EECS 598. Program Synthesis: Techniques and Applications

Lecture 4: SAT/SMT

Xinyu Wang

Administrivia

- Paper presentation on Sept 15
 - Send your reviews by midnight Sept 14
 - Use template (link <u>here</u>)
 - Email title: [598 review] YourName: PaperTitle

Last lecture

- L2 paper
 - Use types (inferred from examples) to prune partial programs
 - Use examples to further prune partial programs
 - Use cost model for generalization

Today's lecture

- Propositional logic
- First-order logic
- First-order theories

Propositional logic

Propositional logic syntax

- E.g., $(p \land q) \rightarrow (p \lor \neg q)$
- Logical constants: T ("true", 1) and ⊥ ("false", 0)
- Propositional variable: $p, q, r, x, y, z, p_1, q_1, r_1, \dots$
- Logic connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- Formulas of propositional logic
 - Each logical constant is a formula
 - Each propositional variable is a formula
 - ullet If F_1 and F_2 are formulas, all of the following are also formulas

$$(F_1), \neg F_1, F_1 \land F_2, F_1 \lor F_2, F_1 \to F_2, F_1 \leftrightarrow F_2$$

Propositional logic semantics

- What does a formula evaluate to?
- ullet Interpretation I: assignment of boolean values to propositional variables

$$I: \{p \mapsto \mathsf{T}, q \mapsto \mathsf{\bot}, \ldots\}$$

- ullet A formula F evaluates to a truth value, under an interpretation I
 - $I \models F: F$ evaluates to T under I (i.e., F is a satisfying assignment/model)
 - $I \not\models F$: F evaluates to \bot under I (i.e., F is a falsifying assignment/counter-model)
- is defined inductively

Propositional logic semantics (cont'd)

- Base cases
 - \bullet $I \models \top$

 $I \not\vDash \bot$

$$I \models p \text{ iff } I[p] = T$$

$$I \nvDash p \text{ iff } I[p] = \bot$$

- Inductive cases
 - $I \models (F)$ iff $I \models F$
 - $I \models \neg F \text{ iff } I \not\models F$
 - $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$
 - $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$
 - $I \models F_1 \rightarrow F_2$ iff $I \not\models F_1$ or $I \models F_2$
 - $I \vDash F_1 \leftrightarrow F_2$ iff $I \vDash F_1$ and $I \vDash F_2$ or $I \not \vDash F_1$ and $I \not \vDash F_2$

Examples

- Consider $F:(p \lor q) \to (p \land q)$
 - What does F evaluate to under $I: \{p \mapsto T, q \mapsto T\}$
 - What does F evaluate to under $I: \{p \mapsto \bot, q \mapsto \bot \}$
 - What does F evaluate to under $I:\{p\mapsto \mathsf{T}, q\mapsto \mathsf{\bot}\}$

Satisfiability and validity

- ullet F is satisfiable iff there exists an interpretation I such that $I \models F$
 - F is unsatisfiable iff for all interpretations $I, I \nvDash F$
- F is valid iff for all interpretations $I, I \models F$
 - ullet F is not valid iff there exists an interpretations I such that $I\not \models F$
- Duality between satisfiability and validity

F is valid iff $\neg F$ is unsatisfiable

• ... which means: if we know how to check satisfiability, we can check validity as well

Examples

Decide sat, unsat, valid, not valid?

sat?

unsat?

valid?

not valid?

- *p*
- $(p \land q) \rightarrow p$
- $\bullet \ (p \to q) \to (\neg (p \land \neg q))$

Deciding satisfiability and validity

- Manually
 - Truth table method
 - Semantic argument method
- Automatically
 - NP-complete
 - SAT solvers (e.g., Microsoft z3, CVC4)
 - Demo (<u>link</u>)

First-order logic

First-order logic (FOL) vs. propositional logic

- FOL has more constants
 - Propositional logic: T and ⊥
 - FOL: object constants, function constants, relation constants
- FOL has quantifiers
- FOL syntax and semantics become a bit more complex

First-order logic (FOL) syntax

- Object constants (a, b, c, ...)
 - Objects in a universe of discourse
 - E.g., people {Jack, Smith, ...}, numbers {..., -1, 0, 1, ...}
- Function constants (f, g, h, ...)
 - Functions
 - E.g., motherOf, ageOf, plus
 - Arity: unary, binary, ternay, ...
- Relation constants (p, q, r, ...)
 - Relations between objects, or properties of objects, also called predicates
 - E.g., loves, isBiggerThan
 - Arity: unary, binary, ternay, ...
- Variables (x, y, z, ...)

First-order logic (FOL) syntax (cont'd)

- Terms
 - Basic terms: any object constant or a variable (e.g., Jack, Apple, x, y)
 - Compound terms: function constants applied to terms (e.g., motherOf(Jack), f(x))
- Formulas
 - Base case: relation constant applied to terms (e.g., isOlder(motherOf(Jack), Jack))
 - Inductive case:
 - If F_1, F_2 are formulas, then $F_1 \star F_2$ is also formula ($\star \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$)
 - If F is formula, then (F), $\neg F$ are also formulas
 - If F is formula and x is variable, then $\forall x . F, \exists x . F$ are also formulas

Examples

- $\forall x . p(a, f(b)) \land q(x)$
 - Object constants? Function constants? Relation constants? Variables?

• "For any x, y, z, if x is bigger than y in size and y is bigger than z, then x is bigger than z." Express this in FOL using function constant *size*, relation constant *biggerThan*.

First-order logic (FOL) semantics

- What does a FOL formula evaluate to?
- Similar to propositional logic, need an interpretation
- Different from propositional logic, need universe of discourse (i.e., universe, domain)
- ullet Universe of discourse U
 - Non-empty set of objects
 - E.g., set of positive integers, all real numbers, all students in this class

- First-order interpretation
 - ullet Mapping I from object, function, relation constants to objects in universe U
 - E.g.,
 - Object constants: $a, b, c \in U$
 - Unary function constants: $f: U \rightarrow U$
 - Binary relation constant: $p \subseteq U^2$
 - $U = \{1,2,3,4\}$
 - A possible interpretation:

$$I(a) = 1, I(b) = 2, I(c) = 3$$
 $I(f) = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 1\}$ $I(p) = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle\}$

- ullet Variable assignment σ
 - ullet Given formula F and universe U, σ maps each variable in F to an object in U

- What does FOL formula F evaluate to?
- ullet Given U,I,σ , FOL formula F evaluates to a truth value
 - $U, I, \sigma \models F: F$ evaluates to T under U, I, σ
 - $U, I, \sigma \nvDash F: F$ evaluates to \bot under U, I, σ
- |= is defined inductively

Base cases

•
$$U, I, \sigma \models \top$$
 $U, I, \sigma \not\models \bot$

- $U, I, \sigma \models p(t_1, ..., t_n)$ iff $\langle \langle I, \sigma \rangle (t_1), ..., \langle I, \sigma \rangle (t_n) \rangle \in I(p)$
 - Evaluating terms
 - Base cases: $\langle I, \sigma \rangle(a) = I(a)$ $\langle I, \sigma \rangle(x) = \sigma(x)$
 - Inductive case: $\langle I, \sigma \rangle (f(t_1, ..., t_n)) = I(f)(\langle I, \sigma \rangle (t_1), ..., \langle I, \sigma \rangle (t_n))$

Inductive cases

- $U, I, \sigma \models (F)$ iff $U, I, \sigma \models F$
- $U, I, \sigma \models \neg F \text{ iff } U, I, \sigma \not\models F$
- $U, I, \sigma \vDash F_1 \land F_2$ iff $U, I, \sigma \vDash F_1$ and $U, I, \sigma \vDash F_2$
- $U, I, \sigma \models F_1 \lor F_2$ iff $U, I, \sigma \models F_1$ or $U, I, \sigma \models F_2$
- $U, I, \sigma \vDash F_1 \rightarrow F_2$ iff $U, I, \sigma \nvDash F_1$ or $U, I, \sigma \vDash F_2$
- $U,I,\sigma \vDash F_1 \leftrightarrow F_2$ iff $U,I,\sigma \vDash F_1$ and $U,I,\sigma \vDash F_2$ or $U,I,\sigma \nvDash F_1$ and $U,I,\sigma \nvDash F_2$
- $U, I, \sigma \models \forall x . F \text{ iff for all } o \in U, U, I, \sigma[x \mapsto o] \models F$
- $U, I, \sigma \vDash \exists x . F$ iff there exists $o \in U$, such that $U, I, \sigma[x \mapsto o] \vDash F$

Examples

• Consider $U=\{\ \star\ , \bullet\ \}, \sigma=\{x\mapsto \bullet\ \}, \text{ and } I:$ $I(a)=\bullet\ , I(b)=\star$ $I(f)=\{\ \star\mapsto \bullet\ , \bullet\mapsto \star\ \}$ $I(p)=\{\langle\ \bullet\ , \bullet\ \rangle, \langle\ \star\ , \bullet\ \rangle\}$

- Given U, I, σ , what do these formulas evaluate to?
 - $\forall x . p(a, x)$
 - $\forall x . p(x, a)$
 - $\bullet \exists x. p(a,x)$
 - $\exists x . p(f(x), f(a))$

Satisfiability and validity

- A FOL formula F is satisfiable iff there exists a universe U, an interpretation I, and a variable assignment σ such that $U, I, \sigma \vDash F$
 - Otherwise, unsatisfiable
- F is valid iff for all universes U, interpretations I, variable assignments σ , U, I, $\sigma \models F$
 - Otherwise, not valid

Examples

- Is $\forall x . \exists y . p(x, y)$
 - satisfiable?
 - valid?
- Is $(\forall x . p(x, x)) \rightarrow (\exists y . p(y, y))$
 - satisfiable?
 - valid?

Deciding satisfiability and validity

- Manually
 - Truth table? No, you can't
 - Semantic argument method
- Automatically
 - Undecidable (for satisfiability and validity)
 - Solvers (e.g., Microsoft z3, CVC4)
 - Solvers work pretty well in practice!

First-order theories

Why first-order theories

- So far, propositional logic and first-order logic
 - Propositional logic is limited in expressiveness
 - FOL is more expressive, but functions are uninterpreted (one can assign any meaning)
- In many cases, we want functions to have certain meanings (e.g., +, =, >)
- First-order theories assign meanings to symbols

First-order theories syntax

- A first-order theory has
 - object/function/relation constants, variables, quantifiers, logical connectives (just like in FOL)
 - axioms (new!)
- ullet E.g., let's make up a first-order theory theory of heights T_H
 - ullet T_H has only one relation constant called taller and no other constants
 - T_H has one axiom $\forall x, y$. $(taller(x, y) \rightarrow \neg taller(y, x))$
 - Is $\forall x . \exists y . taller(y, x) \text{ in } T_H$?
 - Is $\forall x$. taller(Jack, x) in T_H ?

First-order theories semantics

- Axioms provide meaning of symbols
- Some universes/interpretations may not be consistent with axioms
 - E.g., $U = \{A, B\}$, $I(taller) = \{\langle A, B \rangle, \langle B, A \rangle\}$ is not consistent with the axiom $\forall x, y . (taller(x, y) \rightarrow \neg taller(y, x))$ in T_H
 - We are only interested in those interpretations that are consistent!
- Given U, I, σ , formula F can be evaluated in the same way as in FOL, but we only consider interpretations that are consistent with axioms
 - ... which means some formulas not valid in FOL may be valid in first-order theories

Satisfiability and validity modulo theory ${\cal T}$

• "modulo" \approx "in terms of"

• Formula F is satisfiable modulo T if there exists a universe U, an interpretation I, and a variable assignment σ , such that (1) U, I is consistent with axioms in T, and (2) U, I, $\sigma \models F$

• Formula F is valid modulo T if for all universes U, interpretations I, and variable assignments σ , if U, I is consistent with axioms in T then we have U, I, $\sigma \models F$

• SMT solvers: Microsoft z3, CVC4, ...

Quiz

- ullet If F is valid in FOL, is it also valid modulo T?
- ullet If F is not valid in FOL, is it also not valid modulo T?
- ullet If F is satisfiable in FOL, is it also satisfiable modulo T?
- ullet If F is not satisfiable in FOL, is it also not satisfiable modulo T?
- If F is valid modulo T, is it also valid in FOL?
- If F is not valid modulo T, is it also not valid in FOL?
- If F is satisfiable modulo T, is it also satisfiable in FOL?
- ullet If F is not satisfiable modulo T, is it also not satisfiable in FOL?

Theory of equality

Extend FOL to include a "built-in" predicate =

Axioms assign meaning to =

$$\forall x. x = x$$
 (reflexivity) $\forall x, y. (x = y \rightarrow y = x)$ (symmetry) $\forall x, y, z. (x = y \land y = z \rightarrow x = z)$ (transitivity)

$$\forall x_1, ..., x_n, y_1, ..., y_n . \bigwedge_i x_i = y_i \to f(x_1, ..., x_n) = f(y_1, ..., y_n)$$
 (function congruence)

$$\forall x_1, ..., x_n, y_1, ..., y_n . \bigwedge_i x_i = y_i \leftrightarrow p(x_1, ..., x_n) = p(y_1, ..., y_n)$$
 (predicate congruence)

Theory of equality (cont'd)

• Is
$$\forall x, y, z$$
. $\left(x = y \land y = z \rightarrow f(x) = f(z)\right)$ in theory of equality?

• Is it satisfiable, unsatisfiable, valid?

• Is
$$\forall x, y, z, w$$
. $\left(x = y \land z = w \rightarrow f(x + z) = f(y + w)\right)$ in theory of equality?

• Undecidable (but quantifier-free fragment is decidable)

Theory of integers

- Also known as linear arithmetic over integers
- Symbols that are allowed:
 - Object constants: ..., -2, -1, 0, 1, 2, ...
 - Function constants: ..., $-3 \cdot$, $-2 \cdot$, $2 \cdot$, $3 \cdot$, ..., +, -
 - Relation constants: =, >
 - Variables: x, y, z, \dots
 - Logical connectives: \land , \lor , \rightarrow , \rightarrow , \rightarrow
- Axioms
 - Define meaning of symbols
 - E.g., $\forall x \cdot x + 0 = x$

Theory of integers (cont'd)

• Is
$$\forall x, y, z, w$$
. $\left(x = y \land z = w \rightarrow f(x + z) = f(y + w)\right)$ in theory of integers?

- Is $\forall x, y . \exists z . x + y = z$ in theory of integers?
 - Is it satisfiable, unsatisfiable, valid?
- Is $\forall x, y . \exists z . x \cdot y = z$ in theory of integers?

Decidable

Other theories

- Peano arithmetic
- Presburger arithmetic
- Theory of rationals
- Theory of arrays
- •
- You can also combine theories

Summary of this lecture

- Propositional logic: true, false, propositional variables, logical connectives
- First-order logic: universe, object constants, functions, predicates, quantifiers
- First-order theories: axioms
- Satisfiability, validity
- SAT/SMT solvers: Microsoft z3, CVC4, ...