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Abstract

Pretraining on massive corpora has given rise001
to large language models (LLMs) with multi-002
task capabilities. However, real-world appli-003
cations often require more specialized train-004
ing, as is the case of NL2Code. We ap-005
proach this specialization through the lens of006
data selection, i.e., identifying a subset of a007
large corpus that aligns with a desired target008
distribution—a challenge that remains under-009
explored within NL2Code. Existing methods010
are typically designed for selecting instruction-011
tuning data, and might not easily scale to012
large-scale code repositories; while methods013
for NL2Code do exist, they primarily rely014
on coarse heuristics—–such as repo stars—–015
for filtering. To bridge this gap, we propose016
FINDR, an efficient data selection method that017
extends logistic regression with feature-wise018
importance reweighting—marking it, to our019
knowledge, the first fine-grained solution to020
NL2Code pretraining. Our method uses hashed021
n-grams and code-aware features to capture022
code-specific patterns, and then apply informa-023
tive priors to reweight feature importance when024
computing influence scores. Extensive experi-025
ments on NL2Python and NL2SQL, with two026
model families, show that FINDR consistently027
outperforms strong baselines in both execution028
accuracy and token efficiency. Notably, pre-029
training on only 2% of FINDR-selected data030
boosts Gemma by over 29% in both domains,031
even surpassing CodeGemma (pretrained on032
300x more examples) by 10% in Python.033

1 Introduction034

Large language models (LLMs), such as GPT-035

4 (OpenAI, 2023), LLaMA3 (AI@Meta, 2024),036

Gemma (Mesnard et al., 2024), and Mistral (Jiang037

et al., 2023) have demonstrated remarkable capabil-038

ities across a wide range of natural language (NL)039

tasks, often surpassing expert-engineered NLP sys-040

tems. Their success can be largely attributed to041

training on massive corpora (Gao et al., 2021),042
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Figure 1: Overall comparison of our proposed FINDR
with strong baseline data selectors. FINDR yields the
best rating by balancing effectiveness and efficiency.
See Appendix A for detailed rubric behind this chart.

which capture diverse linguistic patterns and world 043

knowledge (Chowdhery et al., 2023). However, as 044

these models are adapted to more specialized down- 045

stream tasks, a significant fraction of pretraining 046

data can become extraneous and counterproduc- 047

tive to such target tasks. In NL2Code (translat- 048

ing natural language into code; Dehaerne et al., 049

2022; Xu and Zhu, 2022), the choice of relevant 050

and quality training data is even more crucial, since 051

irrelevant data could introduce noisy, misleading 052

examples that hinder the model’s code generation 053

quality (Wang et al., 2023; Zan et al., 2023). Thus, 054

selecting a subset of code-specific data is essential 055

for adapting a general-purpose LLM to NL2Code 056

tasks. However, manually curated code datasets are 057

time-consuming, error-prone, and limit both scale 058

and diversity (Yu et al., 2018; Hendrycks et al., 059

2021). Therefore, there presents a pressing need for 060

automated data selection framework for NL2Code 061

to mitigate these drawbacks and dynamically tailor 062

to users’ needs. 063

A growing body of work highlights the impor- 064

tance of data selection for efficient pretraining or 065

fine-tuning of LLMs (Feng et al., 2022; Chowdhery 066

et al., 2023; Albalak et al., 2024). Two comple- 067

mentary perspectives are typically involved in this 068

space: data composition (Soldaini et al., 2024)— 069

deciding the ratio and types of data to include 070
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(e.g., NL vs. code)—and coreset selection (Phillips,071

2016), where the goal is to identify the most im-072

portant subset of the training data. In this work,073

we focus on coreset selection, where we seek a074

small subset of pretraining data that leads to per-075

formance on par with or better than full-dataset076

training. Recent advances, such as targeted instruc-077

tion tuning (Xia et al., 2024), further highlight the078

impact of selecting the “right” data to cut computa-079

tional costs and improve target skills.080

Despite growing interest in data selection (Xie081

et al., 2023; Han et al., 2023; Xia et al., 2024),082

most existing methods remain computationally ex-083

pensive because they were originally designed for084

instruction-tuning data (Wang et al., 2024), which085

might not scale easily to large pretraining cor-086

pora. While data selection techniques do exist for087

NL2Code (e.g., filtering by doc length or repo stars;088

Cao et al., 2023; Zan et al., 2023), they primarily089

rely on overly coarse heuristics that overlook subtle090

differences in examples. Consequently, scalable091

and fine-grained data selection in NL2Code are092

left relatively under-explored. To address these093

limitations, we propose an efficient data selector,094

FINDR (Fast INfluential Data Ranker), an exten-095

sion of logistic regression with feature-wise impor-096

tance reweighting. In addition, to capture code-097

specific constructs (e.g., vectorized function calls;098

Nasrabadi et al., 2023), we augment FINDR’s099

hashed n-gram feature extractor with code-aware100

feature.1 With these fast yet accurate designs,101

FINDR manages to strike a balance between data102

selection effectiveness and efficiency, making it par-103

ticularly well-suited for large-scale settings.104

We perform extensive experiments to evaluate105

FINDR on NL2Python (Lai et al., 2022) and106

NL2SQL (Li et al., 2024b) using two distinct LLM107

families, demonstrating both its effectiveness and108

efficiency. Our results reveal that FINDR selects109

on-target data that consistently boosts base models110

across domains and generally outperforms strong111

baselines by non-trivial margins. For instance,112

on Python, FINDR improves the base model by113

16% to 36%, and surpasses the SOTA selector,114

DSIR (Xie et al., 2023), by 10%. While BM25 re-115

mains a strong baseline (Xia et al., 2024), FINDR116

is substantially more efficient, processing 47 mil-117

lion Python files in 3.5 GPU hours compared to118

BM25’s 760 CPU hours. Notably, training Gemma119

1Although we introduce code feature tailored to NL2Code,
FINDR can be seamlessly adapted to large-scale unlabeled
data by adjusting the custom feature space for other domains.

on 2% of data selected by FINDR outperforms 120

CodeGemma by 10%, which consumes 300 times 121

more examples. Moreover, the proposed FINDR 122

exhibits robust generalization as verified in two 123

model families including both general-domain and 124

code-specific LLMs. 125

We summarize major contributions as follows: 126

• We are the first to systematically study a suite 127

of data selection methods for NL2Code pre- 128

training, and perform comprehensive compar- 129

ison among them (Figure 1). 130

• We propose FINDR, an efficient data se- 131

lector to capture nuanced data influence at 132

scale, which integrates code-aware features 133

into hashed n-gram representations, and aug- 134

ments logistic regression with informative pri- 135

ors for feature-wise importance reweighting. 136

• Experiments on downstream NL2Python and 137

NL2SQL tasks showcase that FINDR boosts 138

base models substantially while efficiently 139

identifying on-target data from large-scale 140

pretraining corpus. 141

• We validate that FINDR robustly outperforms 142

four baselines, including the SOTA selec- 143

tor (Xie et al., 2023), across two LLM families 144

(DeepSeek-Coder and Gemma) and two lan- 145

guages (Python and SQL) by large margins. 146

2 Related Work 147

2.1 Data Selection 148

Data selection has recently emerged as a funda- 149

mental research topic for LLMs (Coleman et al., 150

2020; Xia et al., 2020; Paul et al., 2021; Sachdeva 151

et al., 2024). Two primary directions are data com- 152

position (Soldaini et al., 2024), which optimizes 153

the mix of different data sources (e.g., natural lan- 154

guage vs. code), and coreset selection (Phillips, 155

2016), which identifies a small, representative sub- 156

set (the “coreset”) that captures the dataset’s essen- 157

tial features. While data composition can improve 158

transparency and help inform decision-making pro- 159

cess (Gebru et al., 2021; Elazar et al., 2024)—for 160

instance, by balancing sources to control social 161

biases (Feng et al., 2023)—ever higher compute 162

spending has attracted increasing attention to core- 163

set selection (Killamsetty et al., 2021; Xia et al., 164

2023; Griffin et al., 2024). By focusing on the 165

most influential data, coreset selection significantly 166

cuts training costs without degrading performance, 167

benefiting both pretraining (Xie et al., 2023; Han 168

et al., 2023) and instruction tuning (Xia et al., 2024; 169
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Wang et al., 2024). In this work, we frame data se-170

lection as a coreset selection problem, developing171

efficient methods for identifying training subsets172

that match, or even exceed, the performance of173

training on manual selections (Feng et al., 2022) or174

even the full corpus.175

Existing data selection approaches mainly fall176

into three broad categories. The first is random177

sampling, which, despite its simplicity and un-178

biased nature, results in uninformative selections179

that often fail to capture or represent the target do-180

main (Devlin et al., 2019; Gururangan et al., 2020;181

Guo et al., 2022). The second relies on surface-182

level matching to make informed but efficient se-183

lections, including matching with BM25 (Robert-184

son and Zaragoza, 2009), DSIR (Xie et al., 2023),185

among others (Jiang and Zhai, 2007; Moore and186

Lewis, 2010; Du et al., 2022). DSIR, for in-187

stance, uses hashed n-gram features to represent188

documents and applies a Naïve Bayes model for189

data selection (Xie et al., 2023). However, these190

methods struggle with document-length variations:191

BM25 favors lengthy documents while DSIR se-192

lects overly short ones. A more robust method is193

the Quality Classifier (Brown et al., 2020), which194

leverages logistic regression and has become a stan-195

dard for pretraining data selection (Gao et al., 2021;196

Chowdhery et al., 2023). However, this approach197

overlooks per-feature importance. FINDR is a198

surface-level matching method which, inspired by199

importance weighting for domain adaptation (Shi-200

modaira, 2000; Sugiyama et al., 2007), introduces201

feature-wise importance reweighting to capture nu-202

ances among features.203

The third category relies on fine-grained feature204

representations—such as embeddings (Chen et al.,205

2023; Wu et al., 2023; Xiao et al., 2024), gradi-206

ents (Han et al., 2023; Xia et al., 2024), perplex-207

ities (Li et al., 2024c) or entropies (Kousar et al.,208

2025)—often combined with pairwise comparisons.209

While these methods can capture more subtleties in210

the data, they typically incur heavy compute over-211

head (i.e., quadratic complexity) at both feature212

extraction and selection process, thus restricting213

the application to instruction tuning data selection214

only (Wang et al., 2024). Most recent approaches215

uses ChatGPT (Zheng et al., 2023; Liu et al., 2024)216

to directly assess data relevance via prompting, but217

high API costs limit their scalability, especially218

when re-runs are needed. In contrast, FINDR of-219

fers an informed solution that is tractable at the220

scale needed for pretraining data selection.221

2.2 Natural Language to Code (NL2Code) 222

Translating natural language problem description 223

into code (NL2Code) has attracted substantial atten- 224

tion for its potential to enhance developer produc- 225

tivity and democratize software development (Al- 226

lamanis et al., 2018; Dehaerne et al., 2022; Zan 227

et al., 2023). Early studies approached NL2Code 228

through RNN (Iyer et al., 2016), LSTM (Eriguchi 229

et al., 2016) and CodeBERT models (Feng et al., 230

2020), often incorporating syntax-aware architec- 231

tures to capture the structural nature of program- 232

ming languages (Yin and Neubig, 2017). While 233

these methods mark significant progress over rule- 234

based baselines (Allamanis and Sutton, 2014), they 235

rely on large amounts of labeled language-code 236

pairs, limiting coverage and incurring considerable 237

implementation costs. 238

Most recent progress stems from LLMs (Chen 239

et al., 2021a; Fried et al., 2023; Guo et al., 2024) 240

pretrained on massive unlabeled code from GitHub 241

and StackOverflow. These models exhibit strong 242

few-shot or even zero-shot learning capabilities, 243

often requiring minimal tuning or just prompt engi- 244

neering to excel at coding tasks (Barke et al., 2023; 245

Zheng et al., 2024a; Zhang et al., 2024a). As model 246

sizes grow, LLMs demonstrate emergent capabili- 247

ties such as debugging (Kang et al., 2025). Despite 248

showing promise as coding assistants, LLMs can 249

still introduce bugs (Nguyen and Nadi, 2022), indi- 250

cating a need for further refinement before reaching 251

human-level coding proficiency. 252

While data selection has been increasingly stud- 253

ied for NL generation, it remains under-explored 254

for NL2Code. In contrast to NL domains, where 255

selecting instruction data drives sophisticated algo- 256

rithms, NL2Code datasets are predominantly unla- 257

beled (HuggingFace, 2021; Kocetkov et al., 2022). 258

Consequently, current practice for NL2Code is lim- 259

ited to basic filtering techniques to ensure code files 260

are deduplicated, complete, and clean (Chen et al., 261

2021a; Li et al., 2022; Fried et al., 2023; Nijkamp 262

et al., 2023): remove incomplete or auto-generated 263

files and discard rarely used repos. While these 264

heuristics offer decent opportunities for filtering 265

out undesired code, they are not meant for filtering 266

in (“finding”) the relevant code for a target domain. 267

In this work, we move beyond coarse heuristics 268

by introducing FINDR, a more fine-grained data 269

selection algorithm tailored to NL2Code, while 270

still technically applicable to other large-scale unla- 271

beled scenarios. To our knowledge, this is the first 272
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systematic study of data selection for NL2Code,273

enabling more efficient and targeted pretraining of274

LLMs for code generation.275

3 Method: FINDR276

Figure 2 provides an overview of the two stages277

behind FINDR, feature extraction and influ-278

ence calculation, specifically instantiated in the279

NL2Code setting. Here, we aim to select the most280

influential subset of data, Dtrain, from a large cor-281

pus, Draw, for continued pretraining of LLMs.282

To begin, we obtain code-tailored features by283

running our feature extractor (§3.1) over the entire284

training corpus (Draw). Next, we utilize a small285

set of validation examples, Dval, which mirrors the286

target test data, Dtest. Indeed, small-scale valida-287

tion sets have proven effective for model tuning288

and domain adaptation (Kirstain et al., 2022; Zhou289

et al., 2023; Zhang et al., 2024b). The stage 1 pro-290

cess is highly flexible: whenever we have a new291

target dataset (Dtest) or a shift in domain, we can292

easily gather a reasonably small validation set to293

guide the data selection. Hence, FINDR becomes294

a plug-and-play solution that can seamlessly adapt295

to evolving requirements.296

Stage 2 is where we measure the influence of297

candidate training points with respect to the small298

validation set (Dval), detailed in §3.2. By focusing299

on the most influential data, we can reduce training300

time and resource consumption, which is especially301

critical for LLMs. After computing the influence302

scores, we feed the selected data into an LLM for303

continued pretraining. Notably, this can be done304

either stochastically—sampling data points based305

on normalized FINDR scores (with high-scoring306

samples possibly repeated in Dtrain)—or deter-307

ministically by selecting the top k%2 of Draw to308

construct Dtrain, ensuring stable coverage of top-309

scoring examples. We adopt the deterministic ap-310

proach because, as seen in preliminary experiments,311

it yields more consistent improvements and simpli-312

fies hyperparameter tuning, leaving the stochastic313

approach for future exploration.314

3.1 Feature Extraction (Stage 1)315

Considering our goal is to extract features for a316

massive number of data points in an efficient man-317

ner, we choose to trade off some representational318

expressiveness for higher efficiency. Instead of319

relying on semantically rich embedding methods320

2In this paper, we set a fixed k = 2 unless otherwise noted,
similarly to Xia et al. (2024).

Training Candidates Features Validation
Samples

Features
Select data 
using FINDR 

Feed Dtrain 
into LLM

Stage 1a: Feature Extraction 
on Training Candidates

Stage 1b: Feature Extraction 
on Validation Samples

Stage 2: Influence Calculation

Training Corpus (Draw): StackV2
47 million Python scripts & 4 
million SQL scripts

Validation Set (Dvalid): 
105 Python samples, 
50 SQL samples

Data Selection: Logistic regression model 
with feature-wise importance reweighting

unigram
Hashed 
bigrams

Code 
features

Dtrain 

FINDR 𝑥 = 𝜎  𝐖⊤Agg  Φ⊙  Emb 𝐹 𝑥      LLMs: Gemma, 
DeepSeek-Coder

Python: DS1000
SQL: BIRD-mini

Informative 
Priors
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Figure 2: Overview of FINDR. We first extract code-
feature-augmented representations (§3.1), and then
leverage informative priors to apply feature importance
reweighting to compute influence scores (§3.2). The
light blue bubble (stage 2) denotes decision boundary.

(e.g., static (Pennington et al., 2014) and genera- 321

tive (Devlin et al., 2019) embeddings), we adopt 322

n-gram bag-of-words as a practical solution. In- 323

spired by existing work on feature extraction for NL 324

data (Joulin et al., 2017; Xie et al., 2023), we note 325

that using unigrams alone fails to capture subtle 326

surface-level signals, such as word-pair interactions 327

and ordering cues, but enumerating all bigrams is 328

intractable. Hashed bigrams, instead, strike a prac- 329

tical balance by reducing computational overhead 330

while retaining valuable contextual information. 331

Beyond textual features, we additionally intro- 332

duce a code-specific representation—code fea- 333

ture—that model programming language-specific 334

functions/patterns. For instance, one feature bucket 335

tracks the frequency of NumPy array creation 336

functions (e.g., numpy.array(), numpy.zeros()). 337

This helps highlight operations that are particularly 338

relevant to coding. Refer to Table A6 for more 339

examples of code-feature buckets. To summarize, 340

our feature extractor encapsulates both lexical and 341

semantic properties of code (i.e., surface-level un- 342

igram, hashed bigrams, and abstracted function 343

descriptions), enabling richer representation for 344

subsequent selection steps. 345

3.2 Influence Calculation (Stage 2) 346

In order to efficiently compute influence scores 347

from the feature representations introduced in §3.1, 348

we build upon a logistic regression (LR) model. 349

LR has long been favored in large-scale natural lan- 350

guage understanding tasks for its simplicity, ease 351

of interpretation, and robust performance (Brown 352

et al., 2020; Chowdhery et al., 2023; Gao et al., 353

2021). Equation (1) depicts our FINDR score 354

calculation for each data point x, extending prior 355

LR-based models with feature-wise importance 356

reweighting and incorporating a novel Φ[·] func- 357

tion that implements informative priors. 358

FINDR(x)=σ
(
W⊤Agg (Φ⊙(Emb (F (x))))

)
(1) 359
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where the parameters W and Emb[·] are trainable,360

while Agg[·] denotes the aggregation function (i.e.,361

generating document-level representations), and362

F (x) ∈ RN is the extracted feature for an input363

data x (described in §3.1).364

The feature-wise importance score is computed365

using Φ[·] ∈ RN ,3 formulated as in eq. (2).366

Φ[Dval,Draw] = min(REG[
Φ′
Dval

[f ]

Φ′
D′

raw
[f ]

],M) (2)367

where Φ′
D[f ] is the frequency-based raw impor-368

tance score (eq. (3)), REG is a regularization factor369

balancing priors vs. uniform weights (eq. (4)), and370

M caps scores to prevent feature-wise shortcuts.371

Raw Importance Score Calculation. We begin372

with computing raw importance scores,4 by count-373

ing the relative frequency of each individual feature374

for two sets of data: Dval as the positive set and375

D′
raw

5 as the negative set. Formally,376

Φ′
D[f ] =

∑n
j=1 fj∑n

i=1 1
⊤fi

(3)377

where fi represents the feature vector for the code378

file i, extracted as in §3.1, and n denotes the size379

|D|. This frequency-based score calculation strikes380

a balance between simplicity and scalability, mak-381

ing it especially appropriate for large collections of382

unlabeled code.383

Regularization Component (REG). The REG384

component serves as a regularization mechanism385

controlled by the hyperparameter γ ∈ [0, 1]. The386

γ modulates the reliance on priors versus uniform387

feature weighting as follows:388

• γ = 1: The model reduces to a standard LR389

model, assigning equal weights to features.390

• γ = 0: The model fully leverages priors, al-391

lowing nuanced feature distinctions.392

REG[ϕ] = γ(1− ϕ) + ϕ (4)393

where ϕ is instantiated as the difference of raw394

importance scores between positive and negative395

sets, as shown in eq. (2).396

Furthermore, to address the size imbalance be-397

tween Dval and D′
raw, we introduce a rescaling fac-398

tor C, and thus replace ϕ with ϕ
C in Equation (4).399

In fact, such imbalances can lead to skewed fea-400

ture importance scores, particularly when smaller401

sets disproportionately influence the learning pro-402

cess (Henning et al., 2023). In contrast, the factor403

3For simplicity, we use Φ[·] to represent Φ[Dval,Draw].
4We use “influence” to denote data point-level FINDR

score, while “importance” means feature-wise weights.
5The construction of D′

raw is detailed in Appendix E.1.

C ensures comparability between sets of varying 404

sizes. Specifically, we implement two types of 405

rescaling factors: accumulated feature count differ- 406

ence (AFC) and document count difference (DC). 407

That is, AFC addresses the size difference based on 408

the total number of feature occurrences, while DC 409

is only concerned about the number of code files. 410

Capping Scores. In our preliminary studies, we 411

find that certain features, e.g., project-specific vari- 412

able names, can show up in short bursts, yielding 413

tremendously large importance scores. Those rare 414

yet inconsequential tokens will, however, disrupt 415

the training process of FINDR. Thereby, as indi- 416

cated in eq. (2), we cap each feature’s importance 417

score at M to resolve such anomalies and prevent 418

FINDR from picking up unexpected artifacts. 419

4 Experiments 420

4.1 Datasets and Evaluation Metrics 421

Pretraining corpus. We consider StackV2 422

(Lozhkov et al., 2024) as Draw for selecting Dtrain 423

for our target tasks. StackV2 is a large-scale code 424

corpus of more than 3 billion files in 600+ pro- 425

gramming languages, primarily sourced from pub- 426

lic GitHub repos. Our focus is on two subsets: 427

Python and SQL. Combined, these subsets com- 428

prise approximately 50 million scripts with an aver- 429

age length of 3, 412 characters. Specifically, there 430

are 46.64M Python scripts (totaling 300GB) and 431

3.63M SQL scripts (totaling 40GB). 432

Evaluation benchmarks. We evaluate baselines 433

and FINDR on two target tasks/domains (Dtest). 434

In the Python domain, we focus on the still largely 435

unresolved DS-1000 (Lai et al., 2022), instead of 436

widely studied benchmarks like HumanEval (Chen 437

et al., 2021b) and MBPP (Austin et al., 2021), 438

which have approached saturated performance. DS- 439

1000 comprises 1, 000 data science-oriented code 440

generation problems spanning seven scientific com- 441

puting libraries, such as NumPy and Pandas. For 442

SQL, we adopt the challenging BIRD (Li et al., 443

2024b), which comprises 95 databases across 37 444

professional areas, and narrows the gap between 445

experimental and real-world settings seen in other 446

benchmarks (Zhong et al., 2017; Yu et al., 2018). 447

In this work, we use its recent derivative, BIRD- 448

miniDev,6 released in June 2024, which supports 449

diverse database management systems. 450

Following the literature (Xia et al., 2024), we 451

6https://github.com/bird-bench/mini_dev
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DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

Base Model 19.9 9.2 17.5 6.8 12.0 15.1 13.8 7.2 9.8 4.9 7.6 10.1
Random Selection 20.7 8.6 16.7 4.9 11.0 14.7 15.3 6.6 10.7 6.2 8.2 10.9

Quality Classifier 21.2 9.3 15.8 6.2 11.2 15.1 17.0 10.5 11.5 6.2 9.7 12.5

BM25 22.2 6.6 14.1 5.6 9.5 14.4 21.0 7.9 14.5 4.9 9.8 14.2
DSIR 22.2 9.9 17.5 5.9 12.0 15.9 15.3 5.3 12.4 5.6 8.4 11.1
FINDR (Ours) 24.2 12.2 18.4 7.1 13.3 17.5 19.0 9.2 14.1 6.2 10.4 13.7

Table 1: Comparison of FINDR with data selection baselines in the Python domain, measured by Pass@1, when
training with 2% of selected data. Base model denotes out-of-the-box evaluation without additional training. Per Lai
et al. (2022), we conduct 0-shot evaluation, and we report individual results on 4 problem types and the aggregated
perturbation set. Best results are bold, and informed data selectors that outperform the base model are highlighted
on a scale of 5 red shades (color schemes in Appendix B). Overall, FINDR improves base Coder and Gemma by
16% and 36%. Notably, FINDR attains the highest score on perturbed items, showcasing the robustness of FINDR.

also hold out a subset of examples as Dval for guid-452

ing data selection. Statistics are shown in Table A5.453

Evaluation metrics. For Python DS1000 (Lai454

et al., 2022), we use the pass@1 accuracy, which455

evaluates functional correctness based on test case456

success and adherence to surface-form constraints457

(e.g., mandatory use of vectorized operations). For458

SQL (Li et al., 2024b), we report Execution (EX),459

which checks if predicted and ground-truth queries460

produce identical results, and Soft F1-score, which461

measures the similarity between the tables pro-462

duced by generated and reference SQL queries.463

4.2 Experiment Setup464

We include recent small LLMs that excel at reason-465

ing and code completion tasks: coding-specialized466

LLM, DeepSeek-Coder-1.3B-base (hearafter,467

Coder; Guo et al., 2024), and generalist LLM,468

Gemma-2B (Mesnard et al., 2024).469

As our goal is to study if a selected subset of470

influential data can boost LLM performance on471

the target task, we do not perform additional fine-472

tuning after continued pretraining on Dtrain. We473

use base versions of the models and employ Llama-474

Factory (Zheng et al., 2024b) for parallel train-475

ing with 8 A100-40GB GPUs. We set the context476

length to 4, 096, gradient accumulation to 32 and477

per-device batch size to 1. Models are trained for478

2 epochs for Python and 3 epochs for SQL. For all479

other hyperparameters, we keep the default values.480

For evaluation, we follow the official evaluation481

protocols (Lai et al., 2022; Li et al., 2024b), and482

use greedy decoding with few-shot demonstrations483

if needed (0-shot for Python and 1-shot for SQL).484

FINDR Setup and Training: We build DFINDR485

for training FINDR, using Dval and a sample of486

Draw as positive and negative sets. In the feature487

extractor, we use all unigrams in DFINDR and, for488

bigrams, apply the FNV-1a algorithm (Fowler et al.,489

2012) to obtain hashed features using 100k buckets.490

The code feature is enabled only for Python, and 491

we semi-automatically define 618 classes (buckets), 492

covering 8, 721 Python functions.7 The training 493

process of FINDR consists of two stages: first, 494

learning Φ[·] (Appendix E.2), and then supervised 495

learning on DFINDR,8 which updates the randomly 496

initialized parameters W and Emb[·] for 10 epochs. 497

4.3 Data Selector Baselines 498

We include major pretraining data selection base- 499

lines. The simplest baseline is random selection, 500

where we randomly sample data from the train- 501

ing corpus. For informed data selection baselines, 502

we compare with BM25 (Robertson and Zaragoza, 503

2009), which is based on word frequency statis- 504

tics to rank examples to determine how relevant a 505

training document is. Another baseline, LR-based 506

Quality Classifier, is widely used for filtering and 507

selecting data from large-scale pretraining corpora 508

(Gao et al., 2021; Chowdhery et al., 2023). We also 509

compare to DSIR (Xie et al., 2023), which applies 510

n-gram features to weight candidate training data 511

through Naive Bayes formulation, and sample data 512

points accordingly. 513

We do not compare to instruction-tuning data se- 514

lection methods due to the extreme computational 515

cost (Wang et al., 2024), such as representation- 516

(Xiao et al., 2023) and gradient-based (Xia et al., 517

2024) approaches, which require over 10k GPU 518

hours to process the Python subset of StackV2. 519

5 Results 520

5.1 Main Results and Analyses 521

We present our main results in Table 1 and Table 2 522

for Python and SQL domains, respectively, com- 523

pared against baseline approaches. More results 524

can be found in Appendix C. Below, we summarize 525

five key findings. 526

7See Appendix D for semi-automatic construction process.
8|DPython

FINDR| = 1, 000 and |DSQL
FINDR| = 500.
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DeeoSeek-Coder Gemma

Easy Med. Hard Overall Easy Med. Hard Overall

Base 26.5 8.8 2.0 11.1 12.2 2.8 3.9 5.1
Random 18.4 5.7 2.0 7.6 11.2 2.8 2.9 4.7
Quality 19.4 3.8 1.0 6.6 18.9 2.0 2.9 5.9
BM25 22.5 6.4 2.0 8.9 17.9 3.2 2.0 6.1
DSIR 4.1 0.0 0.0 0.9 6.6 0.6 0.0 1.8
FINDR 25.5 11.2 2.0 12.2 18.9 2.8 3.9 6.6

Table 2: EM performance in the SQL domain when
training with 2% of selected data (F1 in Table A2). Base
model denotes out-of-the-box evaluation. Following Li
et al. (2024b), we conduct 1-shot evaluation, and we re-
port individual results on 3 problem types. Best results
are bold, and data selectors superior to Base are high-
lighted on a scale of 5 red shades. In general, FINDR
leads to the best performance across the board.

1) Random selection often degrades perfor-527

mance. It can be tempting to assume that adding528

more data—no matter how it is sampled—will im-529

prove model performance. But in line with pre-530

LLM findings (Moore and Lewis, 2010; van der531

Wees et al., 2017), our experiments confirm that532

randomly chosen data can degrade performance,533

even compared with using the base model out-of-534

the-box. Thus, in the absence of an informed data535

selector, defaulting to the base model is preferred.536

2) FINDR selects on-target data that consis-537

tently boosts base models across domains. As538

has been shown, training on FINDR-selected data539

consistently enhances code generation capabilities540

across all evaluated LLMs. In particular, over-541

all performance gains range from 16% to 36% on542

Python and 9% to 29% on SQL. These results sug-543

gest that FINDR can indeed select the most in-544

fluential examples, which works robustly across545

experimental settings.546

3) FINDR generally outperforms strong base-547

lines by non-trivial margins. Apart from Gemma548

model on Python, FINDR performs the best across549

the board. Interestingly, BM25 sometimes sur-550

passes FINDR, but at a significant computational551

cost: it has the slowest selection pace (Figure 1),552

and the Python scripts it selects are five times553

longer (Table A4). As a result, token counts rise554

substantially, thereby increasing LLM training time.555

In contrast, FINDR offers a more token-efficient556

way to capture the most influential data. Notably,557

on “Perturbed” Python examples—which mitigate558

potential data leakage from LLM pretraining—559

FINDR achieves the highest scores, underscor-560

ing its robust performance in settings that rely less561

on memorized knowledge. For further evidence,562

see Table A1 and Table A2.563

4) FINDR demonstrates superior robustness564

on “Difficult” examples. Beyond the overall per-565
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Figure 3: Pass@1 scores of continuously trained LLMs
in the Python domain, in relation to the optimization
steps. We identify the performance peaking at around
1, 500 steps, trained with 1.5B on-target tokens, and
Gemma even outperforming CodeGemma, despite the
latter being trained on 500B general tokens.

formance leap, a key advantage of FINDR is its 566

robustness in handling “difficult” scenarios. On 567

Python’s “Difficult” split, FINDR consistently 568

yields the largest improvement relative to other 569

baselines, indicating that its selected examples ef- 570

fectively target the reasoning skills needed for com- 571

plex code generation. Likewise in SQL, FINDR 572

preserves, and sometimes improves (Table A2), 573

the ability to generate challenging SQL queries, 574

whereas several baselines worsen performance in 575

these tough cases. 576

5) NL-targeted selectors do not necessarily ex- 577

cel at NL2Code. Finally, we note that DSIR (Xie 578

et al., 2023), SOTA method for selecting pure NL 579

data, proves much less effective when adapting to 580

code, especially on the SQL domain. Indeed, as 581

discussed in Xia et al. (2024), we have also ob- 582

served that DSIR-selected examples are extremely 583

short, thus weakening the code generation capac- 584

ity of trained models. Furthermore, our finding 585

highlights a notable gap between NL-only and 586

NL2Code data, while our method, FINDR, offers— 587

to the best of our knowledge—the first solution to 588

help bridge the gap. 589

5.2 Further Study on Data Selection 590

Data, the essential component in this study, has 591

been the driving force behind ever capable LLMs. 592

Here, we are particularly interested in how LLMs 593

respond to varying training data. We address this 594

question under two conditions: (1) varying the op- 595

timization steps (which translates to the number of 596

training tokens), and (2) varying the selection ratio 597

(i.e., the proportion of data selected by FINDR). 598

Impact of Optimization Steps. We first analyze 599

how increasing the training budget—in terms of op- 600
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Figure 4: Gemma results in Python domain with varying
selection ratios. Dashed line denotes the off-the-shelf
Gemma’s result. Performance improves steadily with
higher selection ratios, with a notable cut-off at 2%,
where additional training yields benefits. Complete re-
sults refer to Figure A1. We also observe similar trend
for the SQL domain, shown in Figure A2.

timization steps—impacts final performance. Fig-601

ure 3 shows performance trends for Coder and602

Gemma up to 2, 500 steps.9 Both models improve603

until about 1, 500 steps (1.5B tokens), after which604

Coder plateaus and Gemma slightly declines. Thus,605

1, 500 steps provides a clear balance of perfor-606

mance gains and training efficiency under the de-607

fault 2% selection ratio. We also compare Gemma608

to CodeGemma (Zhao et al., 2024), which bene-609

fits from extra 500B tokens of continued pretrain-610

ing. Despite CodeGemma being a stronger LLM,611

Gemma continuously trained on 1.5B on-target to-612

kens chosen by FINDR effectively closes the gap.613

This highlights the advantage of informed data se-614

lection like FINDR—it consumes just 0.3% of615

the CodeGemma training tokens yet outperforms616

massive-scale training at random.617

Impact of Selection Ratio. We next examine618

how different selection ratios (1%, 2%, 5%, 10%)619

affect performance, as depicted in Figure 4 and Fig-620

ure A2. Dashed lines denote the out-of-the-box621

Gemma’s performance. On both tasks, continu-622

ously trained models exceed the base model once623

the ratio reaches 2%. Beyond that threshold, perfor-624

mance generally rises further, albeit with marginal625

gains from 2% to 5% in certain splits (e.g., Python626

Perturbation, SQL Hard). Moreover, for Python,627

starting at 2%, Gemma trained on FINDR-selected628

data surpasses CodeGemma despite its extensive629

pretraining. However, no such leap is observed for630

SQL, even at 10%. This is likely due to the fact that631

Python’s full set (47M scripts) far exceeds SQL’s632

(4M), so 10% of SQL data still translates to fewer633

9Each optimization step processes 1M tokens, so 500–
2,500 steps correspond to training on 0.5B–2.5B tokens.

samples than 1% of Python. 634

In summary, our findings reveal that both the size 635

of the training budget (i.e., the number of steps) 636

and FINDR’s selection ratio play significant roles 637

in reshaping downstream NL2Code capabilities. 638

More importantly, informed data selection can sub- 639

stantially improve performance with only a small 640

fraction of the entire corpus. In the future, we will 641

explore optimal training steps for each selection 642

ratio and further investigate the scaling law for in- 643

formed data selection. 644

5.3 Ablation Study of FINDR 645

We conduct ablation experiments to analyze con- 646

tributions of several key design elements in 647

FINDR.10 648

Code Features and Rescaling Approach. We 649

ablate the code feature in feature extractor (§3.1), 650

and test DC-based versus AFC-based rescaling ap- 651

proaches (§3.2). As displayed in Table A3, re- 652

moving code features consistently degrades results 653

across all splits, showing the importance of code- 654

specific features in code-related tasks (Nasrabadi 655

et al., 2023; Jiang et al., 2024). Regarding the 656

rescaling approaches, although DC rescaling some- 657

times yields competitive results, performance gen- 658

erally drops relative to the default AFC. This re- 659

flects the benefit of fine-grained re-scaling for data 660

imbalance issues (Henning et al., 2023). Alto- 661

gether, these ablation studies validate the design 662

choices in FINDR. 663

6 Conclusion 664

In this work, we introduce FINDR, an efficient 665

pretraining data selection method based on logistic 666

regression but enhanced with feature importance 667

reweighting. Concretely, we augment hashed n- 668

gram features with code features to capture code- 669

specific constructs, then apply informative priors to 670

reweight feature importance when computing influ- 671

ence scores. Notably, our FINDR is the first data 672

selection algorithm tailored to NL2Code pretrain- 673

ing. Experiments on Python and SQL demonstrate 674

FINDR’s superiority over strong baselines and its 675

compatibility across diverse LLMs. Our further 676

study confirms that a small, influential subset of 677

data can yield significant performance improve- 678

ments, even outperforming an LLM trained on 300 679

times more examples. 680

10We present additional ablation analysis on η in Ap-
pendix E.3, a hyperparameter introduced in the learning pro-
cess of Φ[·] (Appendix E.2).
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Limitation681

GPU resources. The base LLMs used for682

continued-pretraining in this work are of 1.3 to 2.5683

billions parameters. It is thus more time-consuming684

than training smaller previous-generation models685

like BART (Lewis et al., 2020), which in turn686

results in a significantly higher carbon footprint.687

Specifically, we train each model on 8 NVIDIA688

A100 (40GB VRAM) with significant CPU and689

memory resources. The training time for each690

model ranges from several hours to 2 days, de-691

pending on the configurations.692

Evaluation Domains. In this work, we have in-693

cluded two challenging evaluation benchmarks,694

aiming to cover a diverse array of code styles695

and domains. Yet, these two benchmarks cannot696

comprehensively represent the entire spectrum of697

the NL2Code space. Indeed, evaluation remains698

an ongoing challenge in data selection—–existing699

studies typically rely on only 3–4 benchmarks as700

well (Xia et al., 2024; Li et al., 2024a). In fu-701

ture research, we plan to extend FINDR to more702

programming languages, e.g., Java and C++, and703

examine its robustness in the wild.704

Generalizability of FINDR. In this work, we fo-705

cus primarily on developing and validating FINDR706

for NL2Code. As is common in this area (Wang707

et al., 2024), evaluations are typically performed708

on the motivating target domains only, leaving the709

question of generalizability to a broader range of710

domains for future work. For instance, DSIR (Xie711

et al., 2023), a SOTA data selector in the natural712

language (NL) space, performs poorly in the cod-713

ing space (Table 1, Table 2). Therefore, we plan714

subsequent work focusing on extending the eval-715

uation of FINDR to non-NL and non-NL2Code716

domains, while expecting others to also investigate717

FINDR beyond NL2Code as we have done with718

the strong baselines (e.g., DSIR) in this work.719
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A Rubrics for Radar Plot1354

In order to produce the overall comparison radar1355

plot (Figure 1), we consider five distinct metrics.1356

• Selection Efficiency: This metric is derived1357

from the Selection Time column in Table A4.1358

Specifically, we first apply add-one smooth-1359

ing to all raw values, followed by a logarith-1360

mic transformation, and is finally rescaled to1361

a range of 1 to 5 using min-max normaliza-1362

tion. Note, for all raw values (unit: hours),1363

they represent the entire time cost of selecting1364

2% of data from the Python set of StackV2,1365

including parameter learning and inference1366

(i.e., data selection) stages. For the random1367

baseline, the time cost is trivial, so we assign1368

0.1369

• Token Efficiency: This metric is directly de-1370

rived from the Character Count column in Ta-1371

ble A4, and is rescaled to a range of 1 to 51372

using min-max normalization. The raw value1373

indicates the average number of characters in1374

a Python script within the selected data.1375

• Compatibility: TThe purpose of this met-1376

ric is to assess whether a data selection ap-1377

proach can boost performance for both eval-1378

uated models, and whether it exhibits any1379

model preference or bias. This metric is1380

relatively subjective, and the scores we as-1381

sign to each approach are displayed in Ta-1382

ble A4. For example, both Quality Classifier1383

and BM25 yield improvements when the un-1384

derlying model is Gemma, but no improve-1385

ment is observed for Coder. Therefore, we1386

rate their compatibility as moderate (3). How-1387

ever, since Quality classifier does not hurt1388

the performance in the Python domain, we1389

slightly increase its score to 3.5.1390

• Python Skill: This metric is directly derived1391

from Table 1, and is rescaled to a range of 11392

to 5 using min-max normalization.1393

• SQL Skill: This metric is directly derived1394

from Table 2, and is rescaled to a range of 11395

to 5 using min-max normalization.1396

Finally, we derive the overall rating by plac-1397

ing equal emphasis on both efficiency and effec-1398

tive/performance dimensions. The efficiency di-1399

mension encompasses the selection and token effi-1400

ciencies, while the other three metrics are grouped1401

under the effective/performance dimension. At1402

the authors’ discretion, we assign the five metrics1403

weights of [1, 1, 0.5, 0.75, 0.75], considering that1404

compatibility is a relatively subjective metric. We 1405

then compute a weighted sum of per-metric ranks 1406

for each data selection approach, which is subse- 1407

quently rescaled to a range of 1 to 5 using min-max 1408

normalization. 1409

B Color Scheme 1410

For all data selectors (including both FINDR and 1411

baseline approaches), we highlight them on a scale 1412

of 5 red shades based on the relative improvements 1413

over the off-the-shelf base models. We design the 1414

following scheme to color Table 1, Table 2, Ta- 1415

ble A1 and Table A2: 1416

• if the relative gain is in the range of (0%, 5%], 1417

the value is highlighted in pale pink . 1418

• if the relative gain is in the range of 1419

(5%, 15%], the value is highlighted in pink . 1420

• if the relative gain is in the range of 1421

(15%, 30%], the value is highlighted in 1422

rose-pink . 1423

• if the relative gain is in the range of 1424

(30%, 50%], the value is highlighted in 1425

rose-red . 1426

• if the relative gain is over 50%, the value is 1427

highlighted in dark red . 1428

C Supplementary Main Results 1429

Due to space limitation in the main text, this section 1430

supplements §5.1. 1431

Python. Table A1 presents results where features 1432

for validation data are extracted from the complete 1433

script, including both context and answer, whereas 1434

for Table 1, features are extracted solely from the 1435

context. Overall, the performance difference be- 1436

tween the context-only and complete script settings 1437

is minimal. Therefore, for all the other experiments 1438

performed in the Python domain, we extract fea- 1439

tures using only the context for two reasons: (1) 1440

Context is shorter than the complete script, making 1441

feature extraction more efficient, and (2) incorporat- 1442

ing solutions requires extensive human annotation, 1443

which limits scalability. 1444

SQL. As discussed in §4.1, we adopt two eval- 1445

uation metrics for the SQL domain: EM and F1. 1446

Table A2 complements Table 2 by presenting per- 1447

formance in terms of F1. Note, for all SQL domain 1448

experiments, features for validation data are only 1449

extracted from the answer. This choice is based on 1450

our observation that using context-only or complete 1451

15



DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

Base Model 19.9 9.2 17.5 6.8 12.0 15.1 13.8 7.2 9.8 4.9 7.6 10.1
Random Selection 20.7 8.6 16.7 4.9 11.0 14.7 15.3 6.6 10.7 6.2 8.2 10.9
Quality Classifier 23.6 9.9 17.9 6.8 12.4 16.8 19.9 7.9 12.4 7.4 9.7 13.6
BM25 22.8 6.6 15.4 5.6 10.1 15.0 23.1 5.3 15.0 6.2 9.7 14.9
DSIR 21.0 9.2 18.8 6.8 12.6 15.9 16.4 7.9 12.0 4.9 8.8 11.7
FINDR (Ours) 23.3 12.5 18.8 7.4 13.7 17.4 20.1 9.2 16.2 3.7 10.6 14.3

Table A1: Comparison of FINDR with strong data selection baseline approaches in the Python domain, measured by
Pass@1, when training with 2% of selected data. Base model denotes out-of-the-box evaluation without additional
training. In contrast to Table 1, features of validation examples are extracted from the complete script (i.e., context
and answer). Following Lai et al. (2022), we conduct 0-shot evaluation, and we report individual results on 4
problem types and the aggregated perturbation set. Best results are bold, and informed data selectors that outperform
the base model are highlighted on a scale of 5 red shades (see color schemes in Appendix B). Overall, FINDR
improves over base Coder and Gemma by 15% and 39%, respectively. Notably, FINDR achieves the highest score
on perturbed items, showcasing the robustness of FINDR.

DeeoSeek-Coder Gemma

Simple Moderate Challenging Overall Simple Moderate Challenging Overall

Base 28.4 10.7 3.3 12.8 13.3 3.6 4.6 6.0
Random 19.1 6.5 4.1 8.7 12.8 3.4 4.2 5.6
Quality 19.8 4.4 1.5 7.1 18.5 2.7 3.3 6.3
BM25 24.0 7.9 3.3 10.3 19.6 4.3 4.1 7.6
DSIR 4.1 0.1 0.0 1.0 7.0 0.7 0.8 1.8
FINDR 27.5 11.7 2.7 13.1 20.0 4.1 4.9 7.7

Table A2: F1 performance comparison in the SQL domain when training with 2% of selected data. Base model
denotes out-of-the-box evaluation. Following Li et al. (2024b), we conduct 1-shot evaluation, and we report
individual results on 3 problem types. Best results are bold, and data selectors superior to base are highlighted
on a scale of 5 red shades. In general, FINDR leads to the best performance across the board. EM results refer
to Table 2.

scripts results in inferior performance and higher1452

results variance.1453

D Construction of Code Feature Buckets1454

To construct a comprehensive set of code feature1455

buckets, we leverage powerful LLMs such as GPT-1456

3.5.11 Using the Numpy library as an example, we1457

prompt GPT-3.5 to generate major function cate-1458

gories and their corresponding expressions. This1459

process is performed three times with varying out-1460

put sizes: 10, 50, and 70 classes. We merge the re-1461

sults, removing only duplicated expressions while1462

retaining all unique classes. This procedure is re-1463

peated for each of the seven libraries. In total, we1464

compile 618 feature classes encompassing 8,7211465

distinct Python expressions. Examples of these1466

feature buckets are presented in Table A6.1467

E More details of Informative Priors (Φ)1468

The informative priors (Φ) are intended to capture1469

global beliefs about the relative importance of dif-1470

11https://chat.openai.com/;
gpt-35-turbo-16k-0613, training data up to Sept. 2021

ferent features. In an ideal scenario, Φ would be 1471

independent of any specific experience. However, 1472

in practice, Φ inevitably depends on the target do- 1473

main. Moreover, generating an exhaustive list of 1474

importance scores for all features in the training 1475

set is impractical—especially since the training 1476

set is dynamic, and even if it were fixed, manually 1477

assigning these scores would be prohibitively labor- 1478

intense. To this end, we decide to estimate Φ in an 1479

on-demand fashion using Equation (2). 1480

E.1 Construction of D′
raw 1481

To address the large size disparity between Dval 1482

and Draw, and mitigate shortcut learning (see §3.2), 1483

we introduce a reduced negative set, D′
raw. Specif- 1484

ically, D′
raw is a small subset of Draw that serves 1485

as a proxy for negative examples. To stabilize sub- 1486

sequent supervised learning stage of FINDR, we 1487

ensure that all negative instances in DFINDR are 1488

contained within D′
raw. We further introduce a hy- 1489

perparameter η, which defines the size of D′
raw as 1490

as a multiple of the negative set in DFINDR. That is, 1491

|D′
raw| = η|D−

FINDR|. By tuning η, we can balance 1492
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DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

FINDR 24.2 12.2 18.4 7.1 13.3 17.5 19.0 9.2 14.1 6.2 10.4 13.7
- Code feature 22.5 11.2 18.8 6.8 13.1 16.8 17.4 8.6 11.1 4.6 8.5 12.0

FINDR (DC rescaling) 23.4 10.6 18.6 6.8 12.9 17.0 18.3 6.9 11.5 6.2 8.7 12.4
- Code feature 22.2 11.9 20.5 6.5 14.0 17.2 19.0 9.2 12.8 3.7 9.1 12.9

Table A3: Ablation study of FINDR. We find that removing code features consistently degrades results across all
splits. Meanwhile, using DC rescaling approach generally hurts the performance, in comparison with the default
AFC.

Origin Surface Semantic Difficult Perturbation Overall
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Figure A1: Gemma results in Python domain with varying selection ratios. Dashed line denotes the off-the-shelf
Gemma’s result. Performance improves steadily with higher selection ratios, with a notable cut-off at 2%, where
additional training leads to better performance than base Gemma and CodeGemma.

Selection Time Character Count Compatibility

Random 0 3,410 2.0
Quality 2 3,855 3.5
BM25 760 10,788 3.0
DSIR 145 533 3.5
FINDR (Ours) 3.5 1,762 5.0

Table A4: Raw statistics for radar plot (Figure 1). The
unit for selection time is hours, including parameter
learning and inference stages. The detailed usage of
each column is documented in Appendix A.

data coverage against computational overhead.1493

E.2 Learning Process of Φ1494

After obtaining D′
raw, we combine it with D′

val1495

(serving as the positive set) to learn Φ. The learn-1496

ing process of Φ is detailed in §3.2. Once Φ is1497

learned, the corresponding parameters are frozen1498

in the subsequent supervised learning stage.1499

E.3 η Ratio for Φ Estimation1500

We vary η from 1 to 100 to assess how the sampling1501

size of negatives for informative priors estimation1502

influences downstream performance. Intuitively,1503

a larger set should yield more accurate feature-1504

weight estimates, thus improving downstream se-1505

lection. Figure A3 confirms this trend for most1506

problem types, recording a steady performance1507

boost from η = 1 to 10. However, a noticeable1508

drop is observed beyond that point, as evidenced1509

by the lowest overall result when η = 100, likely1510

due to diminishing returns from overly large sam-1511

pling of negatives. 1512

Balancing efficiency and accuracy, we adopt 1513

η = 1 in our main experiments. This setting re- 1514

quires minimal computational overhead yet main- 1515

tains near-peak performance. Future work can ex- 1516

plore adaptive strategies for tuning η to improve 1517

the informative priors estimation. 1518

E.4 Default Setting of Φ 1519

Our FINDR method introduces three core hyper- 1520

parameters in Φ: 1521

• γ: Balances the contribution of the priors vs. 1522

uniform weighting (γ = 0.75 by default). 1523

• M : Caps the maximum importance score for 1524

each feature (M = 3 by default). 1525

• η: Controls the ratio of negative samples be- 1526

tween the training set and the Prior estimation 1527

set (η = 1 by default, due to efficiency and 1528

representativeness). 1529
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EM-Simple EM-Moderate EM-Challenging EM-Overall F1-Simple F1-Moderate F1-Challenging F1-Overall
Problem Types
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Figure A2: Gemma results (EM and FI) in SQL domain with varying selection ratios. Dashed line denotes the
off-the-shelf Gemma’s result. Performance improves steadily with higher selection ratios, with a notable cut-off at
2%, where additional training leads to better performance than base Gemma.
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Figure A3: Impact of η (sampling size of negatives for informative priors estimation) on performance in Python
domain. We have witnessed a steady performance boost from η = 1 to 10, but a sharp drop afterwards, likely due to
diminishing returns from overly large sampling of negatives.

Benchmarks |D_val| |D_test| Splits |C| |A| #Shot #Tasks Domain

DS1000 (Lai et al., 2022) 105 895 452 (105)/152/234/162 2,857 141 0 7 Python
BIRD-miniDev (Li et al., 2024b) 50 450 148 (50)/250/102 4,270 201 1 12 SQL

Table A5: Statistics of evaluation benchmarks. |D_val| and |D_test| denote the size of validation and test sets. Splits
represent the fine-grained data splits by problem types, as seen in Table A1 and Table 2. That is, there are Origin,
Surface, Semantic and Difficult in the Python domain, and Simple, Moderate and Challenging in the SQL domain.
We also ensure that all validation data are sampled from the simplest category, as indicated by parentheses, allowing
for the study of LLM generalizability and true intelligence. |P | and |A| denote the average length of context (C) and
answer (A). For #Shot, we follow the official practice in respective benchmarks (Lai et al., 2022; Li et al., 2024b).
#Tasks represent the number of libraries (Python) and subjects (SQL) included in each benchmark.
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Library Feature Bracket Expressions/Functions

Matplot Plotting Functions pyplot.plot, plot, matplotlib.pyplot.hist,
plt.hist, boxplot, plt.scatter, bar,
matplotlib.pyplot.boxplot, matplotlib.pyplot.plot,
scatter, matplotlib.pyplot.bar, plt.bar,
pyplot.bar, plt.plot, pyplot.scatter,
pyplot.hist, hist, pyplot.boxplot, plt.boxplot,
matplotlib.pyplot.scatter

Numpy Array Creation np.ones, numpy.eye, array, numpy.zeros, numpy.array,
np.zeros, np.array, numpy.ones, empty, zeros, np.eye,
ones, eye, np.empty, numpy.empty

Pandas Input/Output to_csv, pd.read_json, pandas.read_csv, pd.read_sql,
pandas.to_csv, pandas.read_html, pandas.read_sql,
read_csv, read_html, read_json, pandas.read_json,
pd.to_csv, read_sql, pd.read_html, pd.read_csv,
pandas.read_excel, pd.read_excel, read_excel

PyTorch Math Operations torch.log, torch.cos, add, torch.sub, pow, sub,
torch.sqrt, exp, sin, cos, sqrt, mul, div, torch.sin,
torch.exp, torch.mul, log, torch.pow, torch.add,
torch.div

SciPy Data Structures scipy.sparse.dok_matrix, coo_matrix,
scipy.sparse.coo_matrix, scipy.sparse.bsr_matrix,
scipy.sparse.lil_matrix, sparse.lil_matrix,
sparse.dok_matrix, lil_matrix,
scipy.sparse.csc_matrix, bsr_matrix,
sparse.coo_matrix, csc_matrix, sparse.csc_matrix,
sparse.bsr_matrix, dok_matrix

Sklearn Model Selection sklearn.model_selection.KFold,
model_selection.GridSearchCV, StratifiedKFold,
sklearn.model_selection.GridSearchCV,
cross_val_score, model_selection.train_test_split,
KFold, sklearn.model_selection.cross_val_score,
train_test_split, model_selection.StratifiedKFold,
sklearn.model_selection.train_test_split,
GridSearchCV, sklearn.model_selection.StratifiedKFold,
model_selection.KFold, model_selection.cross_val_score

TensorFlow Tensor Manipulation tf.constant, tf.Variable, concat, tf.concat, Variable,
constant, tf.reshape, reshape, transpose, tf.transpose

Table A6: Example feature brackets. For each library in DS1000, we show one bracket with associated expressions.
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