
EECS 598. Program Synthesis:
Techniques and Applica?ons

Xinyu Wang

Lecture 1: Introduc?on

2

Logis?cs: Course staff

• Instructor: Xinyu Wang

• Assistant Professor in CSE

• Research: Programming Languages, Formal Methods, SoLware Engineering

• Email: xwangsd@umich.edu

• Homepage: hQps://web.eecs.umich.edu/~xwangsd/courses/f20/eecs598.html

• No TA

• Canvas

mailto:xwangsd@umich.edu
mailto:xwangsd@umich.edu
https://web.eecs.umich.edu/~xwangsd/courses/f20/eecs598.html
https://web.eecs.umich.edu/~xwangsd/courses/f20/eecs598.html

3

Introduce yourself

• Name?

• What program? What year?

• What areas in CS are you interested in?

4

Logis?cs: Course mode

• Mode: Hybrid but to COVID (some components in-person, other components online)

• In-person lectures: 1014 DOW

• Online lectures: Zoom (check course webpage!)

• Mode will be available at least 1 week prior to class (check schedule online!)

• Office hours: T/TH 4:30-5:30pm eastern ?me (Zoom)

• 75-90mins with 3mins break
• Ask ques?ons during lecture: unmute yourself and ask
• Non-urgent ques?ons/comments: type in chat

• Recordings available aLer class

5

Logis?cs: Course structure

• Research-oriented seminar class

• Reading papers, presenta?ons, discussions

• Lectures on basics and general landscape

6

Logis?cs: Course structure (cont’d)

• Content: Program synthesis techniques & applica?ons

• Four modules

• Module 1: Programming-by-Example Techniques

• Module 2: More techniques

• Module 3: More applica?ons

• Module 4: Final Project Presenta?ons

7

Logis?cs: Course structure (cont’d)

• Module 1: Programming-by-Example Techniques

• A set of fundamental ideas/techniques underlying many program synthesizers

• ALer this module, you should be familiar with all these techniques

• Module 2: More techniques

• A set of more advanced techniques

• You should be able to solve many problems using these techniques

• Module 3: Applica?ons

• Interes?ng applica?ons that combine different techniques

8

Logis?cs: What do you need to do?

• Paper presenta?on(s): 1-2 papers/student, depending on how many students enrolled

• Paper reviews: at most 2 reviews per week

• Par?cipa?on: discuss, ask ques?ons, brainstorm new ideas, …

• Final project: team (1-2 people), proposal, checkpoints, final report, final presenta?on

9

Logis?cs: Paper presenta?on

• Iden?fy 1-2 papers you want to present

• Prepare (e.g., slides, demo, thoughts, ideas, discuss with others)

• Present (45m talk + 30m QA)

• Thorough (45m is quite a long ?me)

• Give high-level ideas as well as important lower-level technical details

• Introduce necessary background

• Send to instructor

• If not, you may get any paper

10

Logis?cs: Paper reviews

• Write a review (template available on course page)

• A short summary, pros, cons

• Ques?ons

• Thoughts

• Send to instructor via email by midnight the day before class

11

Logis?cs: Par?cipa?on

• AQend

• Ask ques?ons (don’t be shy!)

• Express your opinions

• Connect to your research

• Your ideas

• …

12

Logis?cs: Final project

• Find a teammate (solo is also okay; but if more than 3, check with instructor)

• Generate ideas

• Write proposal

• Checkpoints: Progress report

• Final presenta?on

• Final report

• Sooner than later!

• Sooner than later!

13

Logis?cs: Final project (cont’d)

• Different kinds of final projects

• Extend/improve a technique in a paper

• Apply an exis?ng synthesis framework to a new problem domain

• Develop a new synthesis technique for an exis?ng problem

• Develop a new synthesis technique for a new problem

• …

• Grading of final project is based on: originality, completeness, scope

14

Logis?cs: Final project (cont’d)

• Proposal

• 1-2 pages, like an introduc?on, also include a ?meline and a sketch of solu?on

• need to convince me your problem is worth solving and is technically challenging

• also need to convince me you are able to solve it within 2 months (at least par?ally)

15

Logis?cs: Final project (cont’d)

• Nothing but a progress report

• A par?al final report that is gradually more complete over ?me

• Checkpoints

16

Logis?cs: Final project (cont’d)

• 6-8 pages, structured like a conference paper

• Final project report

• Include:

• Introduc?on — why this project

• Mo?va?ng example — illustrate how your technique works concretely

• Technical details — make sure to first give high-level idea before showing details

• Evalua?on — how it works in prac?ce

• Related work — how your idea relates to exis?ng work

17

• Paper presenta?on: 20%

• Paper reviews: 30% (2% x 15)

• Par?cipa?on: 5%

• Final project: 45%

• Proposal: 5%

Logis?cs: Grading

• Checkpoints: 16% (8% x 2)

• Final project presenta?on: 12%

• Final project report: 12%

18

What is this course about?

• This course is about program synthesis, including both techniques and applica?ons

• Techniques: general synthesis algorithms not necessarily ?ed to a specific applica?on

• Applica?ons: novel applica?on of program synthesis techniques

• Beyond acquiring knowledge about program synthesis, also:

• PL thinking

• Wri?ng, presenta?on, …

19

You should take this course

• .. if you are doing or plan to do research in program synthesis

• .. if you are interested in programming languages research

• .. if you plan to explore possibili?es of applying PL in your own research

• .. if you just want to learn about the topic!

20

What is “program synthesis”?

• What is “program”?
• C/C++/Java/Python…

• Haskell/ML/OCaml/Lisp/…

• Synthesis from what?

• Input-output examples

• Natural language

• Demonstra?ons

• …

• SQL/Datalog/…
• …

21

Example 1: FlashFill [Gulwani et al. 11]

• Synthesize Excel macros for string processing from input-output examples (video)

https://www.youtube.com/watch?v=LbK-FfCEBOw
https://www.youtube.com/watch?v=LbK-FfCEBOw

22

Example 2: SQLizer [Yaghmazadeh et al. 17]

• Synthesize SQL queries from natural language (given schema)

Schema:

NL: “Find the number of papers in OOPSLA 2010”

SQL query:
SELECT count(Publication.pid)

FROM Publication JOIN Conference ON Publication.cid = Conference.cid
WHERE Conference.name = "OOPSLA" AND Publication.year = 2010

23

Example 3: Rousillon [Chasins et al. 18]

• Synthesize web scraping scripts from example demonstra?ons (video)

https://www.youtube.com/watch?v=favt033lYt8&list=PLYeneIW6KQxIDUEp2QaNNKrgXg9hVvxZo&index=6
https://www.youtube.com/watch?v=favt033lYt8&list=PLYeneIW6KQxIDUEp2QaNNKrgXg9hVvxZo&index=6

24

Example 3: Rousillon [Chasins et al. 18] (cont’d)

• Synthesize web scraping scripts from example demonstra?ons (video)

https://www.youtube.com/watch?v=favt033lYt8&list=PLYeneIW6KQxIDUEp2QaNNKrgXg9hVvxZo&index=6
https://www.youtube.com/watch?v=favt033lYt8&list=PLYeneIW6KQxIDUEp2QaNNKrgXg9hVvxZo&index=6

25

What is “program synthesis”?
• “Program Synthesis correspond to a class of techniques that are able to generate a

program from a collec?on of ar?facts that establish seman?c and syntac?c
requirements for the generated code.” 1

Specifica?on Program

1 hQp://people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm

Program synthesisHigh-level intent Lower-level code

http://people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm
http://people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm

26

Program Synthesis vs. Machine Learning/Deep Learning

• ML/DL is also program synthesis?

• ML/DL: data is spec, model is program, try to learn a model that matches data

• At a high-level, yes

• But in this class, no, at least not the focus

• Defini?ons of “programs” are very different (e.g., grammar vs. neural nets)
• Data is noisy whereas spec is less noisy (but there is a trend in program synthesis

to tolerate noise in spec)
• Typically con?nuous in ML/DL vs. discrete search space in program synthesis
• The line is ge{ng blurry

27

Program Synthesis vs. Compilers

• Program synthesizers are compilers? Compilers are synthesizers?

• Compilers also convert high-level intent (code) to lower-level code

• At a high-level, yes

• But in this class, no, at least not the focus

• Compilers translate (well, not really nowadays) whereas synthesizers discover

• Compilers apply predefined transforma?ons (again, not really nowadays) whereas
synthesizers perform search

• The line is ge{ng blurry

28

Working defini?on of program synthesis in this course

Specifica?on Program
Program synthesis

I/O examples, demonstraAons,
natural language, reference

implementaAon, etc.

In some programming language
(grammar + semanAcs)

High-level intent Lower-level code

Typically involves search

29

Why program synthesis?

• Many useful applica?ons

• E.g., FlashFill in Excel

• Technically challenging

• Exponen?al search space (or even undecidable)

• Cool

• Intersec?on of many areas: PL, AI, FM, systems, logics, …

30

Three pillars of program synthesis [GoQschlich et al. 18]

• Inten?on
• How do users specify their goals?
• Examples, demonstra?ons, NL, …, or their combina?ons!

• Inven?on
• How to find the right solu?on?
• Search-based, representa?on-based, learning-based, …, and their combina?ons!

• Adapta?on

• Challenges: under-specified, ambiguous, unstructured

• Challenges: scalability, ambiguity

• How to find the right solu?on, not star?ng from scratch?
• Bug fixes, patches, extension to new hardwares, …
• Challenges: analyzing, learning, scalability

31

This course

• Module 1: Techniques for example-based specs

• Module 2: Techniques for specs beyond just examples

• Representa?on-based techniques (both top-down and boQom-up)

• Search-based techniques (both top-down and boQom-up)
• Using deduc?on to guide search and prune search space

• Specs: reference implementa?on, types, NL, mul?-modal

• Techniques: CEGIS, ML/DL-based, combina?ons, interac?ve

• Module 3: Applica?ons

• Super-op?miza?ons, SE, web, DB, security, graphics, arch, …

Inven?on

Inten?on
Inven?on

Inten?on
Inven?on
adapta?on

32

Timeline (s?ll tenta?ve)

Sept 4.
Paper assignment

Oct 2.
FP team & ideas

Oct 14.
FP proposal

Dec 9.
FP report

Oct 30.
Checkpoint 1

Nov 20.
Checkpoint 2

Dec 1,3,8(?).
FP presenta?ons

Module 1 Module 2 Module 3

33

Summary of this lecture
• Program synthesis is cool

• You should take this class and learn about it

• You will learn a lot from this class

34

Next lecture (Sept 3)
• Syntax-guided synthesis

• Search-based techniques

• Popular framework for program synthesis

• Representa?on-based techniques

• Top-down: FlashFill [Gulwani11], Sept 8

• BoQom-up: Dace [Wang17], Sept 10

• Top-down: L2 [Feser15], Sept 15

• BoQom-up: Op?onal readings of Sept 15 — [Udupa13], [Albarghouthi13]

35

Survey (op?onal)
• Send me a brief email with:

• Name

• I am a [CS/__] [PhD/Masters/undergrad] in year [1/2/3/4/5/…]

• Write one reason why you are taking this class or one thing you want to get out of it

• One fun fact about you, or what you like to do in your spare ?me, or whatever

• One thing you would like the instructor to do in this class

