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Abstract

Reasoning about time and temporal relations is
an integral aspect of human cognition, essen-
tial for perceiving the world and navigating our
experiences. Though language models (LMs)
have demonstrated impressive performance in
many reasoning tasks, temporal reasoning re-
mains challenging due to its intrinsic complex-
ity. In this work, we first study an essential task
of temporal reasoning—temporal graph genera-
tion, to unveil LMs’ inherent, global reasoning
capabilities. We show that this task presents
great challenges even for the most powerful
large language models (LLMs), such as GPT-
3.5/4. We also notice a significant performance
gap by small LMs (< 10B) that lag behind
LLMs by 50%. Next, we study how to close
this gap with a budget constraint, e.g., not using
model finetuning. We propose a new prompt-
ing technique tailored for temporal reasoning,
GENSORT, that first converts the events set to
a Python class, then prompts an LM to gener-
ate a temporally grounded narrative, guiding
the final generation of a temporal graph. Ex-
tensive experiments showcase the efficacy of
GENSORT in improving various metrics. No-
tably, GENSORT attains the highest F1 on the
Schema-11 evaluation set, while securing an
overall F1 on par with GPT-3.5. GENSORT also
achieves the best structural similarity across the
board, even compared with GPT-3.5/4.

1 Introduction

Temporal reasoning is essential for humans to
perceive the world, understand daily communica-
tions, and interpret the temporal aspects of expe-
riences (Allen, 1983; Nebel and Bürckert, 1995).
The recent advent of language models (LMs) has
garnered substantial attention to their impressive
performance in various reasoning tasks, such as
arithmetic reasoning (Cobbe et al., 2021; Zhong
et al., 2024) and commonsense reasoning (Talmor
et al., 2019; Anil et al., 2023). Nonetheless, few
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class BusinessChange:
  title = “Business Change"
  steps = 6
  def stepA(self):
    return “Government approve the deal”
  def stepD(self):
    return “Companies negotiate”
  ··· ··· [more events]
  def get_relations(self):
    return [
      “stepB -> stepC,
      “stepC -> stepD”,
      “stepD -> stepF”,
      “stepF -> stepE”,
      “stepA -> stepE”,
    ]
# END

Figure 1: Task overview of temporal graph generation
(TGG), where the input is a goal and a set of unordered
events. In this work, to better unleash the pre-training
power of LMs trained with a mixture of text and code,
we cast TGG as a code completion task.

LMs exist to handle temporal reasoning well (Wang
and Zhao, 2023; Chu et al., 2023; Chan et al., 2024),
due to the task’s inherent complexity, mingled with
implicit logical inference and the necessity for pro-
found world knowledge.

To gain deeper insights, the research community
mainly focuses on two extremes along the spec-
trum: either a simple relation extraction task that
orders a pair of events (UzZaman et al., 2013; Yuan
et al., 2023), or a perplexing commonsense un-
derstanding task demanding multi-axis reasoning
skills beyond the mere temporal aspect (Wenzel
and Jatowt, 2023; Tan et al., 2023; Xiong et al.,
2024). Worse still, the former is limited to a lo-
cal scope spanning two adjacent sentences only
and fails to account for the significance of global
temporal relations, leading to overly optimistic re-

1



sults (Yuan and Liu, 2022; Wang and Zhao, 2023).
Therefore, neither setup provides a clear under-
standing of LMs’ true temporal reasoning abilities.

In this work, we aim to unveil the inherent,
global temporal reasoning capabilities of LMs,
evaluating them in isolation free from confounding
factors, and addressing the limitations of previous
studies which only focused on local contexts. We
first introduce a task of temporal graph genera-
tion (TGG; fig. 1): Given a high-level goal T 1

(e.g., business change) and a set of events V , the
objective is to produce a temporal graph G(V, E)
where a directed edge in E reveals the temporal
order between events. Though this specific notion
of TGG is new, many of its applications are not.
With TGG, we put forth the first research question.
RQ1: What is the temporal reasoning capability
of popular LMs? Prior work (Wang and Zhao,
2023; Chu et al., 2023) shows a huge gap between
AI systems and human performance on various tem-
poral understanding tasks. Additionally, there is a
notable performance disparity between proprietary
LMs (e.g., GPT-4) and open-source LMs, particu-
larly those with fewer than 10 billion parameters
(henceforth, small LMs). Our study on temporal
reasoning reveals a similar trend and identifies the
existence of both gaps, as demonstrated in Table 1.
This further highlights the importance of an in-
depth investigation of TGG, since the performance
of downstream tasks (e.g., temporal commonsense
understanding) is positively correlated with the in-
herent, global temporal reasoning capability. Ob-
serving the model deficiencies, we are motivated
to fill the gap between open-source, small LMs and
proprietary large models. This is due to the fact
that open-source LMs are generally more accessi-
ble, reproducible, and cost-effective to use (Chen
et al., 2023; Zhou et al., 2023). In pursuit of this
goal, we present the second research question.
RQ2: With a budget constraint (e.g., not allow-
ing further training), how can small LMs catch
up with large models like GPT-3.5/4? Given the
constraint that no training will be used, we propose
GENSORT, a special prompting technique tailored
for temporal reasoning. This method capitalizes on
the recent success of the Chain-of-Thought (CoT)
technique (Wei et al., 2022b; Kojima et al., 2022),
found effective in solving complex reasoning tasks.
To approach TGG, GENSORT produces a final
temporal graph via first Generating a temporally

1We use goal and scenario interchangeably.

grounded narrative2 then Sorting the input events
topologically in reference to the recounted narra-
tive. Inspired by Madaan et al. (2022); Chen et al.
(2022); Gao et al. (2023), GENSORT also features
structural representations by converting the input-
output mapping to a Python class, and instructing
the generation in code space. We further improve
GENSORT by introducing high-quality reference
narratives as part of few-shot demonstrations.

Extensive experiments across three evaluation
benchmarks of diverse genres reveal six interesting
findings: 1) small LMs critically struggle with
temporal reasoning even with few-shot examples;
2) CoT is also ineffective at temporal reasoning, in
line with existing finding (Chu et al., 2023); 3) GPT-
4 sometimes falls off the throne due to alignment,
when answering sensitive queries; 4) GENSORT

is a powerful tool to assist small LMs to catch
up with or even surpass GPT-3.5, and presents
strong compatibility with various base LMs; 5) the
temporally grounded narratives are significant in
improving LMs’ temporal reasoning process; 6) AI
systems are far from mastering temporal reasoning,
trailing the human baseline by 30 F1 points.

We also analyze the impact of shot numbers and
perform a holistic evaluation of reference narratives
in few-shot examples. 5-shot is found to be the
sweet spot for temporal reasoning, after which the
performance plateaus, likely due to long-context
challenge. We identify three key characteristics of
reference narratives for them to avail small LMs
most: conciseness, simplicity, and factuality.

2 Related Work

2.1 Temporal Reasoning

This work is deeply rooted in a long-standing yet
still challenging NLP domain—temporal reasoning
(Allen, 1983; Nebel and Bürckert, 1995), which
involves extraction, representation and reasoning
with time and events (Sanampudi and Kumari,
2010). Depending on the cognitive complexity,
temporal reasoning in NLP is studied at three levels:
temporal expression detection, temporal relation
extraction, and temporal graph generation. The
simplest temporal expression detection task is to
identify phrases in the text that convey temporal
information (Setzer, 2001; Mani et al., 2001; Puste-
jovsky et al., 2003), commonly known as TimeX.

2In our context, “temporally grounded” refers to events
being organized and presented in a way that accurately reflects
their temporal sequence or timeline.
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Further, under-specified TimeX is typically con-
verted to explicit expressions (e.g., Summer 2024)
through a process called time expression normal-
ization (Verhagen et al., 2010).

Explicit TimeX is often absent in text, and events
usually carry implicit temporal information. To
bridge the gap, TempEval (Verhagen et al., 2009;
UzZaman et al., 2013) is curated to support the
study of temporal relation extraction, which aims
to detect the temporal relation between two events
in a document. The most common benchmarks,
TB-dense (Chambers et al., 2014) and MATRES
(Ning et al., 2018), have witnessed the technique
evolution from LSTM (Dligach et al., 2017) and
GNN-augmented BERT (Mathur et al., 2021; Wang
et al., 2022), to LMs prompting (Yuan et al., 2023).
Yet, these benchmarks are limited by their locality
assumption, where only pairs of events within a
two-sentence window are annotated. Even in this
simplified scenario of temporal relation extraction,
ChatGPT perform poorly, trailing supervised sys-
tems by over 30% (Chan et al., 2024).

The most challenging task, contextualized tem-
poral graph extraction, is defined as, given a
document, generating a corresponding event-level
temporal graph (UzZaman et al., 2013; Madaan
and Yang, 2021). This task addresses the limita-
tion of locality by priming models to comprehend
the entire article and infer relationships even be-
tween distant events. Yet, this area is largely under-
investigated, partly due to the scarcity of available
datasets. A similar task is script learning (Regneri
et al., 2010; Modi et al., 2016; Sakaguchi et al.,
2021), which targets inducing a stereotypical pro-
gression of complex events (Schank and Abelson,
1975), represented as a temporal graph of more
atomic events. This task is usually approached by
first extracting information snippets from a given
document to build an instance graph, and then ex-
panding the graph to generate a schematic graph
using GNN (Li et al., 2021; Jin et al., 2022) or
LLM prompting (Dror et al., 2023). Given the
remarkable similarities between these two tasks,
we instead study a temporal reasoning task formu-
lation that is fundamental to both, i.e., temporal
graph generation. It differs from prior work in at
least two dimensions: (1) a limited-context setting,
where only abstract event descriptions are avail-
able, and (2) only a few training samples at hand,
rendering fine-tuning techniques inapplicable. This
motivates a training-free assessment of LMs’ in-
herent, global temporal reasoning capability.

2.2 Chain-of-Thought and its Variants
Despite the strong problem-solving capability in
the general domain (Wei et al., 2022a), LMs strug-
gle to address more complex reasoning tasks, such
as commonsense understanding and arithmatic rea-
soning (Patel et al., 2021; Talmor et al., 2021a;
Huang and Chang, 2023). Wei et al. (2022b) first
introduce the concept Chain-of-Thought (CoT) by
decomposing multi-step problems into intermedi-
ate steps. Kojima et al. (2022) further adds a phrase

“Let’s think step by step” to perform zero-shot CoT.
These studies underpin the CoT technique in en-
hancing LMs’ capability for complex reasoning.

Down the line, sophisticated prompting schemes
are devised through structuralization. One ap-
proach is to extend the linear chain structure to
Tree-of-Thoughts (Yao et al., 2023) and Graph-of-
Thoughts (Besta et al., 2024), enabling expanded
exploration space. The huge search space, however,
results in a computational resource dilemma. On
top of that, leveraging the deterministic execution
to narrow the discrepancy between reasoning and
final answer, PoT (Chen et al., 2022), PAL (Gao
et al., 2023) and Faithful CoT (Lyu et al., 2023)
introduce programming languages to describe the
reasoning process structurally. These methods are
designed exclusively for solving mathematical rea-
soning and symbolic reasoning, where the reason-
ing process and computation can be decoupled. In
contrast, for temporal reasoning, the reasoning pro-
cess and the temporal sorting step are intrinsically
interleaved. In fact, Chu et al. (2023) has attempted
to apply CoT but proved unsuccessful.

Moreover, existing methods are mostly applied
to generate intermediate rationales for simple,
atomic outputs, usually in the format of multi-
choice options (Mihaylov et al., 2018; Talmor
et al., 2019; Liu et al., 2020), a number (Cobbe
et al., 2021; Hendrycks et al., 2021), or yes/no op-
tions (Talmor et al., 2021b; Wei et al., 2022a). Our
work draws a clear distinction where our focus is
on structural output generation, augmented with
producing a rationale in the form of a compelling
and pertinent narrative.3

3 Method: GENSORT

Figure 2 provides an overview of the proposed
GENSORT method, and draws a comparison

3The significance of narrative in shaping human decision-
making is well-studied (Piper et al., 2021; Emelin et al., 2021;
Zhang et al., 2024b); we hypothesize machines are similarly
influenced.

3



class WalkIntoStore:
  def stepA(self):
    return “park the car”
  def stepD(self):
    return “get out of car”
  ··· ··· [more events]
  def get_relations(self):
    return [
      “stepB -> stepD”,
      “stepA -> stepB”,
      ··· ··· 
    ]

# END

class WalkIntoStore:
  def stepA(self):
    return “park the car”
  def stepD(self):
    return “get out of car”
  ··· ··· [more events]
  #Let's think about a 

narrative ···
  def get_narrative(self):
    return "This is a 

report about walking into a 
store. ··· Once the car is 
parked, the key is taken out of 
the ignition. Next, the person 
gets out of the car ··· Finally 
they walk into the store."
  def get_relations(self):
    return [
      “stepA -> stepB”,
      “stepB -> stepD”,
      ··· ··· 
    ]

# END

Vanilla Demonstrations

Narrative-aware 
Demonstrations

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  def get_relations(self):
    #TODO

return [
“stepE -> stepF”,
“stepA -> stepB”,
··· ··· 

]
# END

[TEXT]: Key temporal information pertinent 
to the presented partial temporal graph, i.e., 
return statement of get_relations(self). 
[TEXT]: Generations by language models (LMs).
Note: Python class and instructions simplified.

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  #Let's think step by step

The “BusinessChange” class        
represents the steps involved in  
a business acquisition. ··· StepE
leads to stepA, as the companies  
merge and then the government     
approves the deal ···
  def get_relations(self):
    #TODO

return [
“stepE -> stepA”,
··· ··· 

]
# END

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  #Let's think about a  

narrative ···
  def get_narrative(self):
    #TODO
   return “This is a report   

about ‘business change’. First,    
companies plan on an acquisition.  
Then, they offer an acquisition    
deal to the other company. The     
other company accepts the deal and 
the two companies start            
negotiating the terms of the deal. 
After they reach an agreement,     
they submit the deal to the        
government for approval. Once the  
government approves the deal, the  
companies can merge. By adhering   
to the provided temporal           
information, the desired goal is   
achieved.”
  def get_relations(self):
    #TODO

return [
“stepA -> stepE”,
··· ··· 

]
# END

Standard structural prompting

Structuralized Chain-of-Thought

GENSORT prompting

Temporally Grounded    
Narrative:
• Better factuality
• More structural
• Lower redundancy

More accurate temporal 
graph generation!

Figure 2: Overview of GENSORT, a prompting technique tailored for temporal reasoning. GENSORT improves the
temporal graph by recounting a temporally grounded narrative. Also shown are comparisons with existing methods.
The same test example from fig. 1 is displayed. Full example is in fig. A4 with GENSORT output in fig. A7.

against common prompting techniques. Overall,
given a scenario and a set of events, GENSORT

first converts the input into a Python class, then
guides LMs to produce a temporally grounded nar-
rative by arranging events in the correct temporal
order, leveraging LMs’ intrinsic temporal knowl-
edge. Based on the recounted temporal relations
articulated in the narrative, LMs are instructed to
sort events into a temporal graph. This section will
discuss major components in detail: (1) structural
representation, (2) GENSORT prompting template,
and (3) narrative-aware demonstrations.

Structural Representation. Following prior
work (Madaan et al., 2022; Chen et al., 2022; Gao
et al., 2023), we cast temporal reasoning as a code
completion task. This design decision is motivated
by the unordered nature of both event sets and tem-
poral relation sets, making a structural representa-
tion the optimal choice. Wang et al. (2023a) also
shows that combining structural event representa-
tions with LMs trained with a mixture of text and
code can unleash the full pretraining power. We ex-
tend this framing to handle cross-event structures.
Specifically, a temporal graph is commonly pre-
sented in DOT format (Madaan and Yang, 2021;
Sakaguchi et al., 2021), the appearance of which
lends itself naturally to the usage of coding for-
mat. Furthermore, code execution follows a clear,
step-by-step logical flow, mirroring the process of
reasoning. Bringing these aspects together results
in an alignment between temporal graphs and code

structure, facilitating temporal reasoning process.
Concretely, each scenario is represented as a

Python class. Each class encapsulates events as
functions, where the function name is in the form of
“step[A-Z]” such as “stepX”, and the function body
indicates the event description. The temporal graph
is represented as a collection of pairwise temporal
relations, enclosed within the return statement of
“get_relation()” function, marked by “TODO” for
LMs to implement.

GENSORT. At inference time, GENSORT first
prompts LMs to produce a temporally grounded
narrative using Narrative Prompt. Drawing on the
generated narrative, LMs proceed and complete
generation in response to Temporal Graph Prompt.
The entire generation process is in an end-to-end
manner, ensuring that LMs explicitly leverage the
temporal relations articulated in the narrative to
assist the generation of the final temporal graph.
We provide a complete example in Appendix C.

Narrative Prompt

# Let’s think of a narrative to link aforementioned
events in the correct temporal order.
def get_narrative(self):
# TODO

Temporal Graph Prompt

def get_relations(self):
# TODO
# END
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Overall, GENSORT narrows the gap between pre-
training and inference by allowing the LM to unfold
the narrative knowledge seen during pre-training.
Concretely, our approach leverages LMs’ inherent
strengths in generating and comprehending text for
narrative and temporal graph generation, respec-
tively. In contrast, directly mapping abstract events
to a temporal graph is less effective, as such ex-
amples are rarely encountered during pre-training.
Practically, generated narratives create imagined
experiences for LMs to navigate, which are crucial
for tasks requiring temporal reasoning. By reading
the recounted narrative, it becomes easier for the
LMs to construct an implicit timeline to guide event
sorting, significantly reducing the reasoning com-
plexity compared to generating temporal graphs
from scratch (i.e., using abstract events alone).

Our GENSORT draws a clear distinction from
the CoT prompting and its variants in three aspects.
First, for CoT, a final answer cannot be easily ex-
tracted unless a post-hoc script is designed (Kojima
et al., 2022; Wang et al., 2023b), while the out-
put of GENSORT is easy to obtain by parsing the
get_relations() function. Second, GENSORT

produces final outputs in the structural space, while
existing methods solely produce simple, atomic
outputs as discussed in §2.2. Third, the generated
rationales by CoTs are not necessarily grounded in
real-world experience. In contrast, generated narra-
tives by GENSORT are steered to be more tempo-
rally grounded, creating an imagined experience
for LMs to navigate, which is proved effective.

Narrative-aware Demonstrations. Existing
studies (Brown et al., 2020; Wei et al., 2022a) have
demonstrated that in-context demonstrations play a
critical role in guiding LMs to produce meaningful
outputs. GENSORT is no exception, as Table 1
reveals that even GPT-3.5 struggles with temporal
reasoning in a zero-shot setting. Thus, few-shot
examples are provided by default. For GENSORT

to succeed, high-quality and relevant rehearsed
narratives, termed reference narratives, need to be
created and embedded in these demonstrations.

Capitalizing on the recent success of using LMs
to generate demonstrations (Yu et al., 2023; Li et al.,
2023), we prompt GPT-3.5/4 to produce reference
narratives. Concretely, for each demonstration, ab-
stracted as G(V, E), we feed both V and E into
GPT-3.5/4, using our designed reference narrative
generation templates, dubbed meta prompts. In
total, we create 4 types of meta prompts covering

diverse genres like news and children’s stories. Ad-
ditionally, when feeding G(V, E) into GPT-3.5/4,
we use two input formats to define a Python class
(alphabetical like “stepX” in fig. A8 vs. descriptive
like “pushPedal” in fig. A9). We later evaluate the
usefulness of each meta prompt in §5.2. Details of
meta prompts are documented in Appendix D.

4 Experiment

In this work, we focus on Temporal Graph Gener-
ation (TGG), an essential task of temporal reason-
ing. Here, we discuss datasets, experimental setup,
baselines, and evaluation metrics. We provide ad-
ditional implementation details in Appendix A.

4.1 Dataset
In line with the literature, we use ProScript (Sak-
aguchi et al., 2021) as the major benchmark, where
a temporal script is represented as a directed acyclic
graph, which were collected from a diverse range of
sources including ROCStories (Mostafazadeh et al.,
2016), Descript (Wanzare et al., 2016), and Virtual
home (Puig et al., 2018). We also adopt two other
datasets to enrich the evaluated genres and domains,
and make necessary changes for the TGG task:
1) Schema-11 evaluation set (Dror et al., 2023),
which contains human-curated event schemas for
11 newsworthy topics, such as armed robbery and
business change; and 2) WikiHow Script corpus
(Lyu et al., 2021), a collection of multilingual how-
to articles depicting necessary steps performed in
sequence to achieve a high-level goal, covering a
wide range of daily activities. Dataset statistics
are included in Table A2, and we provide detailed
dataset processing scripts in Appendix B.

4.2 Setup
As our goal is to study the capability and generaliz-
ability of existing LMs, and our GENSORT without
any fine-tuning, we assume no access to large-scale
training sets except for few-shot demonstrations.
Therefore, all experiments are conducted in a 5-
shot setting. We provide analysis on the impact of
the shots numbers in §5.2. We consider three base
models to spotlight the compatibility and versatil-
ity of GENSORT. We include very recent, strong
LMs, showing promising results on various reason-
ing tasks and code completion tasks, MISTRAL-7B
(Jiang et al., 2023), GEMMA-7B (Mesnard et al.,
2024), and LLAMA3-8B (AI@Meta, 2024). For
all base models, we use their instruction-fine-tuned
versions for experiments.
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Method
Proscript Schema-11 WikiHow Script Avg.

F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓

Baselines

Random 14.0 1.47 1.00 7.8 19.4 3.91 1.00 7.8 14.2 0.06 1.00 8.8 15.9 1.81
GPT-3.5 (0-shot)* 18.4 2.25 1.06 38.6 30.1 4.48 1.27 30.2 17.2 2.80 1.11 40.8 21.9 3.18
GPT-3.5 43.4 1.71 1.07 38.8 62.8 3.30 1.36 50.2 31.0 1.58 1.10 35.4 45.7 2.20
GPT-4 63.9 1.64 1.02 61.4 44.1 7.97 0.64 46.3 43.0 1.71 1.04 48.5 50.3 3.77

GEMMA-7B (Mesnard et al., 2024)

Standard Prompting 19.7 2.35 1.02 20.4 27.8 5.03 1.03 18.3 17.5 2.88 0.96 17.3 21.7 3.42
Chain-of-Thought 20.0 2.35 1.01 20.0 26.4 5.03 1.03 14.9 13.6 5.91 0.73 11.5 20.0 4.43
GENSORT (no reference) 20.0 2.47 1.00 17.3 27.9 4.78 1.09 18.1 15.2 5.03 0.81 13.9 21.0 4.09
GENSORT (alphabetical meta) 21.8 2.48 1.00 18.3 36.0 4.84 1.06 19.7 17.9 2.95 0.96 16.9 25.2 3.42
GENSORT (descriptive meta) 21.3 2.60 0.99 17.8 34.8 5.00 1.06 20.8 17.9 2.88 0.95 16.8 24.7 3.49

MISTRAL-7B (Jiang et al., 2023)

Standard Prompting 30.7 2.16 1.05 22.3 35.3 4.55 1.12 29.1 22.5 2.09 1.11 18.9 29.5 2.93
Chain-of-Thought 29.8 2.66 1.02 22.1 35.2 5.33 0.94 30.5 20.5 2.59 1.10 17.4 28.5 3.53
GENSORT (no reference) 32.5 3.04 0.95 19.4 42.3 5.27 1.00 27.6 21.8 3.33 0.98 15.4 32.2 3.88
GENSORT (alphabetical meta) 35.2 2.11 1.02 22.4 50.9 4.30 1.03 36.1 21.7 2.49 1.04 14.8 35.9 2.97
GENSORT (descriptive meta) 35.4 2.14 1.02 23.0 52.7 3.90 1.06 32.5 22.1 2.53 1.04 15.1 36.7 2.86

LLAMA3-8B (AI@Meta, 2024)

Standard Prompting 25.1 2.39 1.18 19.9 28.3 4.42 1.24 19.9 20.6 1.17 1.07 21.2 24.7 2.66
Chain-of-Thought 30.1 2.06 1.00 23.3 37.3 5.79 0.85 23.5 22.6 0.99 1.02 24.3 30.0 2.95
GENSORT (no reference) 35.5 1.88 1.00 25.3 52.6 3.18 1.12 35.0 25.4 0.99 1.02 20.9 37.8 2.02
GENSORT (alphabetical meta) 39.5 1.87 1.01 28.8 59.0 3.72 1.12 39.1 26.3 1.01 1.03 22.5 41.6 2.20
GENSORT (descriptive meta) 38.7 1.86 1.01 28.4 61.5 3.57 1.09 45.6 26.5 1.04 1.03 22.3 42.2 2.16

Table 1: Main results of base LMs and strong baselines on TGG evaluation benchmarks (average of 3 runs). For
each base model, best results are bold, and GENSORT’s variants better than both Standard Prompting and CoT
are highlighted . GENSORT results that outperform 5-shot GPT-3.5 and GPT-4 are in blue . Results that meet

both criteria are in purple . On average, GENSORT boosts F1 metric over its base model by 16% to 71%, and
sometimes improves the GED metric. GENSORT-augmented LLAMA3-8B achieves best overall F1 (63.5 F1 by
3-shot variant; fig 3) and GED results on Schema-11. Also, it only trails GPT-3.5 and GPT-4 by 8% and 14% on
average, while yielding a lower average GED. By default, 5-shot examples are provided. Full results in Table A1.

Shown in fig. 2, we represent the event set as
a suite of Python methods, by serializing the un-
ordered event set. For each scenario, we randomly
shuffle the input Python methods three times, ap-
ply models to each shuffle with greedy decoding at
inference. For GENSORT, we use Simple Report-
style narratives by GPT-4 (style details in table A3).

4.3 Baselines

To showcase the effectiveness of GENSORT, for
each base model we compare with standard struc-
tural prompting and structuralized chain-of-thought
prompting (fig. 2). We also remove reference narra-
tives in demonstrations to highlight the importance
of narrative-aware few-shot demonstrations, and
conduct a holistic evaluation of reference narra-
tives in §5.2. We include a random baseline, where
events are naively connected to form a linear tem-
poral chain based on the order they appear in the
input. We also experiment with two strong pro-
prietary models, GPT-3.54 and GPT-4 (OpenAI,
2023)5 to help gauge the gap between AI systems
and human-level performance.

4https://chat.openai.com/;
gpt-35-turbo-16k-0613, training data up to Sept. 2021.

5gpt-4-turbo-0125-preview, data up to Dec. 2023.

4.4 Evaluation Metrics

We denote the ground-truth and generated temporal
graphs as G(V, E) and Ĝ(V, Ê), respectively. we
compare both semantic and structural similarities
between G and Ĝ, following prior work (Sakaguchi
et al., 2021; Madaan et al., 2022). To evaluate
semantic similarity, we report precision (P) and
recall (R), defined as below, as well as F1.

Precision =
|E ∩ Ê|
|Ê |

Recall =
|E ∩ Ê|
|E|

To assess structural similarities, we consider:
• Graph Edit Distance (GED; Abu-Aisheh et al.,

2015) calculates the minimum number of edits
(node/edge removal/additions) to transform Ĝ
to a graph isomorphic to G.

• Graph Statistics: fraction of the number of
edges between Ĝ and G ( |Ê||E| ); the number of

connected components in Ĝ, denoted as k(G).
The goal is to bring both statistics closer to 1,
additionally ensuring k(G) is at least 1.

We further calculate Pair-wise Consistency be-
tween Ĝi and Ĝj , where we compare generated
graphs, based on two randomly shuffled inputs,
and compute the proportion of common temporal

links produced in both graphs, i.e., |Êi∩Êj |
|Êi∪Êj |

.
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5 Results and Analyses

5.1 Main Results

Major results are included in Table 1, and the full
results (across all 7 metrics) can be found in Ta-
ble A1. Below are our major findings.

1) With the few-shot setup, small LMs are dra-
matically underperforming, reaching barely 50%
of GPT-4’s capabilities. The three base models,
whether using standard prompting or CoT, consis-
tently under-perform GPT-4 and attain 40% to 60%
of its average F1 scores. Among them, MISTRAL-
7B achieves the highest F1 scores, while LLAMA3-
8B produces temporal graphs most similar to the
ground truth, as measured by GED.

2) Unlike many other reasoning tasks, CoT does
not always work for temporal reasoning and some-
times degrades performance. Unlike mathemati-
cal or logical reasoning (Wei et al., 2022b), CoT
prompting does not necessarily enhance model per-
formance on temporal reasoning tasks. Across
all three base models, there is a notable degrada-
tion in F1 and GED scores with CoT, except for
LLAMA3’s F1 scores. This is not TGG-specific, but
rather a common pattern across various temporal
understanding tasks (Chu et al., 2023), highlight-
ing the need for specialized approaches to temporal
reasoning. Outputs by CoT are included in fig. A6.

3) GPT-4 is not always the champion, owing to
the added safety layer. GPT-4 implements safety
measures through human-preference alignment
(OpenAI, 2023), which enhances model safety by
prompting more cautious responses, potentially
leading to performance drop (Bai et al., 2022; Bek-
bayev et al., 2023). Especially on Schema-11,
GPT-4 refrains from providing answers to sensi-
tive scenarios like “bombing attacks”,6 and thus
fails to produce a valid temporal graph.

4) With GENSORT, small LMs can perform com-
parably to GPT-3.5, or even take the lead. When
equipped with GENSORT, the overall semantic cor-
rectness (F1) and structural similarity (GED) of
the generated temporal graphs are significantly en-
hanced, regardless of which base LM is used. The
average improvement of F1 over naively prompt-
ing the base model is between 16% to 71%. As the
power of the base LM grows, GENSORT demon-
strates greater consistency in its outputs. Notably,
with LLAMA3-8B, the strongest base LM, GEN-
SORT achieves an F1 score that is comparable to

6In our experiments, we already disabled content filtering.

GPT-3.5 (42.2 vs. 45.7), and even outperforms
GPT-3.5/4 on GED. These results demonstrate the
potential of applying GENSORT in a wide range of
temporal understanding tasks in future research.

5) Recounting temporally grounded narrative
is a prerequisite for LMs to generate temporal
graphs accurately. Without high-quality reference
narratives, LMs struggle to generate temporally
grounded narratives, leading to a detrimental im-
pact on GENSORT-augmented GEMMA-7B (e.g.,
a 0.7 F1 drop and a 0.67 GED increase).

6) LMs, including the powerful GPT-4, lag far
behind human-level performance in temporal rea-
soning. The SOTA F1 score (by GPT-4) on Pro-
Script is 63.9, whereas the human baseline F1 is
89.3 (Sakaguchi et al., 2021). While GENSORT has
notably narrowed the gap between small and large
LMs, AI models have not mastered temporal rea-
soning yet, and further research efforts are needed
for LMs to match human performance.

5.2 Further Studies on GENSORT

We conduct ablation studies using LLAMA3-8B, to
explore the effect of the few-shot demonstrations
and the recounted reference narratives.

Does the number of shots matter? Fig. 3 illus-
trates how F1 scores change with the number of
shots in demonstrations. As can be seen, GPT-3.5
and GENSORT show resilience to changes in shot
numbers after an initial sharp increase. The perfor-
mance nearly stabilizes in the range of 5-10 shots,
though a slight drop is observed later, presumably
due to insufficient capability of long-context com-
prehension (Liu et al., 2023; Li et al., 2024). Of
particular interest is the performance of GENSORT

with 3 shots on Schema-11, outperforming the best
variant of GPT-3.5 (F1 of 63.5 vs. 62.8). This fur-
ther illustrates GENSORT’s potential of boosting
small LMs in the long run. It is also noticeable that
F1 scores of the standard prompting technique have
a V-shape between 1-shot and 5-shot, highlighting
its sensitiveness to in-context demonstrations.

We also display the GED scores in relation to
number of shots in fig. A1. We observe similar in-
stability in the standard prompting technique, along
with the performance plateau after 5 shots.

What characteristics define effective reference
narratives? Given that reference narratives in
GENSORT are machine-generated, we aim to ex-
plore what qualities matter most for the TGG task.
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Figure 3: F1 scores on ProScript and Schema-11 in
relation to the number of shots in demonstrations. We
identify the instability in the standard prompting, and
the performance plateau after 5 shots.

Here, the three variables influencing reference nar-
ratives are: (1) narrative generation model (GPT-
3.5 vs. GPT-4), (2) input format (alphabetical vs.
descriptive), and (3) 4 meta prompt types (varying
degrees of factuality and readability). We show
detailed meta prompts in Appendix D.

Fig. 4 and fig. A2 show results of F1 and GED
with varying meta prompts. Surprisingly, the
choice of the generator does not significantly im-
pact the graph quality, with average F1 scores of
36.4 for GPT-3.5 and 37.0 for GPT-4, and GED
scores of 1.90 vs. 1.94. Similarly, there is no
significant difference between alphabetical and de-
scriptive input formats. The most impactful factor
is the meta prompt type. Grouping performance
bars by prompt type reveals a clear variance in
model performance. Among the first three groups,
Simple English narratives, i.e., good for 10-year-
olds, stand out. This suggests that narratives should
be simple and concise, as verbose ones are less
effective. We find that News Report narratives pri-
oritize procedural and factual content, minimizing
distractions like descriptive settings or figurative
language that can often be found in both fiction or
non-fiction stories. We thus combine Simple En-
glish and News Report to leverage their strengths,
dubbed Simple Report. In summary, we identify
three key characteristics for reference narratives:
conciseness, simplicity and factuality.

How faithful is the temporal graph to interme-
diate narratives? Here, we look into whether
GENSORT-augmented LMs are self-faithful, i.e.,
whether the narrative and the temporal graph align
in terms of the temporal order of events. Higher
self-faithfulness is crucial and desired, as misalign-
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Figure 4: F1 scores on ProScript and Schema-11 with
different meta prompts. Average performance grouped
by prompt type is also shown. Notably, a Simple Re-
port-style, GPT-4 generated narrative leads to the best
score due to its conciseness, simplicity and factuality,
essential qualities for a high-quality reference narrative.

ment would diminish the effort of generating a
temporally grounded narrative.7

Motivated by the recent success of using LMs
as judges (Zheng et al., 2023; Zhang et al., 2024a),
we employ GPT-4 to assess the self-faithfulness
of 600 randomly sampled outputs by GENSORT-
augmented LLAMA3-8B. We prompt GPT-4 to
perform a 5-way assessment and provide judgment
rationales. Additionally, GPT-4 is instructed to
count the temporal links in the temporal graphs and
identifies aligned temporal links for a sanity check.
This helps humans capture the failure modes and
make necessary interventions. Based on automated
responses and on-demand human inspections, we
find a medium-to-high alignment of 72.8%. De-
tails of templates and the inspection process are
included in Appendix E.

6 Conclusion

In this paper, we assess the inherent, global tempo-
ral reasoning capabilities of LMs, by studying the
core challenge of temporal reasoning—temporal
graph generation (TGG). To this end, we propose
GENSORT, a novel prompting technique tailored
for temporal reasoning. Concretely, with few-
show narrative-aware demonstrations as references,
GENSORT prompts LMs to first generate a tem-
porally grounded narrative and then sort the in-

7Faithfulness ̸= correctness. A faithful temporal graph
may still contain logical errors from the generated narratives.
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put events topologically into a temporal graph, by
manipulating the generation in code space. Ex-
tensive experiments showcase GENSORT’s effec-
tiveness, demonstrated by its superior performance
over GPT-3.5 on multiple metrics, as well as the
compatibility of GENSORT with various LMs.

7 Limitations

Evaluation benchmarks. In this work, we have
included three evaluation benchmarks, aiming to
cover a diverse array of genres and domains. Yet,
these three benchmarks cannot comprehensively
represent the entire spectrum. For example, health-
care and biomedical (Alfattni et al., 2020) domains
offer great opportunities to study temporal graph
generation as well. In future research, we plan to
extend GENSORT to more applications, and exam-
ine its true generalizability in the wild.

Human Baseline Comparison. The last finding
we deliver in §5.1 might not hold for all bench-
marks, as the human baseline comparison was con-
ducted solely on the ProScript dataset. We will
continue the endeavor of seeking participants to per-
form human evaluations on the other two datasets
to enhance the credibility of our claim.

GPU resources. The base LMs used in this work
are of 7 to 8 billions parameters. It is thus more
time-consuming than traditionally small models
like BERT (Devlin et al., 2019) at inference time,
which in turn results in a higher carbon footprint.
Specifically, we run each base LM on 1 single
NVIDIA A40 or NVIDIA L40 with significant
CPU and memory resources. The combined in-
ference time for each LM on the three benchmarks
ranges from 10 to 20 hours, depending on the con-
figurations.
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A Additional Implementation Details

Few-shot Demonstration Selection. To con-
struct the demonstration bank, we select 15 exam-
ples from the training set of ProScript, following
Madaan et al. (2023). We do so because we expect
to include non-linear temporal graph examples in
our demonstrations, for which only ProScript can
fulfill the requirement. Then, we use the same
demonstrations as few-shot examples for experi-
ments, regardless of the evaluation benchmark.

Model Cards. In this work, we have experi-
mented with 3 base LMs. Below lists the exact
Huggingface model cards used in this work.

• GEMMA-7B: google/gemma-7b-it
• MISTRAL-7B:
mistralai/Mistral-7B-Instruct-v0.2

• LLAMA3-8B:
meta-llama/Meta-Llama-3-8B-Instruct

B Dataset Processing

This section documents the processing steps per-
formed on Schema-11 and WikiHow Script to cater
for the temporal reasoning task of our interest. We
do not use any Python packages for dataset pro-
cessing. Meanwhile, based on our inspection, we
do not spot any offensive content in these three
datasets.

Schema-11. In their original annotations, an
event node is marked in arg0-trigger-arg1 for-
mat, and we manually convert it to a natural sen-
tence. We specifically adopt annotations under
schemas_dan_d directory.

WikiHow Script corpus. The original dataset
features multilingualism, while we only take their
English portion for this study. Then, We only keep
ordered how-to articles where steps are presented in
chronological order. Lastly, we cap the maximum
number of steps at 20, which reduces the corpus
size from 3, 3035 to 2, 077.

C Complete Examples

Using the same example as in fig. 1 and fig. 2,
we show the complete examples (including genera-
tions by one base LM, LLAMA3-8B) of Standard
Prompting, CoT and GENSORT. We first show
the input part of Standard Prompting and CoT in
fig. A3, and the input of GENSORT in fig. A4. Out-
puts by Standard Prompting, CoT and GENSORT

are displayed in fig. A5, fig. A6 and fig. A7, respec-
tively. As we can easily see, the output of Standard
Prompting is completely wrong and fails to capture
any correct temporal relation. Worse still, it even
forms a loop. For the output of CoT, at least, it gets
one temporal relation correct. However, the gen-
erated rationales are verbose, not to-the-point, and
the mixture of natural language and programming
language in the output might confuse the gener-
ation process as well. In contrast, the generated
temporal graph by GENSORT captures most of the
right temporal relations, yielding a high F1 score
of 80 points, and a very low GED, which is just 1.

D Meta Prompt

This section discusses the major components of a
meta prompt, used to generate reference narratives.
As shown in fig. A8 and fig. A9, a meta prompt
consists of two parts: input (in Python program-
ming language) and instruction (above and below
the input). The input contains both V (event set)
and E (temporal relation set), and the goal is to
prompt LMs to generate a high-quality reference
narrative. The input has two formats: alphabeti-
cal (fig. A8) format where the function header is
represented in the same fashion as in fig. 2, and
descriptive (fig. A9) where the function header is
the camel-cased version of the complete event de-
scription. The instruction part specifies how LMs
are supposed to carry out the narrative generation,
reflecting different types and genres. Specifically,
we designed four different instructions, listed in
Table A3. They are News Report, Simple English,
Role Play and Simple Report, which is essentially a
seamless combination of News Report and Simple
English.

E Faithfulness Checking Details

Table A4 shows the template being used to prompt
GPT-4 to produce a judgment. GPT-4 performs
a 5-way assessment: yes, largely yes, ambivalent,
largely no, and no, where yes means exact align-
ment while no means no alignment at all. With
the counting puzzle as a sanity check, we find that
GPT-4 does not count the number of temporal links
wrong at all. We thus rely on the returned value
of correct temporal links as a means to determine
the failure mode. Before human inspection, the
distribution among yes/largely yes/largely no/no
is 243/190/32/135, where GPT-4 does not output
“ambivalent”.
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#scenarios #events Max #events #temporal links Event length %Non-linear Domain License

ProScrpt (Sakaguchi et al.) 2,077 7.46 9 6.95 4.64 39% Daily N/A
Schema-11 (Dror et al.) 11 7.91 11 7.18 3.48 27% News N/A
WikiHow Script (Lyu et al.) 291 8.37 20 7.37 9.63 0% Daily MIT

Table A2: Basic statistics of evaluation benchmarks. Max #events indicate the maximum number of events for a
scenario. Event length is defined as the number of words in the event description. %Non-linear tells the proportion
of temporal graphs that contain at least one branch. Two domains are considered, Daily activity and News journalism.
“N/A” in the License column indicates that the datasets are released without a license attached.

Instruction Type Detailed Instruction

News Report

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *news report* based on the provided event descriptions and event relations set.
The generated *news report* should adhere to the non-fiction genre.
Meanwhile, the generated *news report* should honor the provided temporal information. \n

Simple English

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise story* based on the provided event descriptions and event relations set.
The generated *story* should be simple such that it can be understood by a 10-year-old child,
and it should be concise such that it can be written within a short paragraph.
Meanwhile, the generated *story* should honor the provided temporal information. \n

Role Play

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise story* based on the provided event descriptions and event relations set.
The generated *story* should honor the provided temporal information. \n
Now, imagine you are a character in the *story*.
Let’s write a *story* that clearly depicts how you, as a character, experience the events, and how you react to them.

Simple Report

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise report* based on the provided event descriptions and event relations set.
The generated *report* should be simple such that it can be understood by a 10-year-old child,
and it should be concise such that it can be written within a short paragraph.
Meanwhile, the generated *report* should honor the provided temporal information. \n

Table A3: Detailed instruction for different meta prompt type, a.k.a., instruction type.

Faithfulness Checking Manual Inspection We
notice that there are 39 cases where the value of
correct temporal links is 0, and 5 cases where GPT-
4 refuses to produce a value. Thus, we manually
look into these 44 cases. Among these 44 cases, we
correct 4 of them. In one case, GPT-4’s rationale
is “Additionally, all other links, despite being in
the correct order, are rendered incorrect due to the
initial incorrect link.” and GPT-4 marks 0 correct
temporal links. However, as GPT-4 has discovered,
all except for one link are actually correct, so we
change the label from “no” to “yes”. There are
three cases where GPT-4 is not judging the faithful-
ness but instead the correctness. As we have noted
in the main content, faithfulness is not the same as
correctness. For example, one rationale is “Given
the fundamental logical error in the sequence of

dialing and answering, all links are considered in-
correct in the context of real-world logic, despite
matching the narrative’s order” where the narra-
tive mistakenly says “dialing the phone” happens
after “answer the phone”, so GPT-4 marks “no”.
Yet, as GPT-4 has also discovered that the temporal
graph actually perfectly matches the generated nar-
rative, we thus correct the label from “no” to yes.
The aforementioned two cases are the ones where
GPT-4 got stuck in this assessment task.

After human inspection, the final adjudicated
distribution is 247/190/32/131. This leads to an
alignment level of 72.8% where we consider both
“yes” and “largely yes” as entailing alignment.

16



The temporal graph is represented as a list of tuples, where each tuple contains two events. The first event happens before the second event, connected with ’->’.\n
Your task is to determine whether the narrative is faithful to the temporal graph.
The faithfulness is solely determined by whether the temporal relations in the temporal graph *honor* the chronological order among events in the narrative.\n
How to make an assessment: If the temporal graph is completely faithful to the narrative, type ’yes’. If largely faithful with minor mistakes, type ’largely yes’.
If largely not faithful with only a few temporal relations captured, type ’largely no’. If completely not faithful, type ’no’. For other cases, type ’ambivalent’.\n
Your response should be in the following format:\n\n

”’
Answer: yes/largely yes/ambivalent/largely no/no
Rationale: <your rationale>
Temporal links: <count the number of temporal links in the graph>
Correct temporal links: <determine the number of *correct* temporal links>
”’

Let’s start!

Scenario: [SCENARIO]
Events: [EVENTS]
Narrative: [NARRATIVE]
Temporal Graph: [TEMPORAL GRAPH]

Table A4: Template used to prompt GPT-4 for self-faithfulness checking. [·] are placeholders that will be replaced
with real contents to be examined when prompted. <·> are also placeholders but are used to instruct GPT-4 what the
output format should look like.
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# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
# *** You are first given a set of 
demonstrations of how to implement the 
"get_relations()" function for different 
classes.
class WalkIntoStore:
  title = "walk into store"
  steps = 9
  def stepE(self):
    return "stop for red lights and stop 
signs"
  def stepC(self):
    return "shut car door and press lock 
button"
  def stepH(self):
    return "get in car and go to store"
  def stepG(self):
    return "pull into store driveway"
  def stepA(self):
    return "park the car"
  def stepB(self):
    return "take the key out of the 
ignition"
  def stepD(self):
    return "get out of the car"
  def stepI(self):
    return "walk into store"
  def stepF(self):
    return "push gas pedal to move 
vehicle"
  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
# END
# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".

class BusinessChange:
  title = "business change"
  steps = 6
  def stepC(self):
    return "offer acquisition deal"
  def stepF(self):
    return "companies reach a deal"
  def stepE(self):
    return "companies merge"
  def stepD(self):
    return "companies negotiate"
  def stepA(self):
    return "government approve the deal"
  def stepB(self):
    return "company plans on 
acquisition"
  def get_relations(self):
    #TODO
# END

Figure A3: Input for Standard Prompting with 1-shot
demonstration. The input for CoT is almost identical to
this one, except for an additional comment “Let’s think
step by step” added right above get_relations(self)

# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
# *** You are first given a set of 
demonstrations of how to implement the 
"get_relations()" function for different 
classes.
class WalkIntoStore:
  title = "walk into store"
  steps = 9
  def stepE(self):
    return "stop for red lights and stop 
signs"
  def stepC(self):
    return "shut car door and press lock 
button"
  def stepH(self):
    return "get in car and go to store"
  def stepG(self):
    return "pull into store driveway"
  def stepA(self):
    return "park the car"
  def stepB(self):
    return "take the key out of the 
ignition"
  def stepD(self):
    return "get out of the car"
  def stepI(self):
    return "walk into store"
  def stepF(self):
    return "push gas pedal to move 
vehicle"
  #Let's think about a narrative to link 
aforementioned events in the correct 
temporal order.
  def get_narrative(self):
    return "This is a report about 
walking into a store. First, someone gets in 
the car and starts to go to the store. While 
driving, they push the gas pedal to move the 
vehicle but stop for red lights and stop 
signs along the way. After safely navigating 
the roads, they pull into the store's 
driveway and then park the car. Once the car 
is parked, the key is taken out of the 
ignition. Next, the person gets out of the 
car and shuts the car door, pressing the 
lock button to ensure the car is locked. 
Finally, they walk into the store. By 
adhering to the provided temporal 
information, the desired goal is achieved."
  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
# END

# *** Complete the class "BusinessChange" by 
implementing "get_narrative()" and 
"get_relations()" functions marked by #TODO. 
"get_narrative()" serves as an auxiliary 
function facilitating the temporal cohesion 
of events. Essentially, it helps ensure the 
temporal accuracy of the predicted temporal 
graph produced in "get_relations()", by 
explicitly constructing a coherent, 
temporally correct story involving all 
provided events.
# You should *ONLY* implement the function 
"get_narrative()" and "get_relations()", but 
not generate anything else. Don't generate 
the entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
class BusinessChange:
  title = "business change"
  steps = 6
  def stepC(self):
    return "offer acquisition deal"
  def stepF(self):
    return "companies reach a deal"
  def stepE(self):
    return "companies merge"
  def stepD(self):
    return "companies negotiate"
  def stepA(self):
    return "government approve the deal"
  def stepB(self):
    return "company plans on 
acquisition"
  #Let's think of a narrative to link 
aforementioned events in the correct 
temporal order.
  def get_narrative(self):
    #TODO

  def get_relations(self):
    #TODO
# END

Figure A4: Input for GENSORT with 1-shot demonstra-
tion including a high-quality reference narrative.
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[
    "stepA -> stepB",
    "stepB -> stepD",
    "stepD -> stepE",
    "stepE -> stepF",
    "stepF -> stepC",
    "stepC -> stepA",
]# END

Figure A5: Output by Standard Prompting.

Here is the implementation of the 
"get_relations()" function for the 
"BusinessChange" class:

  def get_relations(self):
    return [
      "stepA -> stepB",
      "stepB -> stepD",
      "stepD -> stepC",
      "stepC -> stepF",
      "stepF -> stepE",
      "stepE -> stepA",
    ]

Rationale: 

The "BusinessChange" class represents the 
steps involved in a business acquisition. 
The steps are: 
1. Company plans on acquisition (stepA)
2. Company plans on acquisition (stepB)
3. Companies negotiate (stepD)
4. Offer acquisition deal (stepC)
5. Companies reach a deal (stepF)
6. Companies merge (stepE)

The relations between these steps are as 
follows:
- StepA leads to stepB, as the company plans 
on acquisition and then decides on the 
acquisition.
- StepB leads to stepD, as the company plans 
on acquisition and then starts negotiating 
with the target company.
- StepD leads to stepC, as the companies 
negotiate and then offer an acquisition 
deal.
- StepC leads to stepF, as the companies 
offer an acquisition deal and then reach a 
deal.
- StepF leads to stepE, as the companies 
reach a deal and then merge.
- StepE leads to stepA, as the companies 
merge and then the government approves the 
deal.

These relations represent the logical flow 
of events in a business acquisition process.

Figure A6: Output by CoT.

def get_narrative(self):
  return "This is a report about 'business 
change'. First, companies plan on an 
acquisition. Then, they offer an acquisition 
deal to the other company. The other company 
accepts the deal and the two companies start 
negotiating the terms of the deal. After 
they reach an agreement, they submit the 
deal to the government for approval. Once 
the government approves the deal, the 
companies can merge. By adhering to the 
provided temporal information, the desired 
goal is achieved."

def get_relations(self):
  return [
    "stepB -> stepC",
    "stepC -> stepD",
    "stepD -> stepF",
    "stepF -> stepA",
    "stepA -> stepE",
  ]
# END

Figure A7: Output by GENSORT.
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You are provided with a set of unordered 
event descriptions. 
You are also provided with a set of event 
relations which instructs you how to 
temporally link a pair of events. 
They are displayed as functions defined 
within a python class. 
                       
Your goal is to write a *simple and concise 
report* based on the provided event 
descriptions and event relations set.  
The generated *report* should be simple such 
that it can be understood by a 10-year-old 
child, and it should be concise such that it 
can be written within a short paragraph.
Meanwhile, the generated *report* should 
honor the provided temporal information. 

''' 
class WalkIntoStore:

  title = "walk into store"
  steps = 9

  def stepE(self):
    return "stop for red lights and stop 
signs"

  def stepC(self):
    return "shut car door and press lock 
button"

  def stepH(self):
    return "get in car and go to store"

  def stepG(self):
    return "pull into store driveway"

  def stepA(self):
    return "park the car"

  def stepB(self):
    return "take the key out of the 
ignition"

  def stepD(self):
    return "get out of the car"

  def stepI(self):
    return "walk into store"

  def stepF(self):
    return "push gas pedal to move 
vehicle"

  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
'''
Start your generation with "This is a report 
about walk into store". 
End your generation with this sentence: By 
adhering to the provided temporal 
information, the desired goal is achieved.

Figure A8: Meta prompt used to generate reference
narrative, where the input format alphabetical and the
meta prompt type is Simple Report.

You are provided with a set of unordered 
event descriptions. 
You are also provided with a set of event 
relations which instructs you how to 
temporally link a pair of events. Note, for 
example, "turnOffLight -> leaveClassroom" 
indicates that turnOffLight *must* happen 
before leaveClassroom. Observing the 
provided temporal relations is imporant! 
They are displayed as functions defined 
within a python class. 
                       
Your goal is to write a *news report* based 
on the provided event descriptions and event 
relations set.  
The generated *news report* should adhere to 
the non-fiction genre. 
Meanwhile, the generated *news report* 
should honor the provided temporal 
information.
''' 
class WalkIntoStore:

  title = "walk into store"
  steps = 9

  def stopForRedLightsAndStopSigns(self):
    return "stop for red lights and stop 
signs"

  def shutCarDoorAndPressLockButton(self):
    return "shut car door and press lock 
button"

  def getInCarAndGoToStore(self):
    return "get in car and go to store"

  def pullIntoStoreDriveway(self):
    return "pull into store driveway"

  def parkTheCar(self):
    return "park the car"

  def takeTheKeyOutOfTheIgnition(self):
    return "take the key out of the 
ignition"

  def getOutOfTheCar(self):
    return "get out of the car"

  def walkIntoStore(self):
    return "walk into store"

  def pushGasPedalToMoveVehicle(self):
    return "push gas pedal to move 
vehicle"

  def get_relations(self):
    return [
      "pushGasPedalToMoveVehicle -> 
stopForRedLightsAndStopSigns",
      "stopForRedLightsAndStopSigns -> 
pullIntoStoreDriveway",
      "pullIntoStoreDriveway -> 
parkTheCar",
      "takeTheKeyOutOfTheIgnition -> 
getOutOfTheCar",
      "parkTheCar -> 
takeTheKeyOutOfTheIgnition",
      "getOutOfTheCar -> 
shutCarDoorAndPressLockButton",
      "shutCarDoorAndPressLockButton -
> walkIntoStore",
      "getInCarAndGoToStore -> 
pushGasPedalToMoveVehicle",
    ]
'''
Start your generation with "This is a report 
about walk into store". 
End your generation with this sentence: By 
adhering to the provided temporal 
information, the desired goal is achieved.

Figure A9: Meta prompt used to generate reference
narrative, where the input format descriptive and the
meta prompt type is News Report.
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