
EECS 598. Program Synthesis:
Techniques and Applica?ons

Xinyu Wang

Lecture 2: Syntax-guided synthesis

Administrivia

• Send paper preference via email by midnight Sept 4

2

• Schedule will be updated with speakers

• Check aLer Sept 5!

• First review

• Paper orders may change
• There may be new papers

• First paper presenta?on

Last lecture

Specifica?on Program
Program synthesisHigh-level intent Lower-level code

• Three pillars: inten?on, inven?on, adapta?on

• This course: different techniques for different specifica?ons in different applica?ons

3

Today’s lecture

• Syntax-guided synthesis (SyGuS): a framework to study program synthesis

• Programming-by-example (PBE): an instance of SyGuS

• Two PBE techniques: search-based and representa?on-based

4

Syntax-guided synthesis

Syntax-guided synthesis (SyGuS)

• SyGuS is a general formula?on of program synthesis problems

• Not a program synthesis technique

• Idea: search over space of programs

Specifica?on Program
Search• wri9en according to syntax (context-free grammar)

syntac?c constraintseman?c constraint
(what should this program do) (what should this program look like)

• Advantages: synthesis becomes more tractable

6

An example SyGuS problem

• Find a program in the following grammarf(x)

e := x | 1 | e + e

such that f(1) = 2

• A solu?on: f(x) = x + 1

• Another solu?on: f(x) = x + x

syntac?c constraint

seman?c constraint

7

Formal defini?on of SyGuS

• Given a first-order formula in a background theory and a context-free grammar ,
the syntax-guided synthesis problem is to find an expression such that formula

 is valid in theory .

ϕ T L
e ∈ L

ϕ[f/e] T

• In previous example:

• Find a program in the following grammar, such that f(1) = 2

e := x | 1 | e + e

context-free grammar L

first-order formula ϕ

• is a solu?on, because is valid in theory of Linear Integer Arithme?c x + 1 1 + 1 = 2

intui?vely, this means is correct1 + 1 = 2
8

Context-free grammar (CFG)

• CFG defines syntax of a programming language

• A set of programs

• More formally: (T, N, P, S)

• : set of terminal symbols T
• : set of non-terminal symbols N
• : set of produc?ons of the form P s → f(s1, ⋯, sn)
• : start symbolS ∈ N

9

An example CFG

• CFG is defined as (T, N, P, S)

• : set of terminal symbols T

• : set of non-terminal symbols N

• : set of produc?ons of the form P s → f(s1, ⋯, sn)

• : start symbolS ∈ N

e := x | 1 | e + e

 {x, 1}

 {e}

{e → x, e → 1, e → e + e}

e
10

Write programs according to CFG

• Step 1: begin with the start symbol

• Step 2: pick a non-terminal in current result and replace it with one of its produc?ons

• Step 3: con?nue step 2 un?l no more non-terminal remains (i.e., only terminals)

:=

:=

…

11

An example

• CFG: e := x | 1 | e + e

• Step 2: pick a non-terminal in current result and replace it with one of its produc?ons
• Step 3: con?nue step 2 un?l no more non-terminal remains (i.e., only terminals)

• Step 1: begin with the start symbol

scratchpad

12

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e

SyGuS recap

SyGuS: < T, ϕ, L >

Theory:
What does a program mean Specifica?on:

What program we want

Grammar:

• Given a first-order formula in a background theory and a context-free grammar ,
the syntax-guided synthesis problem is to find an expression such that formula

 is valid in theory .

ϕ T L
e ∈ L

ϕ[f/e] T

What programs we consider

13

Programming-by-Example

Programming-by-example (PBE)

• PBE is a specific kind of SyGuS

• Specifica?on encodes a set of input-output examples ϕ
• Goal of PBE: find a program in CFG that sa?sfies a given set of I/O examples

• E.g., FlashFill
• A more ambi?ous goal: not only sa?sfy examples, but actual intent (mind reading!)

15

Why is PBE important

• Simplest kind of specifica?on (arguably)

• Useful in prac?ce

• Technically fundamental

• Even non-programmers can provide examples

• Underly many program synthesis techniques using other specs
• Will cover these techniques in Module 2 (and Module 3)

16

Challenges of PBE

• Scalability

• Ambiguity

• How to guess the right program w/o one telling you everything about it?
• Examples are ambiguous

• Search space defined by syntax is huge (although examples are simple)

• Usability — how to make PBE systems useful and usable in prac?ce?

• How to find a program w/o wai?ng too long?

• Applicability — how to create PBE systems widely applicable to many domains?

• …

17

An example PBE problem

• Syntax

e := f | concat(f, e)

f := s | substr(x, p, p)

p := k | posi?on(x, r, k)

r := t | seq(t, …, t)

t := <num> | <let> | <ws> | <any> | …

Some sample programs in this language:

s is string constant, k is int constant,
x is input variable

• Seman?cs

concat(“a”, “b”)

concat(“a”, substr(x, 0, 1))

concat(“a”, substr(x, 0, posi?on(x, <num>, 1))

concat(substr(x, 0, 1),
 substr(x, posi?on(x, <ws>, 1), posi?on(x, <cap>, 2)))

“12ab” —> ???

“12ab” —> ???

“12ab” —> ???

What does this program do?
• Specifica?on

“Bill Gates” —> “BG”

18

Solve PBE problems

• “Bill Gates” —> “BG”

• Solu?on:

concat(substr(x, 0, 1),

 substr(x, posi?on(x, <ws>, 1), posi?on(x, <cap>, 2)))

“Bill Gates”
5

“Bill Gates”
0 1 45 6

“B”

“BG”

e := f | concat(f, e)

f := s | substr(x, p, p)

p := k | posi?on(x, r, k)

r := t | seq(t, …, t)

t := <num> | <let> | <ws> | <any> | …

19

Solve PBE problems (cont’d)

• Given solu?on, simple to check correctness
• “Bill Gates” —> “BG”

• … but we do not have solu?on a priori (only spec!)

• How to find the solu?on?

e := f | concat(f, e)

f := s | substr(x, p, p)

p := k | posi?on(x, r, k)

r := t | seq(t, …, t)

t := <num> | <let> | <ws> | <any> | …

20

PBE challenges

21

• Huge search space (easily > in simplified FlashFill language!) — how to scale? 1020

e := f | concat(f, e)

f := s | substr(x, p, p)

p := k | posi?on(x, r, k)

r := t | seq(t, …, t)

t := <num> | <let> | <ws> | <any> | …

• Ambiguity — how to find the desired program w/o too many examples?
concat(substr(x, 0, 1), substr(x, posi?on(x, <ws>, 1), posi?on(x, <cap>, 2)))

“Bill Gates”
0 1 45 6

concat(substr(x, 0, 1), substr(x, 5, 6)))
concat(“B”, “G”)
concat(“B”, substr(x, posi?on(x, <ws>, 1), posi?on(x, <cap>, 2)))
…

PBE techniques

Many PBE techniques

• Search-based

• Representa?on-based

• Using constraint solving

• Stochas?c

• Neural approaches

• …

23

PBE technique 1: search-based

• Idea: enumerate programs from grammar systema?cally and test them on examples

• Observa?on 1: exhaus?ve, exponen?al

• Challenges — scalability & ambiguity

• Today’s lecture: two systema?c search-based approaches (top-down & bomom-up)

• Subsequent paper presenta?ons: scale, resolve ambiguity

24

• Observa?on 2: random enumera?on order may not work well

Top-down search

• We have already seen how this works

e := x | 1 | e + e• CFG:

• Idea: start from start symbol, expand non-terminal symbols according to produc?on
rules, un?l reaching a program that sa?sfies examples

25

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e

Top-down search (cont’d)

top-down-search(,):
worklist := { S };
while (worklist is not empty):

pp := worklist.remove();
if (pp is complete & pp sa6sfies): return pp;
worklist.addAll(expand(pp));

(T, N, P, S) E

E

• Algorithm skeleton

return more par?al programs by replacing a non-terminal in pp

T: terminal symbols
N: non-terminal symbols
P: produc?ons
S: start symbol

26

An example

top-down-search(,):
worklist := { S };
while (worklist is not empty):

pp := worklist.remove();
if (pp is complete & pp sa6sfies): return pp;
worklist.addAll(expand(pp));

(T, N, P, S) E

E

e := x | 1 | e + e• CFG:

• Example: (1,2)
• Worklist (at end of itera?ons)

iter 0: e
iter 1: x 1 e + e
iter 2: 1 e + e
iter 3: e + e
iter 4:

x + e 1 + e e + e + e
e + x e + 1 e + e + e

iter 6: return x + x27

iter 5:

x + x x + 1 x + e + e
1 + e e + e + e
e + x e + 1 e + e + e

Bomom-up search
• Idea: start with terminal symbols, combine smaller programs into bigger programs

according to produc?on rules, un?l reaching a program that sa?sfies examples

28

• Algorithm skeleton

bomom-up-search(,):
worklist := { t | t };
while (true):

foreach p in worklist: if (p is complete & p sa6sfies): return p;
worklist.addAll(grow(worklist));

(T, N, P, S) E
∈ T

E

return more programs by applying produc?on rules to programs in worklist

An example

e := x | 1 | e + e• CFG:

• Example: (1,2)
• Worklist (at end of itera?ons)

iter 0: x 1
iter 1: x 1 x + x x + 1 1 + x 1 + 1
iter 2: return x + x

29

bomom-up-search(,):
worklist := { t | t };
while (true):

foreach p in worklist: if (p is complete & p sa6sfies): return p;
worklist.addAll(grow(worklist));

(T, N, P, S) E
∈ T

E

Top-down vs. bomom-up

Top-down Bomom-up

• Generate programs top-down • Generate programs bomom-up

Both exhaus?ve and brute-force procedures
(both can be implemented using worklist algorithm)

• Candidates in worklist are par?al programs • Candidates are concrete programs

+

+e

x e

+

1x

30

Search-based approaches: scalability & ambiguity

• Scalability — how to make search faster?

• Ambiguity — how to find intended program (not arbitrary one sa?sfying examples)?

• Top-down: eliminate “incorrect” par?al programs
• Bomom-up: discard “unpromising” sub-programs

• Will talk more in paper presenta?ons

31

• Pruning

• Ranking (similar idea to priori?za?on)

• Priori?za?on
• Bemer order of candidates in worklist

PBE technique 2: representa?on-based

• Idea: represent search space explicitly, then use representa?on to bemer guide search

• Challenge: how to construct representa?on efficiently, how to use it for synthesis

32

e := x | 1 | e + e• CFG:

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e

Different representa?ons

• Version space algebras (VSAs) [Gulwani et al. 11]

• Finite tree automata (FTAs) [Wang et al. 17]

• Petri nets [Feng et al. 17]

• Type-transi?ons nets [Guo et al. 20]

33

Version space algebra

• Idea: construct a compact data structure (i.e., an VSA) that succinctly represents all
programs consistent with examples

• Construc?on is top-down

• FlashFill paper [Gulwani 11] has more details (will discuss in presenta?on)

• [Polozov et al. 15] — VSA-based program synthesis framework

34

Finite tree automaton

• Idea: construct a compact data structure (i.e., an FTA) that succinctly represents all
programs consistent with examples

• Same idea as VSA, but different data structure

• Construc?on is bomom-up

• Dace paper [Wang et al. 17] has more details (will discuss in presenta?on)

• [Wang et al. 18] — FTA-based program synthesis framework

35

Summary of this lecture

• Syntax-guided synthesis (SyGuS): both seman?c and syntac?c constraints

• Programming-by-example (PBE): examples as spec

• Two PBE techniques: search-based & representa?on-based

36

