
EECS 598 and EECS 498 (Fall 2021) – Assignment 2
Due date: Monday, September 27 at midnight EST

Collaboration. You are free to discuss the assignment with others or work together towards the solution.
However, all of your code must be written by yourself. Your write-up must be your own as well. Please list
your collaborators at the top of your submissions.

Goal. The goal of this assignment is to help you get familiar with z3 as well as how to use z3 for pruning.
In particular, in this assignment, you will first use z3 to solve a simple SMT solving problem and then use
z3 in our program synthesizer to perform deduction-based pruning.

1 Getting started

Download A2 from
https://web.eecs.umich.edu/˜xwangsd/courses/f21/assignments/pa2.zip

which contains a pa2 folder. Put it under syn.
codebase

src
main

java
syn

base
pa0
pa1
pa2

Synthesizer2.java
Test4.java
Test5.java
Test6.java
Test7.java

lib
com.microsoft.z3.jar
libz3.dylib
libz3java.dylib

First of all, Synthesizer2 extends Synthesizer1 and provides an implementation for run. You
will use this implementation in this assignment. Furthermore, Synthesizer2 also includes two additional
functions, attemptToPrune and prune, which are two important functions you will complete in this
assignment. There is also a createSpecs function whose implementation is already given. That means,
you don’t need to create the specs yourself but you will need to use them in this assignment.

In this assignment, we will also use the Microsoft z3 solver. Necessary libraries are already included in
the lib folder but you will need to add this folder to your DYLD LIBRARY PATH, for example, by adding
the following line in .bash profile if you use MacOS.
export DYLD LIBRARY PATH=path to lib:${DYLD LIBRARY PATH}
To test whether you set it up correctly, run the main function in Test4. If things are all set up correctly,

1

https://web.eecs.umich.edu/~xwangsd/courses/f21/assignments/pa2.zip


you should see something like: “(= x 1) is SATISFIABLE”. It’s possible you will need to install z3 from
scratch yourself. The source can be downloaded from here: https://github.com/Z3Prover/z3.
Note that you will need Java bindings when you compile it.

It’s possible you’ll need to build z3 from its source. You can find some instructions on how to do this
from here: https://github.com/Z3Prover/z3. Generally speaking, you will need to go through
the following steps.

• Get the source. You can choose to clone the z3 repository. Or you may download a z3 .zip file from here:
https://github.com/Z3Prover/z3/archive/refs/tags/z3-4.8.12.zip.

• Run python scripts/mk make.py --java. Note that you have to include --java in order to
build z3 with the Java binding.

• Go to build directory, run make and then sudo make install. This will install z3 locally on your
machine. Alternatively, you can run make examples which does everything and also tests the install
on some test cases.

• Set the library path. If you use Linux, you should set LD LIBRARY PATH to the build directory. If you
use MacOS, you need to set DYLD LIBRARY PATH to the build directory.

• You should see a com.microsoft.z3.jar file in your build directory. Move it to the lib folder.

• Now you can run Test4. For example, you can directly run Test4 from Visual Studio Code, since the
class path is already specified in pom.xml. If you use command line, you will need to first compile the
project: mvn compile. Then, you can run Test4:

java -cp lib/com.microsoft.z3.jar:target/classes syn.pa2.Test4.

2 Get familiar with z3

Z3 is a cross-platform satisfiability modulo theories (SMT) solver that was developed by Microsoft Research
and is still under active development. It is open-source: https://github.com/Z3Prover/z3. There
is was an online playground:
https://rise4fun.com/Z3/Aqz2
with a tutorial:
https://rise4fun.com/Z3/tutorial/guide.
However, these two websites seem to be down recently. We’re not quite sure if they will be up again in the
future, but you can use https://compsys-tools.ens-lyon.fr/z3/index.php which seems
to work quite well. We will use the z3 Java binding for our assignments. Here are some examples about how
to use the Java API: https://github.com/Z3Prover/z3/tree/master/examples/java .

In this assignment, use z3 to create the following formula and check its satisfiability: x > y ∧ x =
2 ∧ y = 3. Write your code in Test5.java. You are highly encouraged to try more z3 examples to get
more hands-on experience but we do not require you to submit those examples in this assignment.

3 Prune search space

Now you have some hands-on experience with z3. Next, we will use z3 in our program synthesizer. As you
have already witnessed in Assignment 1, Synthesizer1 was very slow, because it essentially enumerates
all programs in the CFG and checks them one by one against the example. This is not going to work well for

2

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3/archive/refs/tags/z3-4.8.12.zip
https://github.com/Z3Prover/z3
https://rise4fun.com/Z3/Aqz2
https://rise4fun.com/Z3/tutorial/guide
https://compsys-tools.ens-lyon.fr/z3/index.php
https://github.com/Z3Prover/z3/tree/master/examples/java


large CFGs. In this assignment, we are going to use z3 to perform automated logical deduction and prune
partial programs. That is, we are going to encode a partial AST with holes into a z3 constraint φ. The idea
is, if φ is that unsatisfiable, that means there is no way this partial AST would lead to a correct program that
satisfies the example. In what follows, we will explain how to do this concretely.

We are still going to work with the example used in Assignment 1.

Input (4× 4 table):
var val round nam

1 22 0.1 round1 foo
2 11 0.2 round2 foo
3 22 0.5 round1 bar
4 11 0.9 round2 bar

Output (2× 5 table):

nam val round1 val round2 var round1 var round2
1 bar 0.5 0.9 22 11
2 foo 0.1 0.2 22 11

Consider the following AST that represents a partial program P : gather(unite(x,?,?,?),?,?,?,?).

gather

unite

x

? ? ? ?

???

In Assignment 1, our Synthesizer1 would generate this partial program P at some point, it would
add P into the worklist, and the algorithm would keep enumerating all ASTs that can be expanded from P .
However, we know that this P wouldn’t lead to a correct program that satisfies the given example, because
neither of the operators gather and unite would increase the number of columns in the table. Since the input
example has fewer columns than those in the output example, it is not possible for any expansion of this P
to satisfy the given example, no matter what concrete parameters we choose for the ?’s.

We are going to use z3 to perform the aforementioned reasoning automatically to prune out this partial
program P . First, we would need a specification for each operator.

Operator Specification
gather xout ≤ xin ∧ yout ≥ yin
unite xout = xin − 1 ∧ yout = yin

Here, looking at the specification for gather: xin denotes the number of columns of the input table for gather
function, xout is the number of columns of the table returned by gather. Similarly, yin and yout correspond

3



to the number of rows in the input and output of gather respectively. Note that this specification is consistent
with the actual semantics of gather. That is, this specification over-approximates the actual implementation
of gather. The specification for unite is very similar.

Now, given specifications of individual operators, we will construct a “bigger” constraint φ for a partial
program. For example, the constraint φ for the previous partial program P is shown as follows.

φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4
φ1 = (x0out = 4) ∧ (y0out = 4) φ2 = (x1out = x0out − 1) ∧ (y1out = y0out)
φ3 = (x2out ≤ x1out) ∧ (y2out ≥ y1out) φ4 = (x2out = 5) ∧ (y2out = 2)

Here, φ is a conjunction of four constraints φ1, · · · , φ4. φ1 corresponds to the input example which encodes
the fact that the input has 4 columns and 4 rows. φ2 corresponds to the root node, gather, of P . Similarly,
φ3 corresponds to unite’s specification. Note that we need to properly rename the specifications in order to
avoid name collision. Finally, φ4 corresponds to the output example that has 5 columns and 2 rows.

Then, we will check the satisfiability of φ using z3. If φ is unsatisfiable, that means the partial program
P is not consistent with our input-output example, therefore, it’s safe to prune P away and not add it into
the worklist. If φ is satisfiable, we have to conservatively add P in the worklist, since it may be correct.

In this assignment, you will implement a prune method that generates a constraint for each par-
tial program and checks its satisfiability. You will write your code in Synthesizer2.java. It already
provides operatorToSpec that maps each operator to its specification. You will use this map to imple-
ment the prune function. Note how this prune function is used in the run function: it is called only if
attemptToPrune returns true. The reason we have a check there is because we may not want to perform
deduction for every partial program we encounter. For instance, consider the following partial AST P ′.

gather

unite

x

tmp1 ? ? ?

???

P ′ is different from the previous partial program P . However, the constraint for P ′ is the same as that
for P , because the way we encode the specifications doesn’t really care about whether certain arguments,
such as tmp1, are concrete or not. In this case, if we were not able to prune P , we automatically know that
we wouldn’t be able to prune out P ′ either. Note that we can still perform the satisfiability check for P ′, but
that would incur additional overhead since calling z3 is not always cheap.

In this assignment, you will implement an attemptToPrune function which performs pruning
selectively. In particular, a heuristic we will use is to perform pruning only for programs whose leftmost
path is complete and all other nodes are ?’s. For instance, attemptToPrune would return true for P
since P ’s leftmost path, gather → unite → x, is complete (i.e., none of the nodes along that path is ?) and
all the other nodes in P are ?’s. On the other hand, attemptToPrune should return false for P ′, because
of the tmp1 node, although P ′ has a complete leftmost path.

4



4 Test Synthesizer2

First, test your Synthesizer2 using Test6 and take a screenshot of its output. Make sure Test2
from Assignment 1 is also in the project, since Test6 extends Test2.

Then, test Synthsizer2 using Test7 and observe its behaviour/output. In particular, Test7 con-
tains a slightly more complex CFG which would make the synthesizer run significantly slower. Consider
setting a timeout, such as 1 hour, since it may also take Synthesizer2 a while to finish.

5 Submission

Your Task. There are five tasks in this assignment.

• (10 points) Task 1: Implement Test5 and take a screenshot of its output.

• (60 points) Task 2: Complete prune and attemptToPrune in Synthesizer2.

• (5 points) Task 3: Run Test6 and take a screenshot of its output.

• (5 points) Task 4: Run Test7 and observe its behaviour/output.

• (20 points) Task 5: Describe and explain what you observed when running Test6 and Test7.

Canvas. Submit the following in one single .zip file:

• Your code for Task 1 and Task 2, including only Test5.java and Synthsizer2.java.

• Your report in PDF that includes your screenshots and your explanations.

References

5


	Getting started
	Get familiar with z3
	Prune search space
	Test Synthesizer2
	Submission

