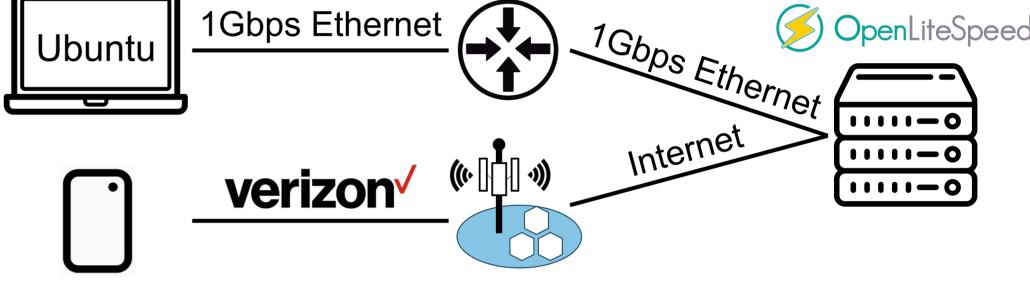
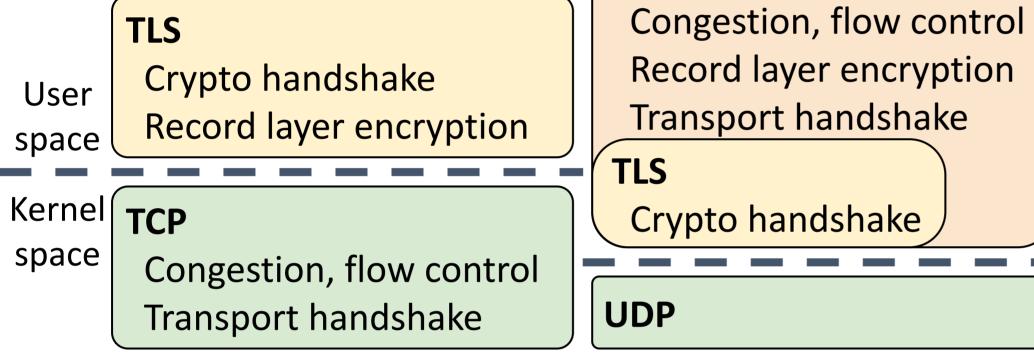
QUIC is not Quick Enough over Fast Internet

Xumiao Zhang¹, Shuowei Jin¹, Yi He¹, Ahmad Hassan², Z. Morley Mao¹, Feng Qian², Zhi-Li Zhang³ ¹University of Michigan ²University of Southern California ³University of Minnesota

1. Introduction and Background

QUIC is a user-space transport protocol over UDP. It is expected to be a game-changer in improving web application performance. Together with the network layer and layers below, UDP, QUIC, and HTTP/3 form a new protocol stack for the next-generation network communication, whose current counterpart is the stack of TCP, TLS, and HTTP/2.


HTTP/2 HTTP semantics mapping	HTTP/3 HTTP semantics mapping	 OpenLiteSpeed (v1.7.15) Increased buffer sizes to 	
Stream multiplexing Stream flow control	QUIC Stream multiplexing	Middle Mi	


3. Preliminary Results

We propose to examine QUIC's performance over fast Internet. We perform a series of experiments to compare the <u>UDP+QUIC+HTTP/3</u> (QUIC) stack with the <u>TCP+TLS+HTTP/2</u> (HTTP/2) stack.

Experimental Setup:

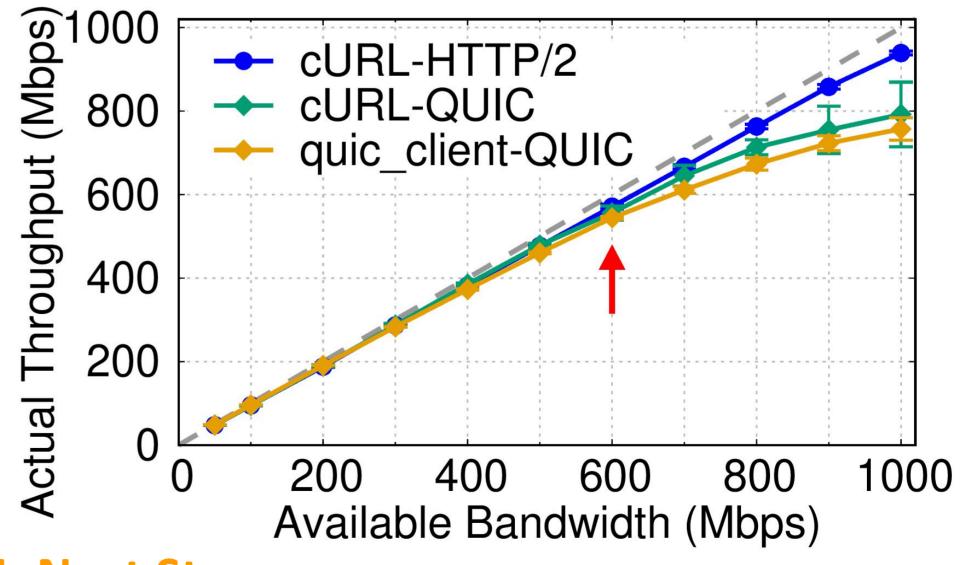
- Ubuntu 18.04 client and server; Pixel 5 phone
- 1Gbps Ethernet; low-band/mmWave 5G networks
- based on LSQUIC
- exceed link's BDP

IP

QUIC's Benefits:

- 0/1-RTT connection establishment/resumption
- Stream multiplexing without head-of-line blocking
- Integrated security (TLS 1.3)
- Connection migration

2. Motivation and Challenges


QUIC has attracted wide research attention. However, existing studies use diverse QUIC implementations, compute environments, and network conditions. Due to such diversity, their findings are a mixture of performance gains and degradations, compared to TCP or earlier generations of HTTP. Moreover, most of these studies focus on low-throughput use cases.

Exp. 1: 1GB file download using the Chrome browser. QUIC is slower than HTTP/2. It is worse on the phone.

Testbed	Download Time (s)		CPU Usage (%)	
Testbed	HTTP/2	QUIC	HTTP/2	QUIC
Desktop, Ethernet	9.32	18.60	77.50	96.90
Pixel 5, low-band 5G	37.11	78.65	121.55	161.77
Pixel 5, mmWave 5G	30.10	63.20	128.43	165.20

CPU: Desktop - browser's network service; Phone - the entire browser process.

Exp. 2: 1GB file download in a simplified environment, using CURL and quic client on the desktop, with changing bandwidth. When bandwidth is high (>600 Mbps), QUIC falls behind HTTP/2, by up to 15.7%.

We advocate examining QUIC in "context". We should also target a specific scenario, in this study, running **QUIC over high-speed networks**.

This scenario is becoming increasingly important:

- Emergence of high-speed networking (WiFi 6/7, 5G)
- Increasing deployment of QUIC (Google, Meta, ...)
- Bandwidth-intensive applications (4K video, VR/AR)

Specifically, we aim to answer the following questions:

- When is QUIC data transfer slower than HTTP/2?
- What are the reasons for such a performance gap?
- Can we benefit from current deployment of QUIC?

4. Next Steps

We aim to comprehensively understand QUIC over fast Internet and identify root causes for its slowness.

- Experiments: different workloads, network types.
- Root cause analysis: application/OS profiling.
- Recommendations for mitigation