
EECS 598 and EECS 498 (Fall 2021) – Assignment 3
Due date: Wednesday, October 6 at 11:59pm EST

Collaboration. You are free to discuss the assignment with others or work together towards the solution.
However, all of your code must be written by yourself. Your write-up must be your own as well. Please list
your collaborators at the top of your submissions.

Goal. The goal of this assignment is to help you understand search prioritization and how it can help speed
up program synthesis techniques (in particular, our top-down search implementation).

1 Getting started

Download A3 from
https://web.eecs.umich.edu/˜xwangsd/courses/f21/assignments/pa3.zip

which contains a pa3 folder. Put it under syn.
codebase

src
main

java
syn

base
pa0
pa1
pa2
pa3

Synthesizer3.java
Test8.java
Test9.java

2 Prioritize search

In addition to pruning, prioritization is another important idea to speed up program synthesis. Intuitively,
search prioritization means in what order programs should be searched, whereas pruning is concerned with
what programs are guaranteed to be incorrect. These two ideas are not completely independent sometimes.
For example, one can view pruning as a hard version of prioritization: programs that are pruned away will
be explored at the very end of the search process (which basically means they will never be explored since
it is almost impossible to search exhaustively in practice). Similarly, prioritization can be viewed as a soft
form of pruning: programs with low priority are “pruned away”. However, we cannot really eliminate them
away since those programs may not be provably incorrect, but given that we do not have infinite amount of
time, it is sometimes okay in practice.

In this assignment, you will implement two search prioritization strategies in Synthesizer3.
Specifically, the run procedure in Synthesizer3 is modified to implement worklist as a priority queue.
In particular, each AST (both partial and complete) is assigned a cost: a program with a higher cost will have
a lower priority and will be put towards the end of the queue. You will implement the computeAstCost

1

https://web.eecs.umich.edu/~xwangsd/courses/f21/assignments/pa3.zip


function that computes the cost for any AST. You can define whatever heuristics here as you want. Some
ideas that you may consider:

• ASTs with duplicate R operators have higher costs. For example, you may not want to first search pro-
grams like unite(unite(x,?,?,?),?,?,?), although it’s possible these programs also satisfy the
user-provided example.

• ASTs with duplicate arguments get higher costs. For instance, it may not make much sense to first consider
programs such as unite(x,?,1,1) or gather(x,tmp1,tmp2,2,3).

Note that we disabled pruning in Synthesizer3 by making attemptToPrune always return false.
This is to separate search prioritization from pruning in order to understand how much each of them helps
speed up the search. However, in practice, one always combines both to achieve the best performance.

3 Test Synthesizer3

You will test your Synthesizer3 on Test8 and Test9. Please observe the synthesizer’s behavior, take
screenshots of its outputs, and try to understand and explain the results. Note that both tests extend previous
tests from Assignment 2.

4 Submission

Your Task. There are four tasks in this assignment.

• (60 points) Task 1: Implement Synthesizer3 by completing the compareAstCost function.

• (10 points) Task 2: Run Test8 and take a screenshot of its output.

• (10 points) Task 3: Run Test9 and take a screenshot of its output.

• (20 points) Task 4: Explain what you observed in Test8 and Test9.

• (30 points, bonus) Task 5: Run your Synthesizer2 and Synthesizer3 using at least 3 new test
cases. Compare their performance and explain what you observed.

Canvas. Submit the following in one single compressed file (e.g., in .zip):

• Your code for Task 1, including only Synthesizer3.java.

• Your report in PDF that includes your screenshots and your explanations.

References

2


	Getting started
	Prioritize search
	Test Synthesizer3
	Submission

