EECS 598. Program Synthesis:
Techniques and Applications

Lecture 2: Syntax-guided synthesis

Xinyu Wang

Administrivia

Send paper preference via email by midnight Sept 4
First paper presentation

First review

Schedule will be updated with speakers
® There may be new papers

® Paper orders may change

® Check after Sept 5!

Last lecture

High-level intent Lower-level code

Program synthesis
Specification —— > Program

® Three pillars: intention, invention, adaptation

® This course: different techniques for different specifications in different applications

Today’s lecture

® Syntax-guided synthesis (SyGuS): a framework to study program synthesis
® Programming-by-example (PBE): an instance of SyGuS

® Two PBE techniques: search-based and representation-based

Syntax-guided synthesis

Syntax-guided synthesis (SyGuS)

® SyGuS is a general formulation of program synthesis problems

® Not a program synthesis technique

® |dea: search over space of programs

Search
¢ [Specification|—— Program written according to (context—free grammar)

semantic constraint syntactic constraint

(what should this program do) (what should this program look like)

® Advantages: synthesis becomes more tractable

An example SyGuS problem

e Find a program f(x) in the following grammar

e=x|1]|e+e
such that| f(1) = 2 syntactic constraint

semantic constraint

e Asolution:f(x) =x+1

e Another solution: f(x) = x + x

Formal definition of SyGusS

e Given a first-order formula ¢ in a background theory T and a context-free grammar L,

the syntax-guided synthesis problem is to find an expression e € L such that formula
@[f/e] is valid in theory T.

® |n previous example:

e Find a program in the following grammar, such that| f(1) = 2
e =x|1]|e+e first-order formula ¢

context-free grammar L

e x + | is asolution, because|l + 1 = 2 is valid in theory of Linear Integer Arithmetic

intuitively, this means 1 + 1 = 2 is correct

Context-free grammar (CFG)

® CFG defines syntax of a programming language

® A set of programs

e More formally: (T, N, P, S)

e [/ set of terminal symbols
e /V: set of non-terminal symbols

e P:set of productions of the form s — f(s, **+, 5,)

e § € N: start symbol

An example CFG

e CFGisdefinedas (7T, N, P, S)

e=x|1|e+e
e [set of terminal symbols
{x, 1}
e /V: set of non-terminal symbols

e}

o P:set of productions of the form s — f(s;, :*+, 5,)
le > x,e—>1,e > e+e}

e § € N:start symbol

€

11

Write programs according to CFG

_ El e —
W= |

® Step 1: begin with the start symbol
® Step 2: pick a non-terminal in current result and replace it with one of its productions

® Step 3: continue step 2 until no more non-terminal remains (i.e., only terminals)

I E—

An example

® CFG: e:=x|1]|e+e

scratchpad Y4 x

<x+1
x+e+e

e+e+e

® Step 1: begin with the start symbol

® Step 2: pick a non-terminal in current result and replace it with one of its productions
® Step 3: continue step 2 until no more non-terminal remains (i.e., only terminals)
12

SyGuS recap

e Given a first-order formula ¢ in a background theory T and a context-free grammar L,

the syntax-guided synthesis problem is to find an expression e € L such that formula
@[f/e] is valid in theory T.

SyGuS: < T, ¢, L >

| T

What does a program mean

Theory: Grammar:

Specification: What programs we consider

What program we want

Programming-by-Example

Programming-by-example (PBE)

® PBE is a specific kind of SyGusS
e Specification ¢ encodes a set of input-output examples
® Goal of PBE: find a program in CFG that satisfies a given set of I/O examples

® A more ambitious goal: not only satisfy examples, but actual intent (mind reading!)

e F.o. FlashFill «.- T
| FLE L
A B E | A B
CT—r— X3 s CT—T—
2 |Neil Lieber INL ! ‘ FIaSh F|” 2 |Neil Lieber NL
3 Mathew Prisco . 3 Mathew Prisco MP T
4 Althea Bertin @ 4 Althea Bertin AB |
5 Kelly Gamblin | | 5 Kelly Gamblin K G
6 Chandra Valenzula | 6 Chandra Valenzula ’CV |
7 Cody Castillon ' 7 Cody Castillon o
8 Tyrone Brazier | 8 Tyrone Brazier iT B
9 Althea Buhl | 9 Althea Buhl AB
10 Dollie Munsey A | 10 Dollie Munsey :D M |
11 Allyson Phou A 11 Allyson Phou AP |

15

Why is PBE important

® Simplest kind of specification (arguably)

e Useful in practice

® Even non-programmers can provide examples

® Technically fundamental

e Underly many program synthesis techniques using other specs
® Will cover these techniques in Module 2 (and Module 3)

Challenges of PBE

® Scalability
® Search space defined by syntax is huge (although examples are simple)

® How to find a program w/o waiting too long?

e Ambiguity
® Examples are ambiguous
® How to guess the right program w/o one telling you everything about it?

e Usability — how to make PBE systems useful and usable in practice?

® Applicability — how to create PBE systems widely applicable to many domains?

An example PBE problem

® Syntax

e:=f | concat(f, e)
f:=s | substr(x, p, p)

p :=k | position(x, r, k)
r=t|seq(t, .., t)

t:=<num> | <let> | <ws> | <any> | ...

s is string constant, k is int constant,

X is input variable
® Semantics
® Specification

“Bill Gates” —> “BG”

18

Some sample programs in this language:
concat(“a”, “b”)
“12ab” —> ?7?7?
concat(“a”, substr(x,0, 1))
“12ab” —> ?7?7?
concat(“a@”, substr(x, 0, position(x, <num>, 1))
“12ab” —> ?7?7?

concat(substr(x, 0, 1),
substr(x, position(x, <ws>, 1), position(x, <cap>, 2)))

What does this program do?

19

® “Bill Gates” —> “BG”

e Solution:
IIB”

concat(

substr(x,

substr(x,0, 1)

Solve PBE problems

e:=f | concat(f, e) ‘“

B|i||||| |G|ates”
p :=k | position(x, r, k) 01 4506

r:=t|seq(t, .., t)

f:=s | substr(x, p, p)

t:=<num> | <let> | <ws> | <any> | ...

position(<ws>, 1)| position(x, <cap>, 2)))

“Bill Gates”

IIBGII

Solve PBE problems (cont’d)

o “Bill Gates” —> “BG” e:=f| concat(f, e)

® Given solution, simple to check correctness f:=s | substr(x, p, p)

: L =K iti o1k
® . but we do not have solution a priori (only spec!) P =k | position{x, r k]

r:=t|seq(t, .., t)
® How to find the solution?

t:=<num> | <let> | <ws> | <any> | ...

21

PBE challenges

® Huge search space (easily >10% in simplified FlashFill language!) — how to scale?

B|i||||| |G|ates”
r:=t|seq(t, .., t) 01 45 6

t:=<num> | <let> | <ws> | <any> | ...

e:=f | concat(f, e)

f:=s | substr(x, p, p) “

p:=k | position(x,r, k)

e Ambiguity — how to find the desired program w/o too many examples?
concat(substr(x, 0, 1), substr(x, position(x, <ws>, 1), position(x, <cap>, 2)))
concat(substr(x, 0, 1), substr(x, 5, 6)))
concat(“B”, “G")

concat(“B”, substr(x, position(x, <ws>, 1), position(x, <cap>, 2)))

PBE techniques

Search-based

23

Representation-based

Using constraint solving

Stochastic

Neural approaches

Many PBE techniques

PBE technique 1: search-based

ldea: enumerate programs from grammar systematically and test them on examples
Observation 1: exhaustive, exponential
Observation 2: random enumeration order may not work well

Challenges — scalability & ambiguity

® Today’s lecture: two systematic search-based approaches (top-down & bottom-up)

® Subsequent paper presentations: scale, resolve ambiguity

Top-down search

® \We have already seen how this works

® CFG: e:=x|1]|e+e
X+ x

) i x+e<x+1
1

X+e+e

€+ € €+€+€§

® |dea: start from start symbol, expand non-terminal symbols according to production
rules, until reaching a program that satisfies examples

Top-down search (cont’d)

® Algorithm skeleton T: terminal symbols

— N: non-terminal symbols
top-down-search(|(7, N, P, S)| E): y

P: productions
worklist :={S };

S: start symbol
while (worklist is not empty):

pp := worklist.remove();

if (pp is complete & pp satisfies L): return pp;

worklist.addAll(|expand(pp)|);

/

return more partial programs by replacing a non-terminal in pp

An example

top-down-search((7, N, P, S), E): * CFG: e=x|1]e+e
worklist :={S }; e Example: (1,2)
while (worklist is not empty): e \Worklist (at end of iterations)
pp := worklist.remove(); iter 0: ¢
if (pp is complete & pp satisfies £): return pp; iterl: x 1 e+e
worklist.addAll(expand(pp)); iter2: 1 e+e
iter3: e+e

iter4d: x+e 1+e e+e+e
e+x e+1 e+e+e

iter5: x+x x+1 x+e+e
l4+e e+e+e
e+x e+1 e+e+e

iter 6: return x + x

Bottom-up search

® |dea: start with terminal symbols, combine smaller programs into bigger programs
according to production rules, until reaching a program that satisfies examples

® Algorithm skeleton
bottom-up-search((7T, N, P, S), E):
worklist :={t|t€ 1}
while (true):

foreach p in worklist: if (p is complete & p satisfies L): return p;

worklist.addAll(|grow(worklist)|);

return more programs by applying production rules to programs in worklist

An example

bottom-up-search((7T, N, P, S), E):
worklist:={t | te€ 1}
while (true):
foreach p in worklist: if (p is complete & p satisfies E): return p;
worklist.addAll(grow(worklist));

® CFG: e:=x|1]|e+e
e Example: (1,2)
e \Worklist (at end of iterations)
iter0: x 1
iterl: x 1 x+x x+1 1+x 141

iter 2: return x + x

Top-down vs. bottom-up

Top-down Bottom-up

Both exhaustive and brute-force procedures
(both can be implemented using worklist algorithm)

® Generate programs top-down ® Generate programs bottom-up

® Candidates in worklist are partial programs ® Candidates are concrete programs

Search-based approaches: scalability & ambiguity

® Scalability — how to make search faster?
® Pruning
® Top-down: eliminate “incorrect” partial programs
® Bottom-up: discard “unpromising” sub-programs
® Prioritization

® Better order of candidates in worklist

e Ambiguity — how to find intended program (not arbitrary one satisfying examples)?

® Ranking (similar idea to prioritization)

e Will talk more in paper presentations

PBE technique 2: representation-based

® |dea: represent search space explicitly, then use representation to better guide search

® CFG: e=x|1|e+e
X+ Xx

<x+1
x+e+e

e+e+e

® Challenge: how to construct representation efficiently, how to use it for synthesis

Different representations

® \ersion space algebras (VSAs) [Gulwani et al. 11]

® Finite tree automata (FTAs) [Wang et al. 17]

33

® Petri nets [Feng et al. 17]

® Type-transitions nets [Guo et al. 20]

Version space algebra

® |dea: construct a compact data structure (i.e., an VSA) that succinctly represents all
programs consistent with examples

® Construction is top-down

® FlashFill paper [Gulwani 11] has more details (will discuss in presentation)

® [Polozov et al. 15] — VSA-based program synthesis framework

Finite tree automaton

® |dea: construct a compact data structure (i.e., an FTA) that succinctly represents all
programs consistent with examples

® Same idea as VSA, but different data structure

® Construction is bottom-up
® Dace paper [Wang et al. 17] has more details (will discuss in presentation)

® [Wang et al. 18] — FTA-based program synthesis framework

Summary of this lecture
® Syntax-guided synthesis (SyGuS): both semantic and syntactic constraints
® Programming-by-example (PBE): examples as spec

® Two PBE techniques: search-based & representation-based

