
EECS 598 and EECS 498 (Fall 2021) – Assignment 1
Due date: Tuesday, September 14 at midnight EST

Collaboration. You are free to discuss the assignment with others or work together towards the solution.
However, all of your code must be written by yourself. Your write-up must be your own as well. Please list
your collaborators at the top of your submissions.

Goal. The goal of this assignment is to help you get familiar with a top-down search-based synthesizer. In
particular, in this assignment, you will extend an existing synthesizer to make it support a new language.

1 Getting started

Download the latest codebase from
https://web.eecs.umich.edu/˜xwangsd/courses/f21/assignments/codebase.zip.

Replace the previous code base with this new one. We fixed one Linux-specific bug in the mkDataframe
function in Dataframe.java.

Download A1 from
https://web.eecs.umich.edu/˜xwangsd/courses/f21/assignments/pa1.zip.

You will see a pa1 folder. Put it under syn.
codebase

src
main

java
syn

base
pa0
pa1

Synthesizer1.java
Test2.java
Test3.java

As mentioned in Assignment 0, there are some additional key classes in the base folder. In this assign-
ment, we will explore how these classes work.

• AST.java: we represent R programs internally as abstract syntax trees (ASTs). AST.java provides
some basic functionalities, such as getChildren and getParent, which allow us to traverse the AST.
It also has a function called toR which translates an AST into a string that corresponds to an R program
which can be directly executed in R Console. Another very important function is expand which we will
explain in detail later when we explain how the synthesizer works.

• ASTNode.java: every node in the AST is an ASTNode object. This class tells us the grammar symbol,
symbol, and the operator, operator, that this node corresponds to.

• CFG.java: this is a context-free grammar (CFG) that is used to define the search space. It simply maps
each symbol in the grammar to all productions which use that symbol as the return symbol.

1

https://web.eecs.umich.edu/~xwangsd/courses/f21/assignments/codebase.zip
https://web.eecs.umich.edu/~xwangsd/courses/f21/assignments/pa1.zip

• Production.java: a production consists of a return symbol, an operator, and an array of argument
symbols. Note that, in our code base, we treat terminal symbols as nullary operators. That is, if you have
a production df ::= x, we treat x as an operator that takes no arguments.

• Synthesizer.java: this is the most important class that we will work with in this assignment (and
also in subsequent assignments). A synthesizer has two important fields, Interpreter and CFG. That
is, it needs an interpreter so it can execute programs and examine their outputs during search; it also needs
a context-free grammar (CFG) so it knows what programs it’s searching over, i.e., the search space. Our
synthesizer has an additional field, bound, that essentially bounds the search space. You can choose your
own way to bound the search space. For instance, you can bound the maximum number of operators a
program may have, that is, the maximum number of nodes in the AST. You can easily do this using the
function numOfOperators in the AST class. The key function in Synthesizer.java is the run
function which is an abstract function. Synthesizer1.java in pa1 provides a partial implementation
of run which you will complete in this assignment.

2 A base synthesizer

In this assignment, we are going to work with Synthesizer1.javawhich extends Synthesizer.java.
Synthesizer1 includes two additional fields: iterCounter that counts the number of iterations of the
worklist algorithm and runTime that records the actual running time of the synthesizer.

Synthesizer1 provides a partially completed implementation of the run function. It first creates a
worklist at the beginning, adds an initial AST into the worklist, and then enters a loop which implements the
top-down search algorithm discussed in Lecture 3. Your task in this assignment is to complete this loop.
Note that you may leverage two “helper” functions. One is selectOpenNode in Synthesizer1, which
selects a bottom-left node with hole from the current AST. The other function is expand from AST.java.
The implementation of expand is a bit involved but what happened there is nothing but replacing the hole
with a concrete operator and creating its children.

Test2.java should give you a fairly good idea about how to run Synthesizer1. In particular, you
need to first create a CFG object that essentially encodes a CFG. Then, you need to create a Synthesizer1
object using this CFG. To run this synthesizer, you will need to create your input-output example and pass
it to the run function. Once you complete your own run function implementation, run the main method
in Test2 and you should be able to see that it pretty quickly synthesizes a program. It should also print the
value of iterCounter as well as how long it takes to synthesize the program.

Now let’s take a closer look at the CFG. The mkCFGmethod in Test2 essentially encodes the following
grammar.

df ::= x
| gather(df, newColName, newColName, oldColNum, oldColNum)
| unite(df, newColName, oldColNum, oldColNum)

newColName ::= tmp1 | tmp2 | tmp3
oldColNum ::= 1 | 2

Here, df represents a dataframe: in the simplest case, it is simply the input variable x which is a dataframe. It
could also be a gather function1 or a unite function2. Both functions take df as the first argument, however,
the remaining arguments are different. A newColName here is a string that refers to the name of a column in

1http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
2http://statseducation.com/Introduction-to-R/modules/tidy%20data/unite/

2

http://statseducation.com/Introduction-to-R/modules/tidy%20data/gather/
http://statseducation.com/Introduction-to-R/modules/tidy%20data/unite/

the output dataframe, and an oldColNum is a column number in the input dataframe. This CFG only allows
using three names, tmp1, tmp2, and tmp3, which are not particularly meaningful, though. Furthermore, this
grammar only allows using two column numbers, 1 and 2. You can definitely enrich this grammar by adding
more names, numbers, or even R operators, which is exactly what we will do next.

3 Use a different CFG

In this assignment, you will also test Synthesizer1 with a different, slightly more complex CFG.
You will do this in the Test3.java file. Similar to Test2, you can encode the grammar in the mkCFG
function, and then create and run the synthesizer in the test method. We also print IterCounter and
runTime after a program is synthesized.

More specifically, we will use the following CFG that has an additional spread function3.
CFG:

df ::= x
| gather(df, newColName, newColName, oldColNum, oldColNum)
| unite(df, newColName, oldColNum, oldColNum)
| spread(df, oldColNum, oldColNum)

newColName ::= tmp1 | tmp2
oldColNum ::= 1 | 2 | 3

We will use the following input-output example.

Input (4× 4 table):
var val round nam

1 22 0.1 round1 foo
2 11 0.2 round2 foo
3 22 0.5 round1 bar
4 11 0.9 round2 bar

Output (2× 5 table):

nam val round1 val round2 var round1 var round2
1 bar 0.5 0.9 22 11
2 foo 0.1 0.2 22 11

Warning: consider setting a timeout, such as 1 hour, since it may take the synthesizer a while to terminate.
You may also want to make sure the example you give to the synthesizer is correct. One simple sanity check
is to manually come up with the desired R program and then follow what you did in Assignment 0 to check
this program indeed produces the intended output.

4 Submission

Your Task. There are three tasks in this assignment.

• (70 points) Task 1: Complete run in Synthesizer1.

• (10 points) Task 2: Test your Synthesizer1 on Test2. Take a screenshot of the output.
3http://statseducation.com/Introduction-to-R/modules/tidy%20data/spread/

3

http://statseducation.com/Introduction-to-R/modules/tidy%20data/spread/

• (20 points) Task 3: Write your Test3. Test Synthesizer1 on Test3 and observe its the behavior.

Canvas. Submit the following in one single .zip file:

• Your code including Synthesizer1.java and Test3.java.

• Your report in PDF with your screenshot in Task 2 and your observation and explanation in Task 3.

References

4

	Getting started
	A base synthesizer
	Use a different CFG
	Submission

