FlashProg System

28

Add examples

FlashProg System

29

Input text

FlashProg System

30

Extracted data

FlashProg System

31

Output Preview

FlashProg System

32

Synthesized
Program

FlashProg System

33

• Consider task: given a list of papers, extract all authors

FlashProg System

34

• Consider task: given a list of papers, extract all authors
• FlashProg requires user to do this in steps

FlashProg System

35

• FlashProg requires user to do this in steps
• First, extract papers using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

36

• FlashProg requires user to do this in steps
• First, extract papers using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

37

• FlashProg requires user to do this in steps
• First, extract papers using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

38

• FlashProg requires user to do this in steps
• First, extract papers using examples

Wrong program
Fix: provide another example

• Consider task: given a list of papers, extract all authors

FlashProg System

39

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

40

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

41

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?

• Consider task: given a list of papers, extract all authors

FlashProg System

42

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?
Or, choose a different program?

• Consider task: given a list of papers, extract all authors

FlashProg System

43

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples

Wrong program Fix: provide another example?
Or, choose a different program?

• Consider task: given a list of papers, extract all authors

FlashProg System

44

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

45

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

46

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program

• Consider task: given a list of papers, extract all authors

FlashProg System

47

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program
Fix: more examples?
Fix: choose another prog?

• Consider task: given a list of papers, extract all authors

FlashProg System

48

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

Wrong program
Fix: more examples?
Fix: choose another prog?
Or, suggest prog?

• Consider task: given a list of papers, extract all authors

FlashProg System

49

• FlashProg requires user to do this in steps
• First, extract papers using examples
• Next, extract author lists using examples
• Finally, extract individual authors using examples

• Consider task: given a list of papers, extract all authors

FlashProg System

50

• When ambiguity occurs:

FlashProg System

51

• When ambiguity occurs:

• User manually provides more examples

FlashProg System

52

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

FlashProg System

53

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

• System automaMcally suggests input examples

• User manually labels output examples

• EffecMvely selects a different program

FlashProg System

54

• When ambiguity occurs:

• User manually provides more examples

• User manually selects a different program

• System automaMcally suggests input examples

• User manually labels output examples

• EffecMvely selects a different program

• What’re some potenMal limitaMons?

Input SelecMon with Guarantees

55

• Prior work “randomly” selects input examples

• What guarantees can we provide?

QuesMon SelecMon for InteracMve Program Synthesis

56

• Key idea: even with worst user answer, quesMon would result in best reducMon

• Technique: based on minimax branch

• EvaluaMon result: reduce number of quesMons by 2x

Improving GeneralizaMon

57

• Ranking (inducMve bias)

• InteracMon

• Mul.-modality

MulM-Modal Program Synthesis

58

SpecificaMon
Program

• MulM-modal specificaMon:

• MulMple kinds of specificaMons: examples, natural language, etc.

MulM-Modal Program Synthesis

59

• MulM-modal specificaMon:

• MulMple kinds of specificaMons: examples, natural language, etc.

• Related work
• MulM-Modal Synthesis of Regular Expressions — examples + NL

• InteracMve Program Synthesis by Augmented Examples — examples + annotaMons

• LooPy: InteracMve Program Synthesis with Control Structures — examples + parMal program

• TF-Coder: Program Synthesis for Tensor ManipulaMons — examples + NL + constants

• Etc.

Synthesis of Regular Expressions

60

• Classic problem daMng back to 1980s

• Seminal L* work by Angluin 1987

L* Algorithm

61

• Problem: idenMfy regular set from examples

• Consider posiMve examples (members) and negaMve examples (nonmembers)

L* Algorithm

62

• Problem: idenMfy regular set from examples

• Consider posiMve examples (members) and negaMve examples (nonmembers)

Learner Teacher

L* Algorithm

63

• Problem: idenMfy regular set from examples

• Consider posiMve examples (members) and negaMve examples (nonmembers)

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

L* Algorithm

64

• Problem: idenMfy regular set from examples

• Consider posiMve examples (members) and negaMve examples (nonmembers)

Learner Teacher

Query 1: is string s in the set?
Query 2: is regex r equivalent to the desired regex?

Answer 1: yes/no
Answer 2: yes/no (and here is a counterexample s)

65

• Main result

• Learn any regular set from examples

• Time polynomial in number of states of the corresponding minimum DFA

• Time polynomial in maximum length of any counterexample provided by Teacher

L* Algorithm

Regular Expression Synthesis Revisited

66

• A lot of work recently
• Synthesizing Regular Expressions from Examples for Introductory Automata Assignments

• AutomaMc Repair of Regular Expressions

• MulM-Modal Synthesis of Regular Expressions

• Sketch-Driven Regular Expression GeneraMon from Natural Language and Examples

• AutomaMc repair of vulnerable regular expressions

• InteracMve Program Synthesis by Augmented Examples

• OpMmal Neural Program Synthesis from MulMmodal SpecificaMons

• MulM-modal Program Inference: a Marriage of Pre-trainedLanguage Models and
Component-based Synthesis

Regular Expressions 101

67

• Regexes

• Used for paOern matching strings

• Given regex r and string s, r either matches s or r doesn’t match s

• hOps://regex101.com/

https://regex101.com/

Regular Expressions 101

68

• a(.)*b matches strings that start with a, end with b, have anything in between

69

• a(.)+b matches strings that start with a, end with b, have anything non-empty in between

Regular Expressions 101

70

Regular Expressions 101

71

Regular Expressions 101

72

Regular Expressions 101

73

Regular Expressions 101
• Different dialects/variants

• SomeMmes used to find strings

74

Regular Expressions 101
• Different dialects/variants

• SomeMmes used to find strings

• Common features

• Character classes (e.g., \d, \w, \s)

• Klenee start and quanMfiers

75

Regular Expressions 101
• Different dialects/variants

• SomeMmes used to find strings

• Common features

• Character classes (e.g., \d, \w, \s)

• Klenee start and quanMfiers

• Focus on a small (but sMll expressive) regex DSL

76

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

Regular Expressions 101

77

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

Regular Expressions 101

78

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

• Concat(a, Concat(KleeneStar(<any>), b))

Regular Expressions 101

79

• Consider CFG (simplified):

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

• Regular expressions in this DSL:

• StartWith(<digit>)

• Concat(a, Concat(KleeneStar(<any>), b))

• Repeat(<char>, 5)

Regular Expressions 101

80

• Given posiMve and negaMve strings, find regex that matches all posiMve strings and
none of negaMve strings

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

81

• Given posiMve and negaMve strings, find regex that matches all posiMve strings and
none of negaMve strings

• { “a”+ }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

82

• Given posiMve and negaMve strings, find regex that matches all posiMve strings and
none of negaMve strings

• { “a”+ }, what’s a regex?

• { “a”+, “b”- }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

83

• Given posiMve and negaMve strings, find regex that matches all posiMve strings and
none of negaMve strings

• { “a”+ }, what’s a regex?

• { “a”+, “b”- }, what’s a regex?

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

• Take-away: examples are not sufficient (under-constrained)

84

• Or, we can use natural language to describe our intent

• Write a regex that matches only capital leOers

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

85

• Or, we can use natural language to describe our intent

• Write a regex that matches only capital leOers

r ::= cc | StartWith(r) | EndWith(r) | Contains(r) | Concat(r, r) | KleeneStar(r) | Repeat(r, k)

cc ::= <digit> | <char> | <any> | ..

k ::= 1 | 2 | ..

How To Explain A Regex?

• Take-away: NL is ambiguous

86

How To Explain A Regex?
• Examples + NL

87

• Key insight: use both examples and natural language as specificaMon

Regel System

88

Regel System

ExamplesNL

Sketch

Regular Expression

89

Regae System

• Key insight: even richer specificaMon modaliMes through UI

90

Regae System

91

Regae System

92

Regae System

MulM-Modal Program Synthesis

93

SpecificaMon
Program

• MulM-modal specificaMon:

• MulMple kinds of specificaMons: examples, natural language, etc.

MulM-Modal Program Synthesis

94

SpecificaMon Feedback

• MulM-modal specificaMon:

• MulMple kinds of specificaMons: examples, natural language, etc.

• MulMple kinds of feedback: synthesized programs, examples, etc.

MulM-Modal Program Synthesis

95

• Not yet well explored

96

97

Interpretable Program Synthesis
• Key idea: visualize synthesis process to users

98

InteracMve, MulM-Modal Program Synthesis

…

