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ABSTRACT 
Users of complex software applications often rely on ineffi-
cient or suboptimal workflows because they are not aware 
that better methods exist. In this paper, we develop and vali-
date a hierarchical approach combining topic modeling and 
frequent pattern mining to classify the workflows offered by 
an application, based on a corpus of community-generated 
videos and command logs. We then propose and evaluate a 
design space of four different workflow recommender algo-
rithms, which can be used to recommend new workflows and 
their associated videos to software users. An expert valida-
tion of the task classification approach found that 82% of the 
time, experts agreed with the classifications. We also evalu-
ate our workflow recommender algorithms, demonstrating 
their potential and suggesting avenues for future work. 
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INTRODUCTION 
Modern complex software applications often include hun-
dreds or thousands of commands, which further form a much 
larger number of workflows a user can use. The large variety 
of commands and workflows raises two issues. First, pre-de-
signed tutorials cannot exhaustively cover all the different 
workflows. Second, users may get stuck in inefficient or 
suboptimal ways of completing tasks if they are not aware 
that better workflows exist. 

Prior work on software learning addressed this awareness 
problem [12] at a command-level granularity by recom-
mending individual commands [24, 28], or videos based on 
command usage [29]. However, command-based recommen-
dations may not consider the user’s higher-level workflow 
needs, or help the user to understand how to use already-
known commands in new ways. 

Knowing the tasks that a user is working on, and the work-
flows they are using, is the first step towards providing bet-
ter-personalized software learning support. For example, 
upon recognizing a user’s workflow, the application could 
recommend alternative or more efficient workflows, display 
sample tutorial videos to help with their task, or provide links 
to relevant community-created content. By investigating 
software learning recommendation systems at a workflow 
level, this work complements the existing body of software 
learning research that focuses on individual commands.  

With the above as motivation, this paper contributes a hier-
archical approach to mining user workflows at both task and 
command-set levels. In the first layer of our hierarchical ap-
proach, we use Bi-term Topic Modeling (BTM) [39] to infer 
18 high-level user tasks (e.g., “Rendering”, “Beginner 
Sketching”, and “Advanced Surface Modeling”) from com-
mand logs associated with 11,713 videos of people using the 
software. A study found an 82% expert agreement with the 
algorithm’s classification of videos into task categories. In 
the second layer, we apply a frequent itemset mining and 
ranking approach [9] to acquire frequent patterns of com-
mands under each task. For example, a pattern under the task 
“Beginner Sketching” may look like {Center Rectangle, 
Create Sketch, Sketch Dimension, Edit Sketch Dimension}. 

Based on this hierarchical understanding of user workflows 
from command logs, we propose and evaluate a design space 
of four algorithms which recommend community-generated 
videos to the user, demonstrating relevant workflows. We 
evaluate the performance of the four algorithms along the di-
mensions of relevance and novelty. Users had high ratings 
on the relevance of the videos, with pattern-based recom-
mendations being more relevant and familiar to the user than 
task-based recommendations. 

Our work contributes a new method to infer user workflows 
and shows how this method can be utilized to recommend 
learning videos for a 3D design application. We conclude by 
discussing how our approach to workflow identification can 
generalize to other applications and can inform future 
designs of support systems for software learning. 

RELATED WORK 
Our work directly builds upon prior work on tools to support 
software learning, especially recommender systems and 
community-enhanced software learning systems. We also 
draw upon methods used in the literature to mine user data. 
In this section, we review related work in each of these areas. 
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Relevant Applications for Software Learning 
There have been many efforts in the HCI community to de-
sign tools to support the learning and use of software, rang-
ing from reflective visualization tools [6, 23, 26], to tools that 
provide more active support, such as in-software recommen-
dations and feedback [24, 28, 29]. A range of different chan-
nels for providing support have been investigated, from in-
application contextual help [13], to community support [22], 
to auto-generation of demonstration videos [18]. 

Tools to Raise User Awareness 
Visualization tools are designed to raise users’ awareness of 
their usage patterns and performance, with the goal of en-
couraging users to adopt more efficient methods. Such visu-
alization tools have been shown to be successful in raising 
awareness [6, 23, 26], but can be limited in that they reflect 
existing behavior, rather than providing users with insights 
into new ways of working. Other work has adopted more pro-
active approaches, e.g., CommunityCommands [28] uses 
collaborative filtering to recommend new commands, and 
Ambient Help [29] continuously recommends video re-
sources based on the user’s recently used commands. 

The above systems operate at the command level. In this 
work, we also take an proactive recommendation approach, 
but we develop tools to understand user tasks and recom-
mend personalized resources at a workflow level. Our ap-
proach is informed by the collaborative filtering algorithms 
developed in CommunityCommands [28], and explores a de-
sign space for workflow-based recommender systems. 

Community Enhanced Learning 
Prior work on software learning and “learner-sourcing” [15] 
has demonstrated the benefits of community-created learning 
resources, and the potential of repurposing community-cre-
ated content for software learning purposes. 

CADament [22] allows players to acquire new skills by ob-
serving the workflows of their opponents in a multiplayer 
game. CoScripter [20] enables end-users to create and share 
scripts to automate web-based processes. FollowUs [18] en-
ables community-enhanced tutorials, which improve as more 
users work with them. Techniques have also been explored 
to extract command demonstrations from workflow videos 
[19], and to elicit workflow metadata for how-to videos [16]. 

Motivated by the work above, our approach leverages com-
munity-generated workflow videos to model common work-
flows in an application, and repurposes these videos as a 
means for presenting recommended workflows to the user. 

User Data Mining 
Dev and Liu [9] provides a good summary of prior work on 
user behavior modeling [3, 30, 31], event sequence [33] and 
clickstream data modeling [37]. In their work [9], they use a 
frequent pattern mining approach to identify user tasks in a 
photo editing application from command logs. They also 
developed a ranking algorithm to select more coherent 
patterns. Our work directly builds upon this approach, 
extending it to be more applicable for software with more 

diverse usage domains, and utilizing it to provide workflow 
recommendations. 

Outside of the software learning literature, topic modeling is 
a common generative model to extract topics from a corpus 
[11]. Prior work has successfully applied topic modeling to 
mine user behaviors from sequence data. Huynh et al. [14] 
used this approach to identify routine behaviors from sensor 
data. In this case, a topic is a behavior (e.g., having lunch), 
and the words are activities associated with this topic (e.g., 
walking freely, picking up cafeteria food, queuing in the line, 
etc.) Wen and Rose [1] used a similar approach to identify 
click patterns in data from Massive Open Online Courses. 

In our work, we develop a hierarchical approach combining 
topic modeling and frequent pattern mining approaches to 
mine software workflows at two levels: a task level, and a 
finer-grained command-pattern level. 

DATASET 
The software application we target with our approach is a 3D 
modeling application designed for consumer, commercial 
and educational use. The application has over 1,000 com-
mands, separated into a set of high-level workspaces (Model, 
Sketch, Assemble, etc.) Collectively, this rich feature set en-
ables a wide variety of workflows, including modeling, mesh 
editing, simulation, and animation. Even for a single task, 
users can take many different approaches. For example, for 
basic modeling, users can start from primitive shapes (e.g., a 
box or cylinder), or can sketch in 2D then transform the 
sketch to 3D using extrude or other operations. 

We collected detailed natural usage logs for 20,000 users of 
the software from June 25 to August 25, 2017, including 
255,643 user sessions and 20 million command invocations. 
In addition to these usage logs, we collected video data from 
an online community repository where users upload videos 
of their usage of the software. These videos have an associ-
ated meta-data file with time-stamped command usage data. 
We collected data for 11,713 videos, with 470,811 com-
mands invoked across these videos. We preprocessed the 
command logs of the videos to be in the same format as the 
natural logs from the product, and also collected video attrib-
ute data including video length and view count. 

UNDERSTANDING USER TASKS FROM VIDEOS 
The first step to recommend personalized resources to users 
is to understand what the users are doing in the software. To 
this end, we developed a hierarchical approach to mine user 
workflows at both task and command-set levels. In the first 
layer of our hierarchical approach, we used topic modeling 
and inferred 18 meaningful user tasks (topics). In the second 
layer, we mined frequent command patterns for videos of 
each task respectively, resulting in 233 patterns in total. The 
rationale for this two-level approach is that simply mining 
frequent command patterns from the entire corpus of 
command logs can lead to an over-representation of 
command patterns for frequently-performed tasks, with 
those for less-frequent tasks drowned out by the volume of 
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log data for more-frequent tasks. Adding an initial stage of 
topic modeling allows less frequent but distinct activities to 
be captured as well. 

In this section, we describe the limitations of the state-of-the-
art approach [9] to mining frequent tasks on our dataset, and 
then introduce the first layer of our hierarchical approach – 
using topic modeling to mine user tasks.  

Frequent Pattern Mining Approach 
The current practice of identifying frequent user tasks in-
volves applying frequent pattern mining techniques, such as 
frequent itemset mining and sequential pattern mining [1, 2, 
8, 27]. However, such existing techniques do not account for 
the unique characteristics of software log data. For example, 
in software logs it is common for users to perform a task by 
executing a set of operations contiguously with no, or few, 
outliers. Users may also execute a required operation multi-
ple times within the duration of a task. Recent work by Dev 
and Liu [9] developed an outlier-based ranking algorithm to 
rank frequent patterns mined from user log data, which ad-
dressed the above challenges specific to software logs. We 
adopted their approach as a starting point. 

Initially, we applied Dev and Liu’s approach to our dataset 
without modifications, but found that it mainly identified 
patterns related to the software’s most frequently-used work-
space (Sketching). This suggests that for complex software 
applications with diverse usage domains, a frequent item-set 
mining approach may not be sufficient to identify patterns 
representative of the full range of workflows in the software. 

Topic Modeling Approach 
A topic model is a type of statistical model for discovering 
abstract “topics” that occur in a collection of documents. Alt-
hough it was originally developed as a text-mining tech-
nique, topic modeling has also been used to mine human 
behaviors [14, 1]. We consider the way a software user com-
poses a session to be similar to the generative process of a 
document in topic modeling. Users first decide which task to 
work on, and then choose commands for that task. Addition-
ally, for complex software applications, it is often the case 
that users will use slightly different command sets to accom-
plish similar tasks. The relationship between commands may 
not be captured by frequent pattern mining approaches, since 
they measure the co-occurrence of a set of commands. We 
see an opportunity for topic models to capture these relation-
ships. 

We define the problem of inferring user tasks from in-situ 
command logs as an unsupervised machine learning task, 
due to the lack of ground truth data. In this work, we col-
lected a large dataset of community-generated videos show-
ing various uses of the software, with corresponding 
command logs. This enables us to first infer user tasks 
through unsupervised machine learning and then validate the 
results using the additional context provided by the videos. 

We used the command logs from the video dataset as training 
data for the topic model, treating each video as a document, 

and each command as a word. After labeling and validating 
the inferred topics, we applied the topic model to the com-
munity logs to classify user tasks for all users. 

Data Preprocessing 
We extracted the command logs from the video dataset, and 
filtered out 34 “stop word” commands identified by domain 
experts, such as “Constrained Orbit”, “Free Orbit”, “Pan”, 
and “Cancel”. We only included videos with at least 2 unique 
commands. This resulted in 11,713 videos with 952 unique 
commands, and 470,811 total command invocations. 

LDA vs. BTM 
We initially applied a common topic modeling algorithm, 
Latent Dirichlet Allocation (LDA) [7] (using Gensim [10]) 
to infer topics from the command logs of the video dataset. 
To select the number of topics, K, we tested values from 5 to 
100 in increments of 5. A researcher and a domain expert 
analyzed the output for each value of K to identify the most 
sensible results. New topics (“Animation”) emerged at 
K=20, as compared to K=15, and for K ≥ 25, we started to 
see overlapping topics, especially related to sketching. We 
did not further refine the final number of topics by testing 
values of K between 20 and 25, due to limitations in time 
with the domain expert. Based on the above, we finalized at 
K=20. 

A limitation of the LDA algorithm is the sparsity issue. Some 
videos contain a small number of commands, resulting in a 
sparse document-word (video-command) matrix. To address 
this, we adopted the Bi-term Topic Modeling (BTM) ap-
proach [39], which is designed to infer topics from short 
texts. BTM explicitly models word co-occurrence patterns to 
enhance the topic learning, and uses the aggregated patterns 
in the whole corpus when learning topics, to solve the prob-
lem of sparse word co-occurrence patterns. We applied BTM 
on the command logs of the video dataset and used a similar 
approach to tune the number of topics parameter, which also 
generated optimal performance for K = 20 topics. 

The researcher and a domain expert did a qualitative com-
parison of the 20 topics generated by LDA and BTM respec-
tively. We concluded that BTM generated more coherent 
topics, with fewer overlapping topics, and additional topics 
not identified by LDA. Thus, we used BTM to classify user 
tasks. We refer to the topics generated by BTM as “tasks”. 

Output of BTM 
The output of BTM includes (1) a topic-word (task-com-
mand) distribution matrix, and (2) a document-topic (video-
task) distribution matrix. Using the video-task matrix, we as-
signed each of the 11,713 videos as belonging to the “task” 
(i.e., topic) with the highest weight for that video. We also 
define the following two similarity terms: 

Task-Task similarity—each task is represented in a task-
command vector by the topic-word (task-command) matrix. 
We define the task-task similarity as the cosine similarity be-
tween the two task-command vectors. We used a similar def-
inition of task-task similarity as used in Labeled LDA [34]. 
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Video-Video similarity—each video is represented in a 
video-task vector by the document-topic (video-task) matrix. 
We define the similarity between two videos as the cosine 
similarity between the two video-task vectors. 

Cosine similarity can compare documents in terms of their 
subject matter [35], rather than length or other attributes. 
This makes it appropriate for calculating similarity of videos 
and tasks, which may vary in length but concern the same 
high-level content. While cosine similarity comes from a dif-
ferent modeling approach than probabilistic modeling, we 
selected it over probability-based metrics (e.g., Kullback-
Leibler Divergence) because it is well-known, easy to imple-
ment, and has been found to be as effective as probability-
based metrics in applications similar to our own (e.g., filter-
ing redundant documents [40], and computing similarity be-
tween user-topic vectors generated by LDA [32]). 

Expert Labeling 
While the topic modeling algorithm provides an association 
of commands to topics, it does not provide a semantically 
meaningful label for these “tasks”. To generate such labels, 
we recruited two domain experts from the company that de-
veloped the software. For each “task”, we showed the top 10 
weighted commands for the task, and the top three videos 
ranked by weight for that task. We included three multiple-
choice questions and one open-ended question in the survey 
to understand whether experts found the “tasks” to be mean-
ingful, and to label each with a name. 

Expert Labeling Survey Results 
In the open-ended question, we asked the experts to give a 
name to each task (i.e., what they think the user is working 
on when seeing these commands used together). The experts’ 
responses are shown in Table 1. Following the survey, a re-
searcher met each expert to discuss their understanding and 
finalize a name for each task (also shown in Table 1). We 
dropped one task that was indicated as not meaningful by the 
experts, and combined two tasks on beginner sketching, re-
sulting in 18 distinct tasks. The number of videos that are 
categorized into each task is shown in column “Videos”. 

To further assess the effectiveness of the algorithm, we asked 
experts to indicate whether the commands composing each 
task are frequently used together. In a multiple-choice ques-
tion, we asked each expert to rate “How frequent/likely do 
you think these commands would be used together?” The ex-
perts respectively rated 15/20 and 17/20 tasks as meaningful 
(Figure 1). This provides initial validation of our approach of 
task recognition using topic modeling. 

The experts also rated the helpfulness of the videos in decid-
ing the name of the task. Experts found the videos to be help-
ful or neutral for 16/20 and 16/20 of the tasks respectively. 
The two experts also showed high agreement on this ques-
tion, with a Pearson coefficient of 0.48 (p=0.03) between 
their ratings. This is a promising result, indicating that the 
community corpus of videos can be used to demonstrate new 
workflows to users as part of a recommender system. 

Id Expert 1 Expert 2 Final Task Name Videos 

1 Intermediate Sketching 
Offsetting sketch geometry and 

trimming lines back that are overlapping 
Intermediate sketching (offsetting sketch geometry 

and trimming lines) 
239 

2 Advanced Surfacing Surfacing and Sculpting Advanced surfacing (surfacing and sculpting) 296 

3 Beginners Design Basic Part Modeling Basic part modeling 673 

4 Advanced sketching Editing Splines in a sketch Editing splines in a sketch 293 

5 
Design (sketch and 

features) 
Extruding text Creating features from sketches 1251 

6 Surfacing Fixing Surfaces/Patching up surfaces Fixing or patching surfaces 249 

7 Rendering Add appearances, Rendering a design Rendering (adding appearances, rendering a design) 166 

8 Simulation Simulation Simulation 116 

9 More aimless clicking Editing a design Editing a design 506 

10 Drawing Creation Creating a drawing of a design Creating a drawing of a design 131 

11 Expert Sketching 
Creating construction planes and then 

creating sketches on those planes 
Intermediate sketching (creating construction planes) 998 

12 Intermediate CAM Creating CAM tool paths Intermediate CAM (creating CAM tool paths) 835 

13 
Someone is aimlessly 

clicking around 
Assembling components 

Copy and pasting components, and assembling 
them 

528 

14 
Industrial Design from 

image 
Inserting a canvas then using a TSpline 

body to match the canvas 
Industrial design based on a reference image 104 

15 Animations Creating an animation Animation 53 

16 Sketching Constraining a sketch 
Beginner sketching (constraining/dimensioning a 

sketch, fully defining a sketch) 
458 

17 Sculpt Editing a TSpline body Sculpting (editing a T-spline body) 793 

18 3rd Party Add In Not sure Dropped this topic 445 

19 Parametric Design Dimensioning a sketch 
Beginner sketching (constraining/dimensioning a 

sketch, fully defining a sketch) 
1139 

20 Assembly Assembling components Assembly 583 

Table 1. Task names, as labeled by experts, with the number of videos that are categorized for each task. 
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STUDY 1: TASK CATEGORIZATION VALIDATION  
The aim of our first study was to evaluate the topic modeling 
approach for categorizing user tasks. Based on the labels pro-
vided by the domain experts, we asked a new set of ten users 
to watch a selection of videos, and identify the task demon-
strated in the video, and the similarity of pairs of videos. The 
goal was to evaluate whether users’ responses would match 
the topic modeling algorithm’s categorization. 

Video Study Design 
Based on several rounds of piloting, we developed the fol-
lowing two question types answered by users in this study.  

Labeling Questions 
The first question type asked participants to view a single 
video, and choose a task category for that video from a list 
of four possible options (Figure 2). The list of choices for 
each video was constructed so that it contained the label pro-
vided by the topic modeling algorithm, as well as three other 
tasks. The three additional tasks were selected by ranking the 
remaining 17 tasks produced by the topic modeling approach 
by similarity to the task of the target video (using the task-
task similarity metric as defined earlier). This ranked list of 
tasks was divided into three roughly equal-sized tiers, and 
one task was selected from each tier. This results in each 
question containing a mix of tasks that our algorithm be-
lieves are close to the video, and that are far from it. 

For example, the BTM algorithm categorizes the video 
shown in Figure 2 as belonging to “Intermediate sketching 
(offsetting sketch geometry and trimming lines)”. The three 
additional choices, ranked by their similarity to this task, are 
“Beginner sketching” (0.8), “Editing splines in a sketch” 
(0.25), and “Simulation” (0.12). Using this approach, we in-
clude choices that are similar to the task chosen by the algo-
rithm, and ones that are different, without overwhelming the 
participant with all 18 possible choices. This enables us to 
investigate whether the distribution of answers over choices 
is consistent with the similarity between tasks. 

Similarity Questions 
The second question type asked the participant to watch a 
pair of videos, and evaluate whether they believed the tasks 
being performed in the two videos were similar or not, on a 
5-point Likert scale (Figure 3). To construct the similarity

 

questions, we randomly selected a video from the dataset as 
the target video, and ranked all the other videos based on 
their similarity to the target video (using the video-video 
similarity metric as defined earlier). 

The pair of videos shown to the participant was either similar 
or dissimilar. To form a similar pair, we identified videos 
with a similarity score higher than 0.9 to the target video (the 
green shaded area in Figure 4), and randomly selected one 
such video. To form a dissimilar pair, we randomly selected 
a video from the bottom half of all videos, ranked by simi-
larity to the target video (the red shaded area in Figure 4). 
Our approach for selecting similar/dissimilar items was de-
veloped in an ad-hoc manner, based on experimentation with 

 
Which of the following categories best describes the task being performed in the video? 

○ Simulation 

○ Intermediate sketching (offsetting sketch geometry and trimming lines) 

○ Editing splines in a sketch 

○ Beginner sketching (constraining/dimensioning sketch, fully defining a sketch) 

 Figure 2. Example labeling question – Select the category 
that best describes the task being performed in the video. 

     
To what extent do you agree with the following statement: 

The tasks being performed in the two videos are similar. 

○ Strongly Agree 

○ Agree 

○ Neither Agree Nor Disagree 

○ Disagree 

○ Strongly Disagree 

Figure 3. Similarity question – Rate the similarity 
of the tasks performed in the two videos. 

 

Figure 4. Similarity between a video and all other videos. 
We selected similar videos from the green shaded area, 

and dissimilar videos from the red shaded area.  
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Figure 1. Expert ratings for Q1: “How frequently/likely do 
you think these commands would be used together?” 
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our dataset. In particular, we found that a simpler criterion 
(e.g., selecting the top 10% of videos, ranked by similarity 
[28]) did not account for tasks with few videos. For example, 
the Animation task included only 53 videos, so selecting 
10% of all videos ranked by similarity to a video on Anima-
tion would select many videos outside this topic. Using a 
threshold on similarity score avoided this problem. 

Participants 
We recruited 10 users (8 male, 2 female) that self-identified 
as intermediate or expert-level users of the software. Partic-
ipants were given a $25 gift card for participating. 

Study Design 
Each participant answered 11 labeling questions, and 18 sim-
ilarity questions (including 9 video pairs that our algorithm 
indicated were similar, and 9 that our algorithm indicated 
were dissimilar), covering a total of 47 videos across 29 
questions. In order to cover a larger variety of videos, we de-
signed the study so that 2 participants worked on questions 
with the same set of 47 videos, with 5 sets of 47 videos in 
total. We also made sure videos of each task were equally 
represented in the questions. In total, we covered 235 videos 
in the study, which ranged in duration from 10-60 seconds. 
To counterbalance, in each set, we reversed the order of sim-
ilarity and labeling questions for the two participants. Ques-
tions within each category were presented in a random order. 
To make sure the participants watched the videos and treated 
the questions seriously, we asked participants to provide a 
short text justification of their response to each question. 

Quantitative Results and Analysis 
For similarity questions, if the participant answers “Strongly 
Agree” or “Agree” for a similar pair of videos, or “Strongly 
Disagree” or “Disagree” for a dissimilar pair of videos, we 
count the answer as consistent with the algorithm, otherwise 
as inconsistent. Participants’ overall agreement on similarity 
questions with the algorithm was 71%. We also computed 
the users’ average rating for similar pairs (1.4) and dissimilar 
pairs (3.4), where the rating is computed on a 1-5 scale, with 
5 meaning “similar” and 1 meaning “dissimilar”. For the la-
beling questions, participants agreed with the algorithm’s 
classification 82% of the time. The performance of each par-
ticipant is shown in Table 2. 

Video 
Set 

Similarity 
Agreement 

Rating for dis-
similar pairs 

Rating for 
similar pairs 

Labelling 
Agreement 

1 
83% 1.3 4.2 82% 

78% 1 3.4 82% 

2 
61% 1.3 2.4 91% 

72% 1.4 3.1 73% 

3 
78% 1.1 4 100% 

94% 1.2 4.3 91% 

4 
61% 1.7 2.8 64% 

67% 1 2.6 73% 

5 
61% 2 3.6 91% 

56% 2 2.8 73% 

TTL 71% 1.4 3.3 82% 

Table 2. Summary of results for Study 1, grouped by video set. 

 

Figure 5. Summary of agreement between the algorithm and 
participants’ responses to the labeling questions. 

From the results, we found that participants had a high level 
of agreement with the algorithm. The main source of incon-
sistency was the lack of agreement when our algorithm con-
sidered two videos to be similar – participants were more 
conservative about judging two videos to be similar. 

In particular, participants had high agreement with the algo-
rithm on labeling questions. As shown in Figure 5, 82% of 
responses matched the algorithm’s classification. Moreover, 
approximately half of the responses that did not match the 
algorithm were in Tier 1, which is the closest to the classifi-
cation of the algorithm without being an exact match. Over-
all, 91% of responses were either exact matches or in Tier 1. 

Qualitative Analysis of User Feedback 
To better understand the circumstances under which partici-
pants agreed or disagreed with the algorithm’s classification, 
we examined the justifications they provided for their rat-
ings. In general, we found that participants were able to give 
detailed descriptions of the tasks being performed in the vid-
eos. Some examples of justifications are provided below: 

“They are both linked with motion, both using joints to drive the parts or 
restrict movement.” 

“Both are short videos that go into the render environment and start in-
canvas rendering.” 

 “Fairly advanced sketching manipulations, all 2D. 2nd video, manipulat-
ing 3D assembly with joints and alignments, no actual changes to the geom-
etry just their orientation.” 

“The first video is using a sketch on a plane to use as a cutting tool to split 
a body - the second uses the time line and preferences to modify an existing 
model.” 

Participants’ justifications indicated a range of different 
standards for judging similarity. While we asked participants 
to judge based on whether the two workflows were working 
toward a similar goal, even if their individual approaches 
were different, or the end results were different (e.g., one 
succeeded while the other failed), we observed that many 
participants judged similarity based on other standards, such 
as the expertise level of the approaches shown in the video, 
or the specific operations used (e.g., “Both navigate the de-
sign space and add features. The former looks unprofes-
sional, but latter looks very skilled.”, and “Both videos create 
a sketch, but other operations are different”.) Participants 
also mentioned that their answer could go either way, de-
pending on how similarity was defined (e.g., “It depends on 
how vague you want to go with the similarities – you could 
say that they are using some type of constraint by aligning 
faces or changing dimension etc. – but it is vague”). 

Further, some participants were particularly strict when 
judging similarity. In the examples below, participants’ 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Exact Match

Tier 1

Tier 2

Tier 3
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justifications for their ratings suggest an agreement that the 
tasks had a similar goal, but their ratings do not reflect this: 

 “1 is creating a drawing view. 2 is editing a drawing view's scale. The gen-
eral end goal is to end up with a drawing.” (Rated as “Neutral”) 

“Both attempt to simulate how parts work in the physical world” (Rated as 
“Extremely different”) 

 “1 is creating a body from a TSpline. 2 is creating variations of TSpline 
bodies and ends up with bodies.” (Rated as “Neutral”) 

Overall, our study results suggest that the BTM algorithm 
does infer meaningful user tasks that are consistent with the 
understanding of experienced users of the software. This is 
encouraging evidence for the value of topic modeling ap-
proaches for software log data. Our findings also indicate the 
value of gathering a corpus of video and associated log data 
for a software application, as it can be used to validate ap-
proaches for modeling user tasks from log data. 

HIERARCHICAL TASK IDENTIFICATION 
Study 1 validates the first layer of our hierarchical approach, 
with which we can infer the high-level tasks (topics) the user 
is working on. However, even when two videos are of the 
same high-level task, they may contain very different com-
mand sets. The second layer of our approach allows us to 
acquire finer-grained command sets under each task. 

We began with the output of BTM, which assigned each 
video to a task (i.e., the task with the highest weight for that 
video in the video-task matrix). For the set of videos under 
each task, we applied the FP-Growth algorithm (using SPMF 
library [36]) on the command logs to identify frequent pat-
terns. We set different thresholds for each task based on how 
many videos there were – our rule of thumb was that the 
number of frequent patterns acquired for each task should be 
within the range of 5-10% of the total number of videos for 
that task. For the patterns acquired under each task, we ap-
plied the ranking algorithm developed by Dev and Liu [9] 
and set the minimal length for a pattern to be 3 and the cutout 
cohesion score to be 2. By choosing cohesion score of 2, we 
allowed 1 outlier for a pattern with 3 commands. For exam-
ple, the pattern {Construct Sketch, Draw Line, Add Geome-
try Constraint to Sketch} contained three commands and had 
a cohesion score of 2, because for the 206 times that this pat-
tern appeared, at least half of the times there was another 
command that appeared in the sequence other than the three 
commands in the pattern (i.e., an outlier). Examining the 
video command logs, there were cases where the three com-
mands appeared together with no outliers, and other cases 
such as {Draw Line, Construct Sketch, Trim Sketch, Add Ge-
ometry Constraint}, and {Draw Line, Construct Sketch, Add 
Tangent Handle, Add Tangent Handle, Add Geometry Con-
straint} where this was not the case. Setting the cutout cohe-
sion score to 3 would result in a loss of such length-3 patterns 
that appeared frequently with 1 outlier in between the com-
mands. We refer the reader to Dev and Liu [9] for additional 
context surrounding our choice of cohesion score and allow-
ing outliers. Using this approach, we got 233 frequent pat-
terns in total for the 18 tasks. The final distribution of 
command patterns by task is shown in Table 3. 

Comparing this hierarchical approach with simply applying 
the above command-set identification to all data, we found 
greater diversity in the tasks identified. Specifically, without 
first applying BTM, all 53 frequent patterns acquired were 
for sketch-related tasks. 

Examining the output of our approach indicated that it pro-
vided reasonable results. For example, for the Beginner 
Sketching task, we found patterns such as {Center Rectangle, 
Create Sketch, Sketch Dimension, Edit Sketch Dimension} 
showing the user created a sketch, drew a rectangle, and ed-
ited its dimensions. For the Intermediate Sketching task, we 
found patterns such as {Line, Extrude, Stop Sketch, Trim} 
showing the user is drawing and trimming lines in a sketch, 
and extruding from the sketch. For the Assembly task, we 
found patterns such as {Activate Environment, Joint, Drag 
Joint Origin} which shows the user activated the workspace, 
dragged the joint origin and then made a joint. 

RECOMMENDER SYSTEM 
Using the hierarchical approach, we trained a topic model 
using BTM on the command logs of 11,713 videos, to infer 
18 topics representing high-level tasks in the software (first 
layer), and then acquired frequent patterns for each of these 
tasks (second layer), resulting in 233 patterns in total. These 
topics and command patterns allow us to infer a task distri-
bution for each user, and to characterize users and videos 
based on which of the patterns are exhibited in their log data. 
Specifically, we used this model of tasks and command pat-
terns to design and implement four collaborative-filtering al-
gorithms to recommend workflows and associated videos. 

To form the community for collaborative filtering, we 
sampled 20,000 users and collected their log data for the 
period of June 25 to August 25 of 2017. In all, this included 
255,643 user sessions and about 20 million command 
invocations. We applied the model trained using BTM in the 

Task Name Count 

Intermediate sketching (offsetting sketch geometry and 
trimming lines) 

9 

Advanced surfacing (surfacing and sculpting) 1 

Basic part modeling 0 

Editing splines in a sketch 19 

Creating features from sketches 49 

Fixing or patching surfaces 4 

Rendering (adding appearances, rendering a design) 6 

Simulation 34 

Editing a design 9 

Creating a drawing of a design 12 

Intermediate sketching (creating construction planes) 13 

Intermediate CAM (creating CAM toolpaths) 10 

Copy and pasting components, and assembling them 4 

Industrial design based on a reference image 2 

Animation 1 

Sculpting (editing a T-spline body) 2 

Beginner sketching (constraining/dimensioning a sketch, 
fully defining a sketch) 

57 

Assembly 1 

Table 3. Distribution of patterns by task. 
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first layer of the hierarchical approach on the community 
data to infer task usage for each user, resulting in a user-task 
distribution matrix. We then searched for the appearance of 
each of the 233 patterns acquired from the second layer of 
the hierarchical approach in the command logs of each user 
session. This results in a user-pattern frequency matrix. 

The recommender system works in three steps. First, for a 
given user, the system gets his/her task and command pattern 
usage from the above matrices. Second, it selects either a task 
(first layer) or a command pattern (second layer) to recom-
mend using collaborative filtering. Finally, it selects a candi-
date video to recommend based on the chosen task or pattern. 

Recommender System Design Space 
Based on this hierarchical understanding of user workflows 
both at a task level (inferred from the topic modeling ap-
proach), and at a pattern level (inferred from the frequent pat-
tern mining approach), we propose and evaluate a design 
space for workflow-based video recommender systems. The 
first dimension of our design space is granularity, basing our 
recommendation on either a topic level or a pattern level. 
Videos that are recommended at a topic level target a general 
task, e.g., sketching, whereas videos that are recommended 
at a pattern level target a specific pattern of commands, e.g., 
drawing a line, applying a constraint, and editing dimen-
sions. The second dimension we evaluated was topic rele-
vance. Recommendations were either most-familiar topic 
(MFT), meaning the recommended videos match the user’s 
most commonly-used topic, or less-familiar topics (LFT), 
meaning the recommended videos are outside of the user’s 
most commonly-used topic. The intention is for the MFT rec-
ommendations to be more familiar and relevant, and for LFT 
recommendations to be more novel. Exploring this dimen-
sion allows user to explore the tradeoff between relevance 
and novelty [21]. Based on these two dimensions, we pro-
posed a design space of four workflow based video recom-
mendation algorithms (Table 4). 

 Most-Familiar Topic Less-Familiar Topics 

Topic Level 1. Topic-MFT 2. Topic-LFT 

Pattern Level 3. Pattern-MFT 4. Pattern-LFT 

Table 4. A design space for workflow recommender systems. 

Recommendation Algorithms 
All four algorithms make recommendations in two stages. 
First, a topic is selected (topic-level algorithms), or a set of 
five patterns1 is selected (pattern-level algorithms). Second, 
based on the selected topic or patterns, videos are chosen that 
either belong to the topic, or contain the selected patterns. 
The following sections describe the specific algorithms. 

Algorithm 1: Topic-MFT  
Step 1: Compute the task distribution for the target user. 

Step 2: Choose the task the user has most frequently used. 
For example, in Figure 6 we visualize the task distribution 
for a target user. In this case, we would select Task 5. 

Step 3: Select five videos for the chosen task. We select all 
videos in the dataset that belong to this task, and compute the 
similarity between the target user’s task usage with all videos 
selected. Videos with a similarity greater than 0.9 are ranked 
by their view counts, and the top five videos are selected. The 
threshold 0.9 followed a similar rationale as introduced in 
Study 1. The task similarity step guarantees that the videos 
will be close to the user’s typical workflows, and the view 
count ranking ensures that we select higher-quality videos. 

Algorithm 2: Topic-LFT  
Step 1: Compute the task distribution for the target user and 
all 20,000 other users in the community.  

Step 2: Find similar users. We select users that have a task 
similarity score larger than 0.9 with the target user. Task sim-
ilarity here is defined as the cosine similarity between the 
user-task vectors. Figure 6 shows the comparison of task dis-
tributions between a target user and similar users.  

Step 3: Compare target user to similar users. We compute 
the task weight difference between the target user and similar 
users, and select the task that has the largest delta between 
similar users and the target user. For the example in Figure 
6, Task 1 would be recommended. We then use a similar al-
gorithm as in Approach 1, Step 3 to select five videos. 

Algorithms 3 & 4: Pattern-MFT, Pattern-LFT 
Step 1: Compute the pattern frequency distribution for the 
target user, and all 20,000 other users in the community. 

Step 2: Find similar users based on pattern frequency. Sim-
ilarity here is defined as the cosine similarity between user-
pattern frequency vectors. Since the pattern frequency simi-
larity is much lower than task similarity, it was difficult to 
determine a threshold for selecting similar users. We chose 
N=200 to select the top 200 users based on the ranking of 
pattern frequency similarity with the target user. 

Step 4: Compute expected pattern frequency for the target 
user. To calculate the expected frequency for each pattern, 
we follow the method used by Matejka et al. [28]. We define 
the expected frequency, ݁ ௜݂௝, for pattern ݌௜ and user ݑ௝: 

݁ ௜݂௝ ൌ 	෍ ݌௝௞ݓ ௜݂௞

௡

௞ୀଵ
 

where ݓ௝௞  is the similarity between ݑ௝  and ݑ௞ , and ݌ ௜݂௞  is 
the frequency of pattern ݌௜ for ݑ௞. 

1 We select five patterns to increase the diversity of videos recommended
for pattern-level algorithms – we felt that recommending multiple videos of
one pattern only would result in videos that were too similar to one another.

Figure 6. Example task distribution, user vs. similar users.  
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Step 5: Remove previously used patterns. We then rank the 
patterns based on the expected frequency and remove pat-
terns that the target user has been observed using. 

Step 6 (Algorithm 3): Select patterns for the user’s most rel-
evant task. In the list of patterns ranked by expected fre-
quency, to select patterns that are more relevant to the user, 
we select the top five patterns that belong to the most fre-
quently used tasks by the target user.  

Step 6 (Algorithm 4): Select patterns of less relevant task. In 
the list of patterns ranked by expected frequency, to select 
patterns that are less relevant to the user, we select top five 
patterns that are outside the user’s most frequently used tasks 
(as defined in Algorithm 3).  

Step 7: Choose videos based on patterns. For each chosen 
pattern, we first select all videos that contain that pattern. We 
then rank the selected videos based on their task similarity to 
the target user, and rank the top 10 by view count. Finally, 
we select the top-viewed video as the video for that pattern. 
This is the same method for video selection used in Approach 
1 and 2, which is designed to guarantee the video is close to 
the user’s typical workflows and of reasonable quality. 

STUDY 2: WORKFLOW RECOMMENDATIONS 
To evaluate the proposed algorithms, we conducted a study 
where we generated a personalized set of videos for partici-
pants, and sent them a survey where they could view the vid-
eos and rate the recommendations. This follows the 
methodology used in past work by Matejka et al. [28]. 

Participants and Procedure 
We recruited 8 users that had actively used the software dur-
ing the past 2 months (1 female, 7 male). With permission, 
we retrieved participants’ natural log data for the past two 
months, from June 25 to August 25, 2017. We made 20 video 
recommendations in total for each user – five videos from 
each of the four algorithms described above. We filtered vid-
eos to be shorter than 5 minutes. The videos were presented 
to participants in random order. 

For each video, participants were asked to rate to what extent 
they would agree with the following statements (1=Strongly 
Disagree, 5=Strongly Agree): (1) I was familiar with the 
workflow (or workflows) shown in this video. (2) I may use 
the workflow (or workflows) shown in this video. (3) This 
video would be a good demonstration for someone who was 
unfamiliar with the workflow (or workflows) being shown. 
The first question (Familiarity) was used to evaluate whether 
the workflows were novel to the user. The second question 
(Relevance) was used to evaluate whether the workflows 
were relevant to the user. The third question was used to 
evaluate the quality of the video, and the feasibility of using 
community generated videos for learning new workflows. 
Each question was followed by a justification text box. 

Quantitative Results and Analysis 
Table 5 shows the average rating of each recommendation 
algorithm on the two dimensions of relevance and 

familiarity. In general, our results indicate that participants 
found the recommended videos to be relevant (indicating that 
they would use the workflow), and familiar (indicating lower 
novelty). Given the low sample size (n=8) it is difficult to 
make definitive conclusions, however we do see potential 
trends of higher familiarity ratings for pattern-level 
recommendations than topic-level recommendations 
(p=0.08) and higher relevance ratings for the pattern-level 
recommendations as well (ns). Our interpretation of pattern-
based algorithms generating more familiar and relevant 
recommendations is because similar users, as identified by 
pattern frequency similarity, are more likely to use similar 
patterns. Even if previously-used patterns are removed, the 
patterns recommended may be of a similar general task. 

Algorithm 
Relevance 

Rating 
Familiarity 

Rating 

Topic-
Level 

Most-Familiar Topic 4.13 3.70 

Less-Familiar Topics 4.10 3.58 

Pattern-
Level 

Most-Familiar Topic 4.23 4.08 

Less-Familiar Topics 4.18 3.95 

Table 5. Study 2 results. 

While the LFT approaches showed some potential impact on 
the novelty of the recommendations, the novelty ratings were 
lower than we expected. This could be because we favored 
relevance in the design of the recommendation algorithms. 
For instance, in the video selection step, we selected videos 
based on the similarity between the target user’s task usage 
and the task distribution of the videos, which can cause the 
recommended videos to be closer to the user’s typical work-
flows. We revisit this issue in our discussion of future work. 

In terms of the video quality, the ratings were generally pos-
itive, with an average rating of 3.5 for all the recommenda-
tions. In their free-form feedback, participants showed a 
strong preference for videos with audio. 

Qualitative Analysis of User Feedback 
Through a qualitative analysis of user feedback, we found 
that users may rate the videos as very familiar, even if they 
disclosed in their justification responses that they were only 
partially familiar with the workflow. Part of this issue is that 
each video may show more than one workflow or command 
pattern. If part of the video shows a general task that the user 
is familiar with, the user may rate the video as familiar, even 
if a subsequence of the video was novel. 

Despite the low level of reported novelty, users did report 
positive attitudes towards the recommended videos and 
expressed that they would want to try out the workflows in 
the future. For example, P1 stated: 
“I knew how to use all these features, but hadn't really thought of using them 
in combination this way before. The workflow will be useful in the future.” 

P2 expressed that he/she is partially familiar with the work-
flow recommended: 
“I am partially familiar with the patch workflow but understand how to use 
extrude to make a groove to a box. I want to learn more about patch and the 
video gave a good description of how it can be used.” 
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P3 was excited about one of the recommended workflows:  
“Amazing workflow, I was never familiar with such an approach. Maybe 
because I’ve never used Remake. I would love to give it a go. This has a lot 
of uses and potential in the field I’m working, so I would definitely use it.” 

In conclusion, the algorithms show a strong potential for rec-
ommending learning resources that are relevant to the goals 
of the target user. The study reinforces the tradeoff between 
the two factors of relevance and novelty in our design space. 
We see opportunities for improving the algorithms and ad-
justing the design decisions to make more novel recommen-
dations, which we will discuss as future work. 

DISCUSSION AND FUTURE WORK 
A diagram summarizing our approach is shown in Figure 7. 
The overall idea is to first use topic modeling to segment logs 
into mutually exclusive sets based on high-level tasks (Layer 
1), and then to apply frequent pattern mining to each set, to 
identify finer-grained patterns of command usage (Layer 2). 
The resulting topics (i.e., tasks) and patterns are then used as 
input to software support systems, e.g., recommender algo-
rithms, as we have demonstrated. 

 
Figure 7. Summary of our hierarchical approach. 

While we found that Bi-term Topic Modeling and Dev and 
Liu’s algorithm for frequent pattern mining were effective, 
we see the hierarchical approach as being largely independ-
ent of these specific techniques, or the assumptions used to 
tune them to our dataset. In particular, a key finding from this 
work is that it is valuable to first use topic modeling to seg-
ment logs, and then to apply pattern mining to the resulting 
segments, because it prevents frequent user activities (e.g., 
sketching activities for our application) from drowning out 
other distinct activities performed in the software. 

The remainder of this section discusses opportunities for fu-
ture work to develop and build on this approach. 

Incorporating Heuristics Based on Expertise Levels 
In our approach, we tried to minimize human input. Apart 
from the expert labeling of topics, the process is data driven. 
However, we see opportunities to incorporate heuristics to 
enable more meaningful workflow recommendations (an ap-
proach used at the command level in [28]). Though we did 
not report on it, we had experts evaluate the expertise levels 
of the 18 tasks produced by our topic modeling, and this data 
could be incorporated into a workflow recommender system 
(e.g., to recommend intermediate sketching workflows to us-
ers who have been observed doing beginner sketching). 

User In-the-Loop Recommender Systems 
In this work, we did not apply filtering to control the quality 
of community-generated content, but we see the potential of 
integrating such quality-control methods (e.g., machine 
learning methods to predict video quality [19]). Prior work 

has shown that “learner-sourcing” systems can harness input 
from learners to improve the quality of content over time 
(e.g., ask learners to label activities performed in MOOC vid-
eos [17]). Similar approaches could be used to refine the rec-
ommendations made by a workflow recommender system, 
so that recommendations improve over time. 

Generalizability 
Though we developed our hierarchical approach for a spe-
cific 3D design application, the approach can be applied to 
other applications as well. Our approach is based on com-
mand log data, which is commonly logged in feature-rich 
software. More unique is that we also leverage data from a 
user-generated video repository, where the videos are sup-
plemented with command log data. Software companies 
looking to apply our approach could curate such marked-up 
video repositories with existing tools, e.g., Autodesk Screen-
cast’s public SDK [4]. Alternatively, prior work has demon-
strated approaches to extract command data from existing 
video repositories [5, 16]. In this way, our approach can be 
generalized to other applications and software domains. 

Limitations 
A limitation of our work that could impact its generalizabil-
ity is that we used heuristic or ad-hoc approaches to choose 
some parameters (e.g., the cosine similarity threshold of 0.9, 
and the cutout cohesion score of 2), which would need to be 
adapted for other data sets. More broadly, the use of cosine 
similarity is a limitation as it comes from a non-probabilistic 
modeling approach, and thus it would be valuable to investi-
gate probabilistic-based similarity metrics, such as Kullback-
Leibler Divergence [25], in future work. When selecting vid-
eos to recommend, we also used an ad-hoc method to select 
videos that are similar to a user’s typical workflow, which 
favored “Relevance” over “Novelty” in our design space. Fu-
ture work could investigate more rigorous approaches to tun-
ing the similarity threshold, or more generally modeling the 
similarity/novelty of workflow recommendations. 

CONCLUSION 
In this paper, we have proposed a hierarchical approach to 
classifying user workflows by first applying topic modeling 
to identify high-level tasks, and then applying frequent pat-
tern mining to identify distinct command patterns for each 
task. An evaluation showed encouraging evidence that topic 
modeling can effectively categorize logs into meaningful 
high-level tasks. As well, the hierarchical approach appears 
to help identify a larger variety of distinct command patterns. 
Based on this approach, we proposed a design space of work-
flow-based recommender systems. An evaluation of four 
such algorithms was encouraging, and suggests that this ap-
proach has the potential to effectively support software users. 
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