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Abstract

Natural Language Understanding (NLU) is a branch of Natural Language Processing

(NLP) that uses intelligent computer software to understand texts that encode human knowl-

edge. Recent years have witnessed notable progress across various NLU tasks with deep

learning techniques, especially with pretrained language models. Besides proposing more

advanced model architectures, constructing more reliable and trustworthy datasets also

plays a huge role in improving NLU systems, without which it would be impossible to train

a decent NLU model. It’s worth noting that the human ability of understanding natural

language is flexible and robust. On the contrary, most of existing NLU systems fail to

achieve desirable performance on out-of-domain data or struggle on handling challenging

items (e.g., inherently ambiguous items, adversarial items) in the real world. Therefore, in

order to have NLU models understand human language more effectively, it is expected to

prioritize the study on robust natural language understanding.

In this thesis, we deem that NLU systems are consisting of two components: NLU

models and NLU datasets. As such, we argue that, to achieve robust NLU, the model

architecture/training and the dataset are equally important. Specifically, we will focus

on three NLU tasks to illustrate the robustness problem in different NLU tasks and our

contributions (i.e., novel models and new datasets) to help achieve more robust natural

language understanding. The major technical contributions of this thesis are:
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1. We study how to utilize diversity boosters (e.g., beam search & QPP) to help neural

question generator synthesize diverse QA pairs, upon which a Question Answering

(QA) system is trained to improve the generalization on the unseen target domain. It’s

worth mentioning that our proposed QPP (question phrase prediction) module, which

predicts a set of valid question phrases given an answer evidence, plays an important

role in improving the cross-domain generalizability for QA systems. Besides, a

target-domain test set is constructed and approved by the community to help evaluate

the model robustness under the cross-domain generalization setting.

2. We investigate inherently ambiguous items in Natural Language Inference, for which

annotators don’t agree on the label. Ambiguous items are overlooked in the literature

but often occurring in the real world. We build an ensemble model, AAs (Artificial

Annotators), that simulates underlying annotation distribution to effectively identify

such inherently ambiguous items. Our AAs are better at handling inherently ambigu-

ous items since the model design captures the essence of the problem better than

vanilla model architectures.

3. We follow a standard practice to build a robust dataset for FAQ retrieval task, COUGH.

In our dataset analysis, we show how COUGH better reflects the challenge of FAQ

retrieval in the real situation than its counterparts. The imposed challenge will push

forward the boundary of research on FAQ retrieval in real scenarios.

Moving forward, the ultimate goal for robust natural language understanding is to build

NLU models which can behave humanly. That is, it’s expected that robust NLU systems are

capable to transfer the knowledge from training corpus to unseen documents more reliably

and survive when encountering challenging items even if the system doesn’t know a priori

of users’ inputs.
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Chapter 1: Introduction

1.1 Natural Language Understanding (NLU)

Have you ever asked: “Siri, how is the weather today?”, “Cortana, what is the best spot

for hiking in Columbus?” or ”Xiaoice, could you tell me how’s traffic outside?”. If so, you

have experienced receiving a data-supported answer from your personalized AI assistant. A

natural question that people would ask is how can the agent understand an utterance and

intents and generate a relevant response. The answer is Natural Language Understanding.

Natural Language Understanding (NLU) is a branch of Natural Language Processing

(NLP) in the area of Artificial Intelligence (AI) that uses intelligent computer software to

understand texts that encode human knowledge. Some representative NLU applications (and

there are way more) are: Automated Reasoning, Question Answering, Text Categorization,

Large-scale Content Analysis, Information Retrieval and Textual Entailment. NLU is

generally considered an AI-hard problem (i.e., a problem that is hard to be solved by AI

systems) (Yampolskiy, 2013). NLU is an AI-hard problem mainly because the nature of

human language (e.g., ambiguity) makes NLU difficult. For example, given the following

sentence “when the hammer hit the glass table, it shattered”,1 humans know that it is the

glass table that shattered but not the hammer. This is because our prior knowledge let us

1https://www.colorado.edu/earthlab/2020/02/07/what-natural-language-processing-and-why-it-hard.
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know what glass is and that glass can shatter easily. However, coreference resolution is still

a challenging task for NLU models, and thus, NLU systems still have difficulties figuring

out which one of these two objects shatters.

Recent years have witnessed notable progress across various Natural Language Un-

derstanding tasks, especially after entering the deep learning era in 2012. Deep learning

approaches quickly outperformed statistical learning methods by a large margin on many

NLU tasks. As today, neural network-based NLP models have reached many new milestones

(e.g., model performance comes close to or surpasses the level of non-expert humans) and

have become the dominating approach for NLP tasks. Typical neural network-based NLP

models/algorithms are RNN (Elman, 1990), LSTM (Hochreiter and Schmidhuber, 1997),

GRU (Cho et al., 2014), Seq2Seq (Sutskever et al., 2014), attention mechanism (Luong

et al., 2015) and Transformer (Vaswani et al., 2017). Recently, pretrained language models,

such as GPT (Radford et al., 2018) and BERT (Devlin et al., 2019b), have dramatically

altered the NLP landscape and marked new records on the majority of NLU tasks. However,

the neural NLP models work well for supervised tasks in which there is abundant labeled

data for learning, but still perform poorly for low-resource and cross-domain tasks where

the training data is insufficient and the test data is from different domains, respectively.

Besides more advanced model architectures, reliable and trustworthy datasets also play

a huge role in improving NLU systems. Without a decent dataset, it would be challenging

to train a machine learning model, not to mention carrying out a valid evaluation. As such,

comprehensive evaluation benchmarks, aggregating datasets of multiple NLU tasks, emerged

in the past few years such as GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al.,

2019a). They are diagnostic datasets designed to evaluate and analyze model performance

with respect to a wide range of linguistic phenomena found in human language.
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The human ability of understanding natural language is flexible and robust. Therefore,

human capability of understanding multiple language tasks simultaneously and transferring

the knowledge to unseen documents is mostly reliable. On the contrary, most of existing

NLU models built on word/character levels are exclusively trained on a restricted dataset.

These restricted datasets normally only characterize one particular domain or only include

simple examples which might not well reflect the task difficulties in reality. Consequently,

such models usually fail to achieve desirable performance on out-of-domain data or struggle

on handling challenging items (e.g., inherently ambiguous items, adversarial items) in the

real world. Moreover, machine learning algorithms are usually data-hungry and can easily

malfunction when there is insufficient amount of training data. Therefore, in order to have

NLU models understand human language more effectively, it is expected to prioritize the

study on robust natural language understanding.

1.2 Robustness Problem in NLU

In this thesis, we deem that NLU systems are consisting of two components: NLU

models and NLU datasets. As such, we argue that, to achieve robust NLU, the model

architecture/training and the dataset are equally important. If either component is weak,

it would be hard to achieve full robustness. Therefore, in order to achieve full robustness

in NLU, researchers are expected to implement robust models which then are trained on

constructed robust datasets. In this thesis, we define robust models and robust datasets as

follow:

1. Robust models are expected to be resistant to domain changes and resilient to

challenging items (e.g., inherently ambiguous items, adversarial items).
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2. Robust datasets are expected to reflect real-world challenges and encode knowledge

that is difficult to be unraveled simply by surface-level2 understanding.

In short, a truly robust NLU system is expected to be a robust model trained on robust

datasets.

Three NLU tasks for NLU robustness problem

In the context of NLP, robustness is an umbrella term which could be interpreted

differently from different angles. In this thesis, we will focus on three NLU tasks to illustrate

the robustness problem in different NLU tasks and our contributions (i.e., novel models and

new datasets) to help achieve more robust natural language understanding.

The first robustness problem that will be studied in this thesis is the cross-domain

generalization.In Question Answering, most past work on open-domain were only testing

models on in-domain data (source domain), despite outperforming human performance.

However, these well-performing models have a relatively weak generalizability, which is the

crux of this robustness problem. That is, when such models are deployed on out-of-domain

data (target domain), their performances go down drastically, which is way behind human

performance. Similar trend is also observed under the clinical setting where a model trained

on one corpus may not generalize well to new clinical texts collected from different medical

institutions (Yue et al., 2020, 2021). In Chapter 2, we will study how to utilize diversity

boosters to help Question Generator (QG) synthesize diverse3 QA pairs, upon which a

Question Answering system is trained to improve the generalization to the unseen target

domain. We also construct a target-domain test set to help evaluate models’ generalizability.

2For example, the presence of “not” or “bad” doesn’t always indicate a negative sentiment.
3“Diverse” here means questions with different syntactic structures or different topics.
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The second robustness problem that will be studied in this thesis is how to better han-

dle inherently ambiguous items, one type of challenging items in reality. In sentiment

analysis and textual entailment tasks, it has been observed that there are inherently ambigu-

ous/disagreement4 items for which annotators have different annotations (Kenyon-Dean

et al., 2018; Pavlick and Kwiatkowski, 2019; Zhang and de Marneffe, 2021). These items

were usually treated as noise and removed in the dataset construction phase, which is

problematic. In Chapter 3, we will investigate inherently ambiguous items, which are over-

looked in the literature but often occurring in the real world, in the NLI (Natural Language

Inference) task. To this end, we build an ensemble model, AAs (Artificial Annotators),

which simulates underlying annotation distribution by capturing the modes in annotations to

effectively identify such inherently ambiguous items.

The third robustness problem that will be studied in this thesis is how to construct a

reliable and challenging dataset (i.e., robust dataset). In textual entailment and FAQ retrieval

tasks, common datasets (e.g., SNLI (Bowman et al., 2015) and MultiNLI (Williams et al.,

2018) for textual entailment; FAQIR (Karan and Šnajder, 2016) and StackFAQ (Karan and

Šnajder, 2018) for FAQ retrieval) used for training and testing might not well characterize

the real difficulties of respective tasks. In the aforementioned datasets, sentence lengths and

language complexities are generally low, styles are limited and the search space is small. In

Chapter 4, we will follow a standard practice to build a robust dataset for the FAQ Retrieval

task. In our dataset analysis, we will also show how this dataset better reflects the challenge

of FAQ Retrieval in the real situation than its counterparts.

We will conclude with recommendations for future work about how to better approach

robustness problem in NLU in Chapter 5.

4In this thesis, “ambiguous” and “disagreement” will be used interchangeably.
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Chapter 2: Clinical Question Answering

2.1 Introduction

Clinical question answering (QA), which aims to automatically answer natural language

questions based on clinical texts in Electronic Medical Records (EMR), has been identified

as an important task to assist clinical practitioners (Patrick and Li, 2012; Raghavan et al.,

2018; Pampari et al., 2018; Fan, 2019; Rawat et al., 2020). Neural QA models in recent

years (Chen et al., 2017; Devlin et al., 2019b) show promising results in this research.

However, answering clinical questions still remains challenging in real-world scenarios

because well-trained QA systems may not generalize well to new clinical contexts from

a different institute or patient group. For example, Yue et al. (2020) pointed out when

a clinical QA model trained on the emrQA (Pampari et al., 2018) dataset is deployed to

answer questions on MIMIC-III clinical texts (Johnson et al., 2016), its performance drops

by around 30% even on questions that are similar to those in training.

Most of the existing clinical QA datasets and setups focus on in-domain testing while

leaving the generalization challenge under-explored. In this chapter, we propose to evaluate

the performance of clinical QA models on target contexts and questions which may have

different distributions from the training data. Due to the lack of publicly-available clinical
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QA pairs for our proposed evaluation setting, we ask clinical experts to annotate a new test

set on the sampled MIMIC-III (Johnson et al., 2016) clinical texts.

Inspired by recent work on question generation (QG) for improving QA performance in

the open domain (Golub et al., 2017; Wang et al., 2019c; Shakeri et al., 2020), we implement

an answer evidence extractor and a seq2seq-based QG model to synthesize QA pairs on

target contexts to train a QA model. However, we do not observe that such QA models

achieve better performance on our curated MIMIC-III QA set, compared with that trained

on emrQA. Our error analysis reveals that the automatic generation technique often falls

short of generating questions that are diverse enough to serve as useful training data for

clinical QA models.

To this end, we investigate two kinds of approaches to diversify the generation. Inspired

by Ippolito et al. (2019) whio study various decoding-based methods, we pick the standard

beam search as a representative of the decoding-based approach since it achieves satisfying

performance in various generation tasks. On the other hand, another practice (topic-guided

approach) is to have a diversification step followed by a conditional generation. In general,

such techniques first decide question topics and then generate questions conditioned on

selected topics (Kang et al., 2019; Cho et al., 2019; Liu et al., 2020). Following the second

approach, we propose a simple but effective question phrase prediction (QPP) module to

diversify the generation. Specifically, QPP takes the extracted answer evidence as input

and sequentially predicts potential question phrases (e.g., “What treatment”, “How often”)

that signify what types of questions humans may ask about the answer evidence. Then, by

directly forcing a QG model to produce specified question phrases at the beginning of the

question generation process (both in training and inference), QPP enables diverse questions

to be generated.
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Through comprehensive experiments, we demonstrate that when using QA pairs auto-

matically synthesized by diverse QG, especially by the QPP-enhanced QG, we are able to

boost QA performance by 4.5%-9% in terms of Exact Match (EM), compared with their

counterparts directly trained on the source QA dataset (i.e., emrQA).

2.2 Out-of-Domain Test Set

Unlike open domain, there are very few publicly available QA datasets in the clinical

domain. EmrQA dataset (Pampari et al., 2018), which was generated based on medical

expert-made question templates and existing annotations on n2c2 challenge datasets (n2c2,

2006), is a commonly adopted dataset for clinical reading comprehension.

However, all the QA pairs in emrQA are based on n2c2 clinical texts and thus not suitable

for our generalization setting. Yue et al. (2020) studied a similar problem and annotated

a test set on MIMIC-III clinical texts (Johnson et al., 2016). However, their test set is too

small (only 50 QA pairs) and not publicly available. Given the lack of a reasonably large

clinical QA test set for studying generalization, with the help of three clinical experts, we

create 1287 QA pairs on a sampled set of MIMIC-III (Johnson et al., 2016) clinical notes,

which have been reviewed and approved by PhysioNet.5

Annotation Process. We sample 36 MIMIC-III clinical notes6 as contexts. For each context,

clinical experts can ask any questions as long as an answer can be extracted from the context.

To save annotation effort, QA pairs generated by 9 QG models (i.e., all base QG models and

their diversity-enhanced variants; see Section 2.5.1) are provided as references, and (nearly)

5https://physionet.org/. PhysioNet is a resource center with missions to conduct and catalyze for biomedical
research, which offers free access to large collections of physiological and clinical data, such as MIMIC-III
(Johnson et al., 2016).

6When sampling MIMIC-III notes, we ensure that all the sampled clinical texts do not appear in emrQA,
acknowledging that there is a small overlap between the two datasets.
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(Question / Context) emrQA MIMIC-III
# Train 781,857 / 337 - / 337
# Dev 86,663 / 41 8,824 / 40
# Test 98,994 / 42 1,287 / 36
# Total 967,514 / 420 - / 413

for purpose of
QG & QA

(source domain)
QA

(target domain)

Table 2.1: Statistics of the datasets. We synthesize a machine-generated dev set and ask
human experts to annotate a test set for MIMIC-III. Details of dev set construction can be
found in Setion A.1.3.

duplicates are removed. Meanwhile, clinical experts are highly encouraged to create new

questions based on the given clinical text (which are marked as “human-generated”). But if

they do find that the machine-generated questions sound natural and match the provided

answer, they can keep them (which are marked as “human-verified”). After obtaining the

annotated questions, we ask another clinical expert to do a final pass of the questions in

order to further ensure the quality of the test set. The final test set consists of 1287 questions

(of which 975 are “human-verified” and 312 are “human-generated”).

In the following sections, we consider emrQA as the source dataset and our annotated

MIMIC-III QA dataset as the target data. Detailed statistics of the two datasets are given in

Table 2.1.

2.3 Framework

2.3.1 Overview of Our Framework

We first give an overview of our framework without including any diversity booster.

To solve the proposed generalization challenge of clinical QA, inspired by recent work

on question generation (QG) for QA in the open domain (Golub et al., 2017; Wang et al.,

9



Question
Phrase

Prediction

What treatment

How often

What dosage

QG 
Model

Q1

Q2

Q3

Answer Evidence

Annotated
QA pairs

on Target Contexts

on Source Contexts
Train

Train

Diverse 
Generated Questions

clonazepam 1 mg tablet
sig: one tablet once a
day (at bedtime) as
needed for insomnia.

Input

What treatment did the
patient use for insomnia?

How often does the
patient take clonazepam?

What dosage of insomnia
does the patient take?

QA 
Model

Train

Figure 2.1: Illustration of our framework equipped with QPP: A key component is our
question phrase prediction (QPP) module, which aims to generate diverse question phrases
and can be “plugged-and-played” with most existing QG models to diversify their generation.

2019c; Shakeri et al., 2020), we implement an answer evidence extractor and a seq2seq-

based neural QG model (Du et al., 2017, NQG) to synthesize QA pairs on target contexts.

Specifically, given a document, we deploy a ClinicalBERT (Alsentzer et al., 2019) model

to extract a long text7 span as an answer evidence. We formulate such span prediction

problem as a BIO tagging task. After prediction, we develop some heuristic rules (e.g.,

removing/merging very short extracted evidences) to further improve the quality of the

extracted evidences; more details are listed in Appendix A.1.1. Based on the extracted

answer evidences, a seq2seq-based QG model can be used to generate questions. Both

answer evidence extractor and QG model are trained on the source data and then used to

synthesize QA pairs on target contexts, based on which a QA model can be trained.

2.3.2 Preliminary Observation

To our surprise, training on the synthesized target-context QA pairs does not yield an

improvement of QA on the constructed MIMIC-III QA set. Specifically, F1 is 79.43 for the

QA model trained on corpus synthesized by NQG (neural question generation) model, which

7Following Pampari et al. (2018); Yue et al. (2020), we focus on long text spans instead of short answers
since the former often contain richer information, which is more useful to support clinical decision making.
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is a little inferior to directly training the QA model on emrQA (79.99 F1). An outstanding

characteristic we observe in the generated questions is the large bias of question types

(e.g., most questions are “Does” while there is few “Why” and no “How” question). The

distributions of question types are in Figure 2.2 (see top-left sub-plot).

2.4 Diverse Question Generation for QA

Given the observation above, we argue that the synthetic questions should be diverse so

that they could serve as more useful training corpora.

2.4.1 Overview of Diverse Question Generation

We investigate two kinds of approaches to diversify the generation. In the first decoding-

based approach, we select the standard beam search as the representative since it is well
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Algorithm 1 Training procedure of our framework equipped with QPP.
Input: labeled source data {(PS, AS, QS)}, unlabeled target data {PT}
Output: Generated QA pairs {(A′T , Q′T )} on target contexts; An optimized QA model for
answering questions on target contexts
Pretraining Stage
1: Train Answer Evidence Extractor based on the source data {(PS, AS)}
2: Obtain question phrase data YS from QS and train Question Phrase Prediction module

on the source data {(AS, YS)}
3: Train a QPP-enhanced QG model on the source data {(AS, YS, QS)}

Training Stage
4: Use AEE to extract potential answer evidences {A′T} on the target contexts {PS}
5: Use QPP to predict potential question phrases set {Y ′T} on {A′T}
6: Use QPP-enhanced QG to generate diverse questions {Q′T} based on {(A′T , Y ′T )}
7: Train a QA model on synthetic target data {(PT , A′T , Q′T )}

studied and shows competitive performance in diversifying generations (Ippolito et al.,

2019). For the other kind (topic-guided approach), we propose a question phrase prediction

(QPP) module, which predicts a set of valid question phrases given an answer evidence

(Figure 2.1). Then, conditioned on a question phrase sampled from the set predicted by the

QPP, a QG model is utilized to complete the rest of the question.

2.4.2 Question Phrase Prediction (QPP)

We formulate the question phrase prediction task as a sequence prediction problem and

adopt a commonly used seq2seq model (Luong et al., 2015). More formally, given an answer

evidence a, QPP aims to predict a sequence of question phrases s = (s1, ..., s|s|)(e.g., “What

treatment” (s1)→ “How often” (s2)→ “What dosage” (s3), with |s| = 3).

During training, we assume that the set of question phrases is arranged in a pre-defined

order. Such orderings can be obtained with some heuristic methods, e.g., using a descending

order based on question phrase frequency in the corpus8 (more details are in Appendix A.1.2).

As such, we aim to minimize:

8In emrQA, each answer evidence is tied with multiple questions, which allows the training for QPP.
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LQPP = −
∑

logP (s|a; θ) (2.1)

where s, a, θ denote question phrase sequence, input answer evidence and all the parameters

in QPP, respectively. Algorithm 1 illustrates the pretraining and training procedure of our

framework when equipped with our proposed QPP module.

In the inference stage, QPP can dynamically decide the number of question phrases for

each answer evidence by predicting a special [STOP] type. By decomposing QG into two

steps (diversification followed by generation), the proposed QPP can increase the diversity

in a more controllable way compared with decoding-based approach.

2.5 Evaluation and Results

2.5.1 Experiment Setup

Base QG and QA models: In our experiments, we adopt three base QG models: NQG (Du

et al., 2017), NQG++ (Zhou et al., 2017) and BERT-SQG (Chan and Fan, 2019). For QA,

we use two base models, DocReader (Chen et al., 2017) and ClinicalBERT (Alsentzer et al.,

2019).

To investigate the effectiveness of diverse QG for QA, we consider the following variants

of each base QG model: (1) Base Model: Inference with greedy search; (2) Base Model +

Beam Search: Inference with Beam Search with the beam size at K and keep top K beams

(we set K = 3) (3) Base Model + QPP: Inference with greedy search for both QPP module

and Base model.

When training a QA model, we only use the synthetic data on the target contexts and do

not combine the synthetic data with the source data since the combination does not help in

our preliminary experiments.
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QA Datasets

DocReader (Chen et al., 2017) ClinicalBERT (Alsentzer et al., 2019)
Human
Verified

Human
Generated

Overall
Test

Human
Verified

Human
Generated

Overall
Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
emrQA (Pampari et al., 2018) 61.44 78.82 69.87 83.66 63.48 79.99 61.23 78.56 69.23 82.83 63.17 79.59
NQG (Du et al., 2017) 64.71 79.36 66.99 79.67 65.26 79.43 59.49 76.68 67.3 82.59 61.38 78.11
+ BeamSearch 67.07 81.21 71.15 83.07 68.07 81.66 63.17 79.17 68.91 84.26 64.56 80.4
+ QPP (Ours) 68.82 82.89 74.68 85.18 70.09 83.44 63.79 79.56 69.23 84.33 65.11 80.72
NQG++ (Zhou et al., 2017) 65.94 78.71 66.34 81.34 66.04 79.35 59.59 75.85 65.06 80.11 60.92 76.88
+ BeamSearch 68.10 80.09 72.11 84.56 69.07 81.17 64.61 80.30 68.26 83.70 65.50 81.12
+ QPP (Ours) 70.05 83.47 74.36 85.92 71.10 84.06 65.33 80.64 70.83 85.76 66.67 81.88
BERT-SQG [Chan et al., 2019] 66.05 79.64 70.19 81.47 67.05 80.08 59.59 78.04 65.06 82.20 60.92 79.05
+ BeamSearch 68.71 81.98 73.71 84.44 69.93 82.58 61.94 79.02 67.31 82.54 63.25 79.88
+ QPP (Ours) 70.77 83.60 74.36 85.53 71.64 84.07 64.21 80.53 69.23 85.38 65.43 81.71

Table 2.2: QA performance on MIMIC-III test set. emrQA is also included as a baseline
dataset to illustrate that the generated diverse questions on MIMIC-III are useful to improve
the QA model performance on new contexts.

Evaluation Metrics: For QG evaluation, we focus on evaluating both relevance and diver-

sity. Following previous work (Du et al., 2017; Zhang et al., 2018), we use BLEU (Papineni

et al., 2002), ROUGE-L (Lin, 2004) as well as METEOR (Lavie and Denkowski, 2009) for

relevance evaluation. Since the Beam Search and our QPP module enable QG models to

generate multiple questions given an evidence, we report the top-1 relevance among the

generated questions following Cho et al. (2019). For diversity, we report Distinct (Li et al.,

2016) as well as Entropy (Zhang et al., 2018) scores. We calculate BLEU and the diversity

measures based on 3- and 4-grams.

For QA evaluation, we report exact match (EM) (the percentage of predictions that

match the ground truth answers exactly) and F1 (the average overlap between the predictions

and ground truth answers) as in Rajpurkar et al. (2016).

2.5.2 Results

Table 2.2 summarizes the performance of two widely used QA models, DocReader

(Chen et al., 2017) and ClinicalBERT (Alsentzer et al., 2019), on the MIMIC-III test set.

The QA models are trained on different corpora, including the emrQA dataset as well as QA

pairs generated by different models.
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Models Relevance Diversity
BLEU3 BLEU4 MR RG Dist3 Dist4 Ent3 Ent4

NQG (Du et al., 2017) 91.45 90.11 60.70 94.62 0.233 0.282 4.473 4.738
+ BeamSearch 94.33 93.42 62.08 95.56 0.569 0.775 5.406 5.812
+ QPP (Ours) 96.82 96.33 64.38 97.49 3.177 5.289 7.100 7.777
NQG++ (Zhou et al., 2017) 97.11 96.65 71.57 97.86 0.229 0.275 4.419 4.648
+ BeamSearch 98.35 98.07 72.98 98.55 0.618 0.848 5.497 5.953
+ QPP (Ours) 99.15 99.03 74.01 99.11 3.183 5.293 7.111 7.798
BERT-SQG (Chan and Fan, 2019) 89.07 87.99 65.25 94.91 0.228 0.276 4.594 4.849
+ BeamSearch 95.45 94.84 66.39 96.22 0.510 0.713 5.522 6.015
+ QPP (Ours) 96.54 96.19 67.51 97.42 3.344 5.332 7.173 7.816

Table 2.3: Automatic evaluation of the generated questions on emrQA dataset. For each
base model, the best performing variant is in bold. RG: ROUGE-L, MR: METEOR, Dist:
Distinct, Ent: Entropy.

We also evaluate QG models on the emrQA dataset (i.e., train and test QG solely on

source domain). As can be seen from Table 2.3, the three selected base models (NQG,

NQG++ and BERT-SQG) all achieve very promising relevance scores; however, they do not

perform well with diversity scores. The diversity of generated questions is boosted to some

extent when the Beam Search is used since it can offer flexibility for QG models to explore

more candidates when decoding. In comparison, the QPP module in our framework leads to

the best results under both relevance and diversity evaluation. Particularly, it obtains 5%

absolute improvement in terms of Dist4 for each base model.

2.6 Analysis

2.6.1 Quantitative Analysis

Analysis on QA Generalization: As expected, the corpora generated by diverse QG help

the QA model perform consistently better than those generated by their respective base

QG version as well as emrQA (Table 2.2). Between the two diversity-boosting approaches,

we observe that the QA model trained on the corpora by QPP-enhanced QG achieves the

best performance. Moreover, results on the human-generated portion are consistently better

than those on human-verified. This is likely due to the fact that human-generated questions
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Context:	...	he	was	guaiac	negative	on	admission.
hematocrit	remained	stable	overnight.	5.	abd	pain:	suspect
secondary	to	chronic	pancreatitis.	amylase	unchanged

-emrQA:	5.	abd	pain
-NQG	Generated:	5.	abd	pain:
-NQG+BeamSearch:	5.	abd	pain:
-NQG+QPP:	5.	abd	pain:	suspect	secondary	to	chronic
pancreatitis.

QA	Example	from	MIMIC-III

Question:	Why	did	the	patient	get	abd	pain?
Answer	by	QA	model	trained	on -NQG:	Does	the	patient	have	any	pain?

-NQG+BeamSearch:	Does	the	patient	have	any	pain	history?	Does
the	patient	have	pain?	Does	the	patient	have	any	pain?
-NQG+QPP:	Why	did	the	patient	have	acetaminophen?	What
treatment	has	the	patient	had	for	his	pain?	How	was	pain	treated?
Does	the	patient	have	any	pain?	...

QG	Example	from	MIMIC-III
Context:	...	the	patient	was	taking	at	home	prior	to	admission	were
not	restarted.	25.	acetaminophen	325-650	mg	po/ng	q6h:prn	pain
26.	dabigatran	etexilate	150	mg	po	bid...
Questions	generated	by

Figure 2.3: QA and QG examples. The red parts in contexts are ground-truth answer
evidences.

are more readable and sensible while human-verified ones are less natural (though the

correctness is ensured). All these results indicate that improving the diversity of generated

questions can help better train QA models on the new contexts and better address the

generalization challenge.

Analysis on QG diversity: Figure 2.2 shows the distribution over types of questions

generated by NQG-based models (i.e., base model, base + beam search and base + QPP) and

the ground truth on emrQA dataset. We observe that the Kullback–Leibler (KL) divergence

between the distributions of generated questions and the ground truth is smaller after enabling

diversity booster. The gap reaches the minimum when our QPP module is plugged in. It’s

worth noting that even some of the least frequent types of questions (e.g., “How”, “Why”)

can be generated when our QPP module is turned on. These observations demonstrate

diversity booster, especially our QPP module, can help generate diverse questions.

2.6.2 Qualitative Analysis: Error Analysis

In Figure 2.3, we first present a QA example and a QG example from MIMIC-III.

In the QA example, this “why” question can be correctly answered by the QA model

(DocReader) trained on the “NQG+QPP” generated corpus while the QA models trained

on other generated corpora fail. This is because the NQG model and “NQG+BeamSearch”
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cannot generate any “why” questions as shown in Figure 2.2. Thus QA models trained on

such corpora cannot answer questions of less frequent types. Though the emrQA dataset

contains diverse questions (including “why” questions), its contexts might be different from

MIMIC-III in terms of topic, note structures, writing styles, etc. So the model trained on

emrQA struggles to answer some questions. In the QG example, the base model NQG can

only generate one question. Though utilizing the Beam Search enables the model to explore

multiple candidates, the generated questions are quite similar and are less likely to help

improve QA. Enabling our QPP module helps generate diverse questions including “Why”,

“What”, “How”, etc.

2.7 Conclusion

In this chapter, we systematically investigate the generalization challenge of clinical

reading comprehension and construct a new test set on MIMIC-III clinical texts. After

observing simply using QG for QA does not work, we explore the importance of generating

diverse questions. That is, we study two approaches for boosting question diversity, beam

search and QPP. Particularly, our proposed QPP (question phrase prediction) module sig-

nificantly improves the cross-domain generalizability of QA systems. Our comprehensive

experiments allow for a better understanding of why diverse question generation can help

QA on new clinical documents (i.e., target domain).
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Chapter 3: Natural Language Inference

3.1 Introduction

Natural language inference (NLI)9 is the problem of determining whether a natural

language hypothesis h can be inferred (or entailed) from a natural language premise p (i.a.,

Dagan et al., 2005; MacCartney and Manning, 2009). Conventionally, people only examine

items that are suitable for systematic inferences (i.e., items for which people consistently

agree on the NLI label).

However, Pavlick and Kwiatkowski (2019) observed inherent disagreements among

annotators in several NLI datasets (e.g., SNLI (Bowman et al., 2015)), which cannot be

smoothed out by hiring more people. They pointed out that to achieve robust NLU, we

need to be able to tease apart systematic inferences (i.e., items for which most people agree

on the annotations) from items inherently leading to disagreement. The last example in

Table 3.1 is a typical disagreement item: some annotators consider it to be an entailment (3

or 2), while others view it as a contradiction (-3). Clearly, the annotators have two different

interpretations on the complement clause “If she’d said Carolyn had borrowed a book from

Clare and wanted to return it”. Moreover, a common practice in the literature to generate

an inference label from annotations is to take the average (i.a., Pavlick and Callison-Burch,

2016). In this case, it would be “Neutral”, but such label is not accurately capturing the

9In this thesis, we use “textual entailment” and “Natural Language Inference” or “NLI” interchangeably.
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1 Premise: Some of them, like for instance the farm in Connecticut, are quite small. If I like a place I buy it. I guess you could say
it’s a hobby.
Hypothesis: buying places is a hobby.
Entailment (Entailment) [3, 3, 2, 2, 2, 2, 1, 1]

2 Premise: “I hope you are settling down and the cat is well.” This was a lie. She did not hope the cat was well.
Hypothesis: the cat was well.
Neutral (Neutral) [0, 0, 0, 0, 0, 0, 0, 0, -3]

3 Premise: “All right, so it wasn’t the bottle by the bed. What was it, then?” Cobalt shook his head which might have meant he
didn’t know or might have been admonishment for Oliver who was still holding the bottle of wine.
Hypothesis: Cobalt didn’t know.
Neutral (Disagreement) [1, 0, 0, 0, 0, 0, 0, -2]

4 Premise: A: No, it doesn’t. B: And, of course, your court system when you get into the appeals, I don’t believe criminal is in a
court by itself.
Hypothesis: criminal is in a court by itself.
Contradiction (Contradiction) [-1, -1, -2, -2, -2, -2, -2, -3]

5 Premise: A: The last one I saw was Dances With The Wolves. B: Yeah, we talked about that one too. And he said he didn’t think
it should have gotten all those awards.
Hypothesis: Dances with the Wolves should have gotten all those awards.
Contradiction (Disagreement) [0, 0, -1, -1, -2, -2, -2, -3]

6 Premise: Meg realized she’d been a complete fool. She could have said it differently. If she’d said Carolyn had borrowed a book
from Clare and wanted to return it they ’d have given her the address.
Hypothesis: Carolyn had borrowed a book from Clare.
Disagreement (Disagreement) [3, 3, 3, 2, 0, -3, -3, -3]

Table 3.1: Examples from CommitmentBank, with finer-grained NLI labels. The labels
in parentheses come from Jiang and de Marneffe (2019a). Scores in brackets are the raw
human annotations.

distribution. Alternatively, some work simply ignored the “Disagreement” portion but only

studied systematic inferences items (Jiang and de Marneffe, 2019b,a; Raffel et al., 2019).

Kenyon-Dean et al. (2018) also pointed out in sentiment analysis task, when performing

real-time sentiment classification, an automated system cannot know a priori whether the

data sample is inherently non-ambiguous. Here, in line with what Kenyon-Dean et al. (2018)

suggested for sentiment analysis, we propose a finer-grained labeling for NLI: teasing

disagreement items, labeled “Disagreement”, from systematic inferences, which can be

“Contradiction”, ”Neutral” or “Entailment”. As such, in order to achieve robust NLU in NLI

task, the developed models should be able to identify inherent disagreement items when

possible and carry out systematic inferences on non-disagreement items.

To this end, we propose Artificial Annotators (AAs), an ensemble of BERT models

(Devlin et al., 2019a), which simulate the uncertainty in the annotation process by capturing
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modes in annotations. That is, we expect to utilize simulated modes of annotations to

enhance finer-grained NLI label prediction. Our results, on the CommitmentBank, show that

AAs perform statistically significantly better than all baselines (including BERT baselines)

by a large margin in terms of both F1 and accuracy. We also show that AAs manage to learn

linguistic patterns and context-dependent reasoning.

3.2 Inherently Ambiguous Items in CB

We start with the introduction to the dataset used in this chapter, CommitmentBank

(de Marneffe et al., 2019), and then move on to how we determine ambiguous items and

systematic inference items.

The CommitmentBank (CB) is a corpus of 1,200 naturally occurring discourses origi-

nally collected from news articles, fiction and dialogues. Each discourse consists of up to 2

prior context sentences and 1 target sentence with a clause-embedding predicate under 4

embedding environments (negation, modal, question or antecedent of conditional). Annota-

tors judged the extent to which the speaker/author of the sentences is committed to the truth

of the content of the embedded clause (CC), responding on a Likert scale from +3 to -3,

labeled at 3 points (+3/speaker is certain the CC is true, 0/speaker is not certain whether the

CC is true or false, -3/speaker is certain the CC is false). Following Jiang and de Marneffe

(2019a), we recast CB by taking the context and target as the premise and the embedded

clause in the target as the hypothesis.

Common NLI benchmark datasets are SNLI (Bowman et al., 2015) and MultiNLI

(Williams et al., 2018), but these datasets have only one annotation per item in the training

set. CB has at least 8 annotations per item, which permits to identify items on which

annotators disagree. Jiang and de Marneffe (2019a) discarded items if less than 80% of the
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Entailment Neutral Contradiction Disagreement Total

Train 177 57 196 410 840
Dev 23 9 22 66 120
Test 58 19 54 109 240

Total 258 85 272 585 1,200

Table 3.2: Number of items in each class in train/dev/test.

annotations are within one of the following three ranges: [1,3] Entailment, 0 Neutral, [-3,-1]

Contradiction. The gold label for example 3 in Table 3.1 would thus be “Disagreement”.

However, this seems a bit too stringent, given that 70% of the annotators all agree on the

0 label and there is only one annotation towards the extreme. Likewise, for example 5,

most annotators chose a negative score and the item might therefore be better labeled as

“Contradiction” rather than “Disagreement”. To decide on the finer-grained NLI labels, we

therefore also took variance and mean into account, as follows:10

• Entailment: 80% of annotations fall in the range [1,3] OR the annotation variance ≤

1 and the annotation mean > 1.

• Neutral: 80% of annotations is 0 OR the annotation variance ≤ 1 and the absolute

mean of annotations is bound within 0.5.

• Contradiction: 80% of annotations fall in the range [-3, -1] OR the annotation

variance ≤ 1 and the annotation mean < -1.

• Disagreement: Items which do not fall in any of the three categories above.

We randomly split CB into train/dev/test sets in a 7:1:2 ratio.11 Table 3.2 gives splits’

basic statistics.

10Compared with the labeling scheme in Jiang and de Marneffe (2019a), our labeling scheme results in 59
fewer Disagreement items, 48 of which are labeled as Neutral.

11We don’t follow the SuperGLUE splits (Wang et al., 2019a) as they do not include disagreement items.
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3.3 Linguistic Rules

Our developed linguistic rules are inspired by and adapted from Jiang and de Marneffe

(2019a) to explicitly include the most discriminating expressions for disagreement items. We

utilize three linguistic features which are provided in CB: entailment-canceling environment

(negation, modal, question, antecedent of conditional), matrix verb and its subject person.

1. Items under conditional are disagreement.

2. Items under question and with second person are neutral.

3. Items under question and with non-second person are disagreement.

4. Items of the form ”I don’t know/think/believe” are contradiction (i.e., negRaising

structure).

5. Items with factive verbs are entailment.

6. Items under negation and with non-factive verbs are disagreement.

7. Items under modal and with non-third person are entailment.

When this policy is executed, there are two additional auxiliary rules: Items not falling

in any group above are assigned a disagreement label as it is the dominant class in CB; For

items satisfying more than one rule, the label will be determined by the higher-ranked rule

(a smaller number indicates a higher rank). Note that the rules above also reveal the most

discriminating expressions for each class.

3.4 Artificial Annotators

We aim at finding an effective way to tease items leading to systematic inferences apart

from items leading to disagreement. As pointed out by Calma and Sick (2017), annotated

labels are subject to uncertainty. Annotations are indeed influenced by several factors:

workers’ past experience and concentration level, cognition complexities of items, etc. They
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proposed to simulate the annotation process in an active learning paradigm to make use of

the annotations that contribute to uncertainty. Likewise, for NLI, Gantt et al. (2020) observed

that directly training on raw annotations using annotator identifier improves performance.

Essentially, Gantt et al. (2020) used a mixed-effect model to learn a mapping from an item

and the associated annotator identifier to a NLI label. However, annotator identifiers are not

always accessible, especially in many datasets that have been there for a while. Thus, we

decide to simulate the annotation process instead of learning from real identifiers.

As shown by Pavlick and Kwiatkowski (2019), if annotations of an item follow unimodal

distributions, then it is suitable to use aggregation (i.e., take an average) to obtain a inference

label; but such an aggregation is not appropriate when annotations follow multi-modal

distributions. Without loss of generality, we assume that items are associated with n-modal

distributions, where n ≥ 1. Usually, systematic inference items are tied to unimodal annota-

tions while disagreement items are tied to multi-modal annotations. We, thus, introduce the

notion of Artificial Annotators (AAs), where each individual “annotator” learns to model

one mode.

3.4.1 Architecture

AAs is an ensemble of n BERT models (Devlin et al., 2019a) with a primary goal of

finer-grained NLI label prediction. n is determined to be 3 as there are up to 3 relation-

ships between premise and hypothesis, excluding the disagreement class. Within AAs,

each BERT is trained for an auxiliary systematic inference task which is to predict en-

tailment/neutral/contradiction based on a respective subset of annotations. The subsets of

annotations for the three BERT are mutually exclusive.

23



Entailment
-biased

Contradiction
-biased

Neutral
-biased

MLP

PREMISE [SEP] HYPOTHESIS
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Figure 3.1: Artificial Annotators (AAs) setup.

A high-level overview of AAs is shown in Figure 3.1. Intuitively, each BERT separately

predicts a systematic inference label, each of which represents a mode12 of the annotations.

The representations of these three labels are further aggregated as augmented information to

enhance final fine-grained NLI label prediction (see Eq. 3.1).

If we view the AAs as a committee of three members, our architecture is reminiscent

of the Query by Committee (QBC) (Seung et al., 1992), an effective approach for active

learning paradigm. The essence of QBC is to select unlabeled data for labeling on which

disagreement among committee members (i.e., learners pre-trained on the same labeled

data) occurs. The selected data will be labeled by an oracle (e.g., domain experts) and

then used to further train the learners. Likewise, in our approach, each AA votes for an

item independently. However, the purpose is to detect disagreements instead of using

disagreements as a measure to select items for further annotations. Moreover, in our AAs,

the three members are trained on three disjoint annotation partitions for each item (see

Section 3.4.2).

12It’s possible that three modes collapse to (almost) a point.
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3.4.2 Training

We first sort the annotations in descending order for each item and divide them into three

partitions.13 For each partition, we generate an auxiliary label derived from the annotation

mean. If the mean is greater/smaller than +0.5/-0.5, then it’s entailment/contradiction;

otherwise, it’s neutral. The first BERT model is always enforced to predict the auxiliary

label of the first partition to simulate an entailment-biased annotator. Likewise, the second

and third BERT models are trained to simulate neutral-biased and contradiction-biased

annotators.

Each BERT produces a pooled representation for the [CLS] token. The three represen-

tations are passed through a multi-layer perceptron (MLP) to obtain the finer-grained NLI

label:

P (y|x) = softmax(Ws tanh(Wt[e;n; c])) (3.1)

with [e;n; c] being the concatenation of three learned representations out of entailment-

biased, neutral-biased and contradiction-biased BERT models. Ws and Wt are parameters

to be learned.

The overall loss is defined as the weighted sums of four cross-entropy losses:

loss = r ∗ lossf + 1− r

3
(losse + lossn + lossc) (3.2)

where r ∈ [0, 1] controls the primary finer-grained NLI label prediction task loss ratio.

3.5 Evaluation and Results

Evaluation Setting: We include five baselines to compare with:

• “Always 0”: Always predict Disagreement.

13For example, if there are 8 annotations for a given item, the annotations are divided into partitions of size
3, 2 and 3.
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Dev Test

Acc. F1 Acc. F1 Entail Neutral Contradict Disagree

Always 0 55.00 39.03 45.42 28.37 0.00 0.00 0.00 62.46
CBOW 55.25 40.54 45.09 28.37 0.00 0.00 0.69 62.17
Heuristic 65.00 62.08 54.17 50.60 22.54 52.94 64.46 58.20
Vanilla BERT 63.71 63.54 62.50 61.93 59.26 49.64 69.09 61.93
Joint BERT 64.47 64.28 62.61 62.07 59.77 47.27 67.36 63.21

AAs (ours) 65.15 64.41 65.60* 64.97* 61.07 51.27 70.89 66.49*

Table 3.3: Baselines and AAs overall performance on CB dev and test sets, and F1 scores of
each class on the test set (average of 10 runs). * indicates statistically significant difference
(t-test, p ≤ 0.01).

• CBOW (Continuous Bags of Words): Each item is represented as the average of its

tokens’ GLOVE vectors (Pennington et al., 2014).

• Heuristic baseline: Linguistics-driven rules (detailed out in chapter 3.3), adapted from

Jiang and de Marneffe (2019a); e.g., conditional environment discriminates for disagree-

ment items.

• Vanilla BERT: (Devlin et al., 2019a) Straightforwardly predict among 4 finer-grained

NLI labels.

• Joint BERT: Two BERT models are jointly trained, each of which has a different

speciality. The first one (2-way) identifies whether a sentence pair is a disagreement

item. If not, this item is fed into the second BERT (3-way) which carries out systematic

inference.

For all baselines involving BERT, we follow the standard practice of concatenating the

premise and the hypothesis with [SEP].

Results: Table 3.3 gives the accuracy and F1 for each baseline and AAs, on the CB dev and

test sets. We run each model 10 times, and report the average. Also, Our AAs achieve the

lowest standard deviations on test set items compared to BERT-based models, indicating

that it is more stable and potentially more robust to wild environments.
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3.6 Analysis

3.6.1 Empirical Results Analysis

CBOW is essentially the same as the “Always 0” baseline as it keeps predicting Dis-

agreement regardless of the input. The Heuristic baseline achieves competitive performance

on the dev set, though it has a significantly worse result on the test set. Not surprisingly, both

BERT-based baselines outperform the Heuristic on the test set: fine-tuning BERT often lead

to better performance, including for NLI (Peters et al., 2019; McCoy et al., 2019). These

observations are consistent with Jiang and de Marneffe (2019a) who observed a similar

trend, though only on systematic inferences. Our proposed AAs perform consistently better

than all baselines, and statistically significantly better on the test set (t-test, p ≤ 0.01).

Table 3.3 also gives F1 for each class on the test set. AAs outperform all BERT-based

models under all classes. However, compared with the Heuristic, AAs show an inferior

result on “Neutral” items mainly due to the lack of “Neutral” training data. The first 4

examples in Table 3.4 show examples for which AAs make the correct prediction while other

baselines might not. The confusion matrix in Table 3.5 shows that the majority (∼60%) of

errors come from wrongly predicting a systematic inference item as a disagreement item.

In 91% of such errors, AAs predict that there is more than one mode for the annotation

(i.e., the three labels predicted by individual “annotators” in AAs are not unanimous), as

in example 5 in Table 3.4. AAs are thus predicting more modes than necessary when the

annotation is actually following a uni-modal distribution. On the contrary, when the item

is supposed to be a disagreement item but is missed by AAs (as in example 6 and 7 in

Table 3.4), AAs mistakenly predict that there is only one mode in the annotations 78% of

the time. It thus seems that a method which captures accurately the number of modes in the

annotation distribution would lead to a better model.
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1 Premise: B: Yeah, it is. A: For instance, B: I’m a historian, and my father had kept them, I think, since nineteen twenty-seven uh,
but he burned the ones from twenty-seven to fi-, A: My goodness. B: I could not believe he did that,
Hypothesis: his father burned the ones from twenty-seven
Heuristics: C V. BERT: D J. BERT: E AAs: E {E, E, E}
Gold: E [3, 3, 3, 3, 3, 2, 2, -1]

2 Premise: ‘She was about to tell him that was his own stupid fault and that she wasn’t here to wait on him - particularly since he
had proved to be so inhospitable. But she bit back the words. Perhaps if she made herself useful he might decide she could stay -
for a while at least just until she got something else sorted out.
Hypothesis: she could stay
Heuristics: D V. BERT: D J. BERT: D AAs: N {N, N, N}
Gold: N [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 Premise: A: but that is one of my solutions. Uh... B: I know here in Dallas that they have just instituted in the last couple of
years, uh, a real long period of time that you can absentee vote before the elections. And I do not think they have seen a really
high improvement.
Hypothesis: they have seen a really high improvement.
Heuristics: C V. BERT: C J. BERT: C AAs: C {C, C, C}
Gold: C [-1, -2, -2, -2, -2, -2, -2, -2, -3, -3]

4 Premise:B: So did you commute everyday then or, A: No. B: Oh, okay. A: No, no, it was a six hour drive. B: Oh, okay, when
you said it was quite a way away, I did not know that meant you had to drive like an hour
Hypothesis: speaker A had to drive like an hour
Heuristics: C V. BERT: D J. BERT: E AAs: D {E, C, C}
Gold: D [3, 2, 2, 1, 0, 0, -1, -1, -1, -3]

5 Premise: The assassin’s tone and bearing were completely confident. If he noticed that Zukov was now edging further to the side
widening the arc of fire he did not appear to be troubled.
Hypothesis: Zukov was edging further to the side
Heuristics: D V. BERT: D J. BERT: D AAs: D {E, E, N}
Gold: E [3, 3, 3, 3, 2, 2, 1, 1]

6 Premise: B: Yeah, and EDS is very particular about this, hair cuts, A: Wow. B: I mean it was like you can’t have, you know, such
and such facial hair, no beards, you know, and just really detailed. A: A: I don’t know that that would be a good environment to
work in.
Hypothesis: that would be a good environment to work in
Heuristics: C V. BERT: C J. BERT: D AAs: C {C, C, C}
Gold: D [2, 0, 0, 0, 0, -1, -2, -3]

7 Premise: “Willy did mention it. I was puzzled, I ’ll admit, but now I understand.” How did you know Heather had been there?
Hypothesis: Heather had been there
Heuristics: N V. BERT: E J. BERT: E AAs: E {E, E, E}
Gold: D [3, 3, 3, 2, 1, 1, 0, 0, 0]

Table 3.4: Models’ predictions for CB test items. Labels in [] are predictions by individual
AAs.

Predict
Gold

E N C D Total

E 37 2 0 13 52
N 1 10 0 3 14
C 0 0 34 13 47
D 20 7 20 80 127

Total 58 19 54 109 240

Table 3.5: Confusion matrix for the test set. E: entailment, N: neutral, C: contradiction, D:
disagreement.
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negation modal conditional question negR

Heuristic 51.29 48.02 37.69 44.64 54.16
V. BERT 60.91 73.98 44.84 53.02 61.91
J. BERT 60.94 73.95 46.02 51.68 63.67

AAs 65.96 80.18 48.05 54.95 68.00

Table 3.6: F1 for CB test set under the embedding environments and “I don’t
know/believe/think” (“negR”).

3.6.2 Linguistic Construction Analysis

We also examine the model performance for different linguistic constructions to in-

vestigate whether the model learns some of the linguistic patterns present in the Heuristic

baseline. The Heuristic rules are strongly tied to the embedding environments. Another

construction used is one which can lead to “neg-raising” reading, where a negation in the

matrix clause is interpreted as negating the content of the complement, as in example 3

(Table 3.4) where I do not think they have seen a really high improvement is interpreted as I

think they did not see a really high improvement. “Neg-raising” readings often occur with

know, believe or think in the first person under negation. There are 85 such items in the test

set: 41 contradictions (thus neg-raising items), 39 disagreements and 5 entailments. Context

determines whether a neg-raising inference is triggered (An and White, 2019).

Table 3.6 gives F1 scores for the Heuristic, BERT models and AAs for items under the

different embedding environments and potential neg-raising items in the test set. Though

AAs achieve the best overall results, it suffers under conditional and question environments,

as the corresponding training data is scarce (9.04% and 14.17%, respectively). The Heuristic

baseline always assigns contradiction to the “I don’t know/believe/think” items, thus captur-

ing all 41 neg-raising items but missing disagreements and entailments. BERT, a SOTA NLP

model, is not great at capturing such items either: 71.64 F1 on contradiction vs. 52.84 on the

others (Vanilla BERT); 71.69 F1 vs. 56.16 (Joint BERT). Our AAs capture neg-raising items
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Correct inference
by Heuristic?

Yes (130) No (110)

Acc. F1 Acc. F1

V. BERT 80.00 80.45 41.51 42.48
J. BERT 79.74 80.04 42.73 44.15
AAs 84.37 84.85 46.97 48.75

Table 3.7: BERT-based models performance on test items correctly predicted by vs. items
missed by linguistic rules. Numbers next to Yes/No denote the size.

better with 77.26 F1 vs. 59.38, showing an ability to carry out context-dependent inference

on top of the learned linguistic patterns. Table 3.7, comparing performance on test items

correctly predicted by the linguistic rules vs. items for which context-dependent reasoning

is necessary, confirms this: AAs outperform the BERT baselines in both categories.

3.7 Conclusion

In this chapter, we introduced finer-grained natural language inference. This task aims at

teasing systematic inferences from inherent disagreements. The inherent disagreement items

are challenging for NLU models to handle, rarely studied in past NLI work. We show that

our proposed AAs, which simulate the uncertainty in annotation process by capturing the

modes in annotations, perform statistically significantly better than all baselines. However

the performance obtained (∼66%) is still far from achieving truly robust NLU, leaving room

for improvement.
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Chapter 4: FAQ Retrieval

4.1 Introduction

FAQ, short for frequently asked questions, is designed for the purpose of providing

information on frequent questions or concerns. The FAQ retrieval task is defined as ranking

FAQ items {(qi, ai)} from an FAQ Bank given a user query Q. In the FAQ retrieval literature

(Karan and Šnajder, 2016, 2018; Sakata et al., 2019), a user query Q can be learned to match

with the question field qi, the answer field ai or their concatenation (i.e., FAQ tuple) qi + ai.

To advance the COVID-19 information search, we present an FAQ dataset, COUGH,

consisting of FAQ Bank, Query Bank, and Relevance Set, following the standard of con-

structing a robust FAQ dataset (Manning et al., 2008). The FAQ Bank contains 15919 FAQ

items scraped from 55 authoritative institutional websites. COUGH covers a wide range of

perspectives on COVID-19, spanning from general information about the virus to specific

COVID-19-related instructions for a healthy diet. For evaluation, we further construct Query

Bank and Relevance Set, including 1201 crowd-sourced queries and their relevance to a set

of FAQ items judged by annotators. Examples from COUGH are shown in Figure 4.1.

Our dataset poses several new challenges (e.g., the answers being long and noisy, and

hard to match due to larger search space) to existing FAQ retrieval models. The diversity

of FAQ items, which is reflected in their varying query forms and lengths as well as in

narrative styles, also contributes to these challenges. Furthermore, these challenges can
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Figure 4.1: Examples from the COUGH dataset.

reflect the characteristics and difficulties of FAQ retrieval in real scenarios better than

counterparts like FAQIR (Karan and Šnajder, 2016) and StackFAQ (Karan and Šnajder,

2018) (Table 4.1). Moreover, in contrast to all prior datasets, COUGH covers multiple query

forms (e.g., question and query string forms) and has many annotated FAQs for each user

query, whereas queries in existing FAQ datasets are limited to the question form and have

much fewer annotations. As such, our COUGH is deemed as a robust dataset, upon which

a robust FAQ retriever could be developed to handle some real challenges (e.g., lengthy

answer, enormous search space) better.

The contribution in this chapter is two-fold. First, we construct a challenging dataset

COUGH to aid the development of COVID-19 FAQ retrieval models. Second, we conduct ex-

tensive experiments using various SOTA models across different settings, explore limitations

of current FAQ retrieval models, and discuss future work along this line.

4.2 Standard FAQ Dataset Construction: COUGH

Since the outbreak of COVID-19, the community has witnessed many datasets released

to advance the research of COVID-19.The most related work to ours are Sun and Sedoc

(2020) and Poliak et al. (2020), both of which constructed a collection of COVID-19 FAQs
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FAQIR
(Karan and Šnajder)

StackFAQ
(Karan and Šnajder)

LocalGov
(Sakata et al.)

Sun and Sedoc Poliak et al. COUGH (ours)

Domain Yahoo! StackExchange Government COVID-19 COVID-19 COVID-19
# of FAQs 4,313 719 1,786 690 2,115 15,919
# of Queries (Q) 1,233 1,249 784 6,495* 24,240* 1,201
# of annotations per Q 8.22 Not Applicable <10 5 5 32.17

Query Length 7.30 13.84 ** ** ** 12.97
FAQ-query Length 12.30 10.39 ** ** ** 13.00
FAQ-answer Length 33.00 76.54 ** ** ** 113.58

Language English English Japanese English Multi-lingual Multi-lingual
# of sources 1 1 1 12 34 55

Table 4.1: Comparison of COUGH with representative counterparts. *: Extracted from
existing resources (e.g., COVID-19 Twitter dataset (Chen et al., 2020)). **: Not Applicable,
either not in English or not publicly available.

by scraping authoritative websites (e.g., CDC and WHO). However, the dataset in the former

work is not available yet and the latter work does not evaluate models on their dataset,

and there is still a great need to understand how existing models would perform on the

COVID-19 FAQ retrieval task. Moreover, the numbers of FAQs14 in the 5 existing FAQ

datasets (Table 4.1) are generally lower than 2000, which renders a small search space and

thus the ease for FAQ retrievers to find the most relevant FAQ given a query.

A typical research-oriented FAQ dataset (Manning et al., 2008) consists of three parts:

FAQ Bank, User Query Bank and Annotated Relevance Set. In this section, we will describe

how we construct each of the three in detail.

4.2.1 FAQ Bank Construction

We developed scrapers based on JHU-COVID-QA library Poliak et al. (2020) with

modifications to enable special features for our COUGH dataset.

Web scraping: We collect FAQ items from authoritative international organizations, state

governments and some other credible websites including reliable encyclopedias and medical

forums. Moreover, we scrape three types of FAQs: question form (i.e., an interrogative

statement), query string (i.e., a string of words to elicit information) form and forum form

14In the literature, only 789 FAQ items are used for evaluation on FAQIR (Karan and Šnajder, 2018; Mass
et al., 2020).
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(FAQs scrapped from medical forums). Inspired by Manning et al. (2008), we loosen the

constraint that queries must be in question form since we want to study a more generic and

challenging problem. We also scrape 6,768 non-English FAQs to increase language diversity.

Overall, we scraped a total of 15,919 FAQ items covering all three types and 19 languages.

All FAQ items were collected and finalized on Aug. 30th, 2020.

4.2.2 User Query Bank Construction

Following Karan and Šnajder (2016); Manning et al. (2008), we do not crowdsource

queries from scratch, but instead ask annotators to paraphrase our provided query templates

(See phase 1 below for details). In this way, we can ensure that 1) the collected queries are

pertinent to COVID-19; 2) the collected queries are not too simple; 3) the chance of getting

(nearly) duplicate user queries is reduced.

Phase 1: Query Template Creation: We sample 5% of FAQ items from each English

non-forum source and use the question part as the template.

Phase 2: Paraphrasing for Queries: In this phase, each annotator is expected to give three

paraphrases for each query template. Annotators are encouraged to give deep paraphrases

(i.e., grammatically different but semantically similar/same) to simulate the noisy and diverse

environment in real scenarios. In the end, we obtain 1236 user queries.

4.2.3 Annotated Relevance Set Construction

Phase 1: Initial Candidate Pool Construction: For each user query, as suggested by

previous work (Manning et al., 2008; Karan and Šnajder, 2016; Sakata et al., 2019), we

run 4 models15, BM25 (Q-q), BM25 (Q-q+a), BERT (Q-q) and BERT (Q-a) fine-tuned

on COUGH, to instantiate a candidate FAQ pool. Each model complements the others and

15Explanations of these models are in chapter 4.4.2.
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Type Number Q-Length A-length

# English
Question 4978 14.64 123.89

Query String 2139 9.18 89.60
Forum 2034 147.46 90.49

# Non-English
Question 3396 - -

Query String 3372 - -

# Total - 15919 - -

Table 4.2: Basic statistics of FAQ bank in COUGH.

contributes its top-10 relevant FAQ items. We then take the union to remove duplicates,

giving an average pool size of 32.2.

Phase 2: Human Annotation: Each annotator gives each 〈Query, FAQ item〉 tuple a score

based on the annotation scheme (i.e., Matched (4), Useful (3), Useless (2) and Non-relevant

(1)) which is adapted from Karan and Šnajder (2016); Sakata et al. (2019). In order to

reduce the variance and bias in annotation, each tuple has at least 3 annotation scores. In

our finalized Annotated Relevance Set, we keep all raw scores and include two additional

labels: 1) mean of raw annotation scores; 2) binary label (positive/negative). We identify all

tuples with mean score greater than 3 as positive examples.

Among 1236 user queries, we find that there are 35 “unanswerable” queries that have no

associated positive FAQ item. In the end, there are 1201 user queries involved for evaluation

after removing “unanswerable” queries.

4.3 COUGH Dataset Analysis

Besides the generic goal of large size, diversity, and low noise, COUGH features 4

additional aspects:

Varying Query Forms: As indicated in Table 4.2, there are multiple query forms. In

evaluation, we include both question and query string forms. These two distinct forms are

different in terms of query format (interrogative vs. declarative), average answer length
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(123.89 vs. 89.60) and topics. Question form is usually related to general information about

the virus while query string form is often searching for more specific instructions concerning

COVID-19 (e.g., healthy diet during pandemic). In Figure 4.1, the first FAQ item is in

question form while the second one is in query string form.

Answer Nature: Table 4.1 shows the answer fields in COUGH are much longer than those

in any prior dataset. We also observe that answers might contain some contents which are

not directly pertinent to the query, partially resulting in the long length nature. For example,

in COUGH, the answer to a query “What is novel coronavirus” contains extra information

about comparisons with other viruses. Such lengthy and noisy nature of answers shows the

difficulty of FAQ retrieval in real scenarios.

Large-scale Relevance Annotation: Many existing FAQ datasets overlooked the scale

of annotations (Table 4.1); yet, that would hurt the evaluation reliability since many true

positive 〈Query, FAQ item〉 tuples were omitted. Following Manning et al. (2008), for each

user query, we constructed a large-scale candidate pool to reduce the chance of missing

true positive tuples. The annotation procedure yielded 39760 annotated 〈Query, FAQ item〉

tuples, each of which is annotated by at least 3 people to reduce annotation bias. Furthermore,

we find that there are 7856 (19.76%) positive tuples (i.e., mean score > 3). Besides, from

the perspective of FAQ Bank, 6648 of 7117 English non-forum items appear at least once in

Initial Candidate Pool, and 3790 of them have at least one “matched” user query.

Multilinguality: COUGH includes 6768 FAQ items covering 18 non-English languages. In

this thesis, we do not include FAQ items in languages other than English in the evaluation.16

However, we do encourage investigators who use COUGH to better utilize non-English FAQ

16No annotation is done on non-Engligh items.
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Figure 4.2: Language distribution for non-English FAQ items.

items for other potential tasks, such as multi-lingual FAQ retrieval and transfer learning

from English FAQ items to low-resource non-English FAQ items.

Figure 4.2 shows the language distribution (excluding English) of FAQ items in COUGH

dataset. Like English FAQ items, non-English FAQ items are also presented in both question

and query string forms. Statistics of non-English items can be found in Table 4.2.

4.4 FAQ Retrieval Methods

4.4.1 FAQ Retrieval Methods Overview

The standard practice in FAQ retrieval focuses on retrieving the most-matched FAQ

items given a user query (Karan and Šnajder, 2018). Many earlier work, such as FAQ

FINDER (Burke et al., 1997), query expansion (Kim and Seo, 2006) and BM25 (Robertson

and Zaragoza, 2009), resorted to traditional IR techniques by leveraging lexical mapping

and/or semantic similarity. In the deep learning era, many studies show that Neural Networks
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are useful for FAQ retrieval as they are good at learning the semantic relevance between

queries and FAQ items. Along this line, (Karan and Šnajder, 2016) adopted Convolution

Neural Networks, (Gupta and Carvalho, 2019) utilized LSTM, and (Sakata et al., 2019)

leveraged an ensemble of TSUBAKI (Shinzato et al., 2012) and BERT (Devlin et al., 2019b).

Recently, Mass et al. (2020) employed CombSum and PoolRank, ensembles of BM25 and

BERT models, to learn ranking without requiring manual annotations.

4.4.2 Unsupervised FAQ Retrieval

In this chapter, we only focus on the unsupervised models since the size of User Query

Bank (1201 items) is not large enough for supervised learning, especially for fine-tuning

complex language models like BERT. We experiment with three commonly-used and SOTA

unsupervised models to understand their limitations and figure out the challenge present in

real scenarios for FAQ retrieval. Besides, each model has three configurable modes, Q-q,

Q-a and Q-q+a, where we match user queries (Q) to the question (q) and answer (a) of an

FAQ item as well as their concatenation (q+a)17, respectively.

Baseline Models

(1) BM25 (Robertson and Zaragoza, 2009), a commonly adopted IR baseline, is a nonlinear

combination of term frequency, document frequency and document length.

(2) BERT (Devlin et al., 2019b) is a pretrained language model. We experiment with

Sentence-BERT (Reimers and Gurevych, 2019), a Siamese network built for comparison

between sentence-pair embeddings, which specializes in generating meaningful sentence

representations.

17Q-q+a mode is only used for BM25 and BM25 in CombSum.
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Fine-tuning: We use Multiple Negatives Ranking (MNR) loss18 (Henderson et al., 2017) to

fine-tune Sentence-BERT on FAQ bank. For the Q-q mode, similar to Mass et al. (2020),

we use GPT2 (Radford et al., 2019) to generate synthetic questions as positive q’s to match

with Q and filter out low-quality ones via Elasticsearch. For the Q-a mode, an FAQ item

itself is a positive pair. For both modes, negative q’s or a’s are randomly sampled.

(3) CombSum (Mass et al., 2020) first computes three matching scores between the user

query and FAQ items via BM25 (Q-q+a), BERT (Q-q) and BERT (Q-a) models, respectively.

Then, the three scores are normalized and combined by averaging.

4.5 Evaluation and Results

Evaluation Metric: We adopt our binary label (positive/negative) as ground truth labels.

Following previous work (Karan and Šnajder, 2016, 2018; Sakata et al., 2019), we adopt

widely-used MAP (Mean Average Precision)19, MRR (Mean Reciprocal Rank) and P@5

(Precision at top 5) metrics.

Evaluation Settings: For the scope of this chapter, we only evaluate on English non-

forum FAQ items, and leave the non-English and forum ones for future research as great

challenges have already been observed under the current setting. However, we do encourage

investigators who use COUGH to utilize these two categories for other potential applications

(e.g., multi-lingual IR, transfer learning in IR).

Evaluation Results: Models’ results are listed in Table 4.3. The current best results (P@5:

0.31; MAP: 0.42; MRR: 0.64) are not satisfying, showing a large room for improvement.

18For efficiency, MNR loss is computed using answers of other FAQs in the same training batch as negative
answers.

19Evaluated on top-100 retrieved FAQ items.
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P@5 MAP MRR

BM25 (Q-q) 0.27 0.38 0.56
BM25 (Q-a) 0.16 0.23 0.34
BM25 (Q-q+a) 0.25 0.34 0.52

BERT (Q-q) w/o finetune 0.29 0.42 0.59
+ finetune on pesudo Q-q 0.26 0.36 0.60

BERT (Q-a) w/o finetune 0.06 0.12 0.17
+ finetune on FAQ Bank 0.23 0.30 0.50

CombSum w/o finetune 0.21 0.31 0.49
+ fintune on pesudo Q-q 0.23 0.31 0.53
+ fintune on FAQ Bank 0.31 0.39 0.63
+ fintune on pesudo Q-q and FAQ Bank 0.31 0.39 0.64

Table 4.3: Evaluation on COUGH. BERT refers to Sentence-BERT (Reimers and Gurevych,
2019).

These results not only confirm that COUGH is challenging but also signify more robust

methods and models are needed to handle challenges imposed by COUGH more effectively.

4.6 Analysis

Quantitative Analysis: It is not surprising to see that the Q-q mode consistently performs

better than the Q-a mode regardless of underlying models. This is mainly caused by the fact

that question fields are more similar to user queries than answer fields, in terms of syntactic

structures and semantic meanings. As discussed in Section 4.3, the answer nature (lengthy

and noisy) and large search space, albeit well characterize the FAQ retrieval task in real

scenarios, do bring a great challenge to current FAQ retrieval models.

We observe that fine-tuning in the way we experimented with can only help improve the

performance of the Q-a mode by a small margin, but might slightly hurt the Q-q mode due

to the noise introduced in generating synthetic queries. Moreover, ensemble models don’t

perform as well as expected, since the particular Q-a model involved is weak (even after

fine-tuning), which negatively impacts performance. In consequence, doing straightforward

fine-tuning or ensemble simply by stacking models wouldn’t improve the performance
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Query: What research is being done on antibody tests and their accuracy?
FAQ item: Q: What is antibody testing? How do I get a COVID-19 antibody test? A: CDC and partners are
investigating to determine if you can get sick with COVID-19 more than once ...
Gold label: Negative [useful, useless, useless]
Predicted rank: 3

Query: Are COVID-19 antibody tests accurate?
FAQ item: Q: Should I be tested with an antibody (serology) test for COVID-19? A: ... Antibody tests have
limited ability to diagnose COVID-19 and should not be used alone to diagnose COVID-19 ...
Gold label: Positive [useful, useful, matched]
Predicted rank: 26

Table 4.4: Error analysis with fine-tuned BERT (Q-q). Human annotations are inside [].

significantly, which confirms that COUGH is a challenging dataset. Interesting future work

includes developing more advanced techniques to handle long and noisy answer fields.

Qualitative Analysis: To understand finetuned BERT (Q-q) better, we conduct error anal-

ysis as shown in Table 4.4 to show its major types of errors, hoping to further improve

it in the future. Currently, finetuned BERT (Q-q) suffers from the following issues: 1)

biased towards responses with similar texts (e.g., “antibody tests” and “antibody testing”);

2) fails to capture the semantic similarities under complex environments (e.g., pragmatic

reasoning is required to understand that “limited ability” indicates results are not accurate

for diagnosing COVID-19).

4.7 Conclusion

In this chapter, we introduce COUGH, a large challenging dataset for COVID-19 FAQ

retrieval. COUGH features varying query forms, long and noisy answers, larger search space

and multilinguality. COUGH also serves as a better evaluation benchmark since it has large-

scale relevance annotations. Albeit results show the limitations of current FAQ retrieval

models, COUGH is a more robust dataset than its counterparts since it better characterizes

the challenges present in real scenarios for FAQ retrieval.
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Chapter 5: Conclusion

In this thesis, I have embarked on building models and constructing datasets towards

more robust natural language understanding. We start with a discussion on what robustness

problem is in natural language understanding. That is, fully-trained NLU models are usually

lacking generalizability and flexibility. In this thesis, we argue that, in order to achieve truly

robust natural language understanding, implementing robust models and curating robust

datasets are equally important. In this thesis, we investigate the NLU robustness problem in

three NLU tasks (i.e., Question Answering, Natural Language Inference and Information

Retrieval). We then propose novel methods and construct new datasets to advance research

on improving the robustness of NLU systems.

In Chapter 2, we study how to utilize diversity boosters (e.g., beam search & QPP) to

help Question Generator synthesize diverse QA pairs, upon which a Question Answering

(QA) system is trained to improve the generalization onto unseen target domain. It’s worth

mentioning that our proposed QPP (question phrase prediction) module, which predicts a

set of valid question phrases given an answer evidence, plays an important role in improving

the cross-domain generalizability for QA systems. Besides, a target-domain test set is

constructed and approved by the community to help evaluate the model robustness under

cross-domain generalization setting. In Chapter 3, we investigate inherently ambiguous

items in the NLI (Natural Language Inference) task, which are overlooked in the literature
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but often occurring in the real world, for which annotators don’t agree with the gold label.

We build an ensemble model, AAs (Artificial Annotators), which simulates underlying

annotation distribution to effectively identify such inherently ambiguous items. Our AAs,

motivated by the nature of inherently ambiguous items, are better than vanilla models since

our model design captures the essence of the problem better. In Chapter 4, we follow a

standard practice to build a robust dataset for FAQ retrieval task. In our dataset analysis, we

show how COUGH better reflects the challenge of FAQ retrieval in the real situation than its

counterparts. The imposed challenge (e.g., long and noisy answer, large search space) will

push forward the boundary of research on FAQ retrieval in real scenarios.

Overall, the technical contributions of this thesis are as follows:

1. We investigate the robustness problem in depth, and identify the equal importance of

models implementation and datasets construction towards improving the robustness

of NLU systems. In this thesis, we specifically study three concrete NLU tasks.

2. We propose two novel methods to help improve NLU model robustness. Specifically,

we evaluate the effect of diverse question generation (QG) for clinical QA under

the cross-domain evaluation setting, and propose QPP (Question Phrase Prediction)

module as an effective diversity booster for QG (Yue et al., 2021). Moreover, we

propose AAs (Artificial Annotators) to simulate underlying annotation distribution to

handle a previously-overlooked NLI class better, inherent disagreement items (Zhang

and de Marneffe, 2021).

3. We construct two robust datasets, QA test set on MIMIC-III Database (Yue et al.,

2021) and COUGH (Zhang et al., 2021). They will serve as better evaluation

benchmarks to examine designed models’ generalization capabilities and abilities to

handle real-scenario challenges (e.g., longer FAQ and larger search space).
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Future Research: Moving forward, the ultimate goal for robust natural language under-

standing is to build NLU models which can behave humanly. That is, it’s expected that

robust NLU models are capable to transfer the knowledge from training corpus to unseen

documents more reliably and survive when encountering challenging items even if the model

doesn’t know a priori of users’ inputs. Two suggested important research frontiers are:

1) Improve model generalization under cross-domain setting: In Chapter 2, we dis-

cussed how we utilized QG model to help alleviate the generalization challenge encountered

by QA systems. However, the question whether a better QA system could further improve

the QG is yet known, which is, however, worth deeper investigation. Ideally, when intro-

ducing an auxiliary module to help the main model, we also expect to see that the auxiliary

module could be benefited by the joint training with the main model. Besides, in Chapter 2,

the reason we decided to utilize QG that way is that we observed that the QG system didn’t

suffer from severe generalization issues under the clinical setting. However, in open-domain,

the aforementioned observation might not hold. In that case, it might be better to enforce

the model to learn text representations that are invariant to domain changes. Recent work on

cross-domain NER (Named Entity Recognition) have shown some progress along this path

(Jia et al., 2019). I also have a great interest in text generation. Though the majority of work

that utilize domain adaptation techniques to tackle the generalization challenge focuses on

classification tasks (Ganin et al., 2016; Chen and Cardie, 2018; Chen et al., 2018), could

we effectively extend the success of domain adaptation to text generation? This might be a

promising research direction since the text generation can be formulated as a sequence of

classifications.

2) Embrace more challenges in NLU: In Chapter 3 and 4, we discussed two datasets,

CommitmentBank & COUGH, on which we could develop methods that target at solving
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NLU challenges under more realistic scenarios. SQuAD 2.0 (Rajpurkar et al., 2018) is

a another great role model for datasets that aim at this goal. To do well on SQuAD 2.0,

models must not only answer questions when possible, but also determine when no answer

is supported by the paragraph and then say “no”. This is a real challenge for QA system as

it’s not always the case that an answer could be found in a seemingly relevant document for

a question. Another typical real challenge in NLU is how to solve mathematical problems.

Hendrycks et al. (2021) presents a new math dataset on which a standard CS PhD student

who doesn’t especially like Math gets 40% accuracy while a fully-trained GPT-3 (Brown

et al., 2020) models only gets 5%. Pretrained language models like GPT-3 or BERT

is believed to heavily rely on the context to reason about the given prompt. However,

mathematical language isn’t necessarily constrained by contexts,20 which imposes a great

challenge to NLU systems. Additionally, in order to get full credits for a problem, the

deployed system is also required to give correct reasoning steps, which is way more difficult

than simply generating an answer. The following is an example from MATH dataset:21

Problem: If Σ∞n=0cos
2nθ = 5, what is cos2θ?

Solution: The geometric series is 1 + cos2θ + cos4θ + ... = 1
1−cos2θ = 5. Hence,

cos2θ = 4
5
. Then, cos2θ = 2cos2θ − 1 = 3

5

Moreover, linguistic rules or features, without any doubt, deserve more attention even if

we are living in the realm of neural computing world. This is because linguistic rules or

features exhibit great power when tackling challenging NLU problems. In Chapter 3, we

find that SOTA NLU models, BERT, obtain inferior results to our linguistics-driven heuristic

rules on dev set. This shows that giant neural models still fail to capture some necessary

20Math question could be context-free such as ”let a equal one plus two minus three times four, is a
congruent to zero when the modulo is five?”

21This example corresponds to the second example in their Figure 1.
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linguistic phenomena. As such, it’s essential to discover how to effectively incorporate

linguistic information into neural models to compensate for what the neural network-model

is weak at. A simple practice is to embed linguistic features such as NER and POS tags

into original texts. Particularly, I observed that a vanilla attention-based Seq2Seq model,

when being equipped with linguistic features, could achieve better performance than BART

(Lewis et al., 2020),22 a variant of BERT specializing in text generation, on both in-domain

and cross-domain question generation tasks.

22In general, BART (∼139M) has 8 times more parameters than vanilla attention-based Seq2Seq (∼17M).
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Appendix A: Supplementary Materials

A.1 Clinical Question Answering

A.1.1 Answer Evidence Extractor

Formulation and Implementation Formally, given a document (context) p = {p1, p2, ..., pm},

where pi is the i-th token of the document and m is the total number of tokens, we aim to

extract potential evidence sequences. Firstly, we adopt the ClinicalBERT model (Alsentzer

et al., 2019) to encode the document:

U = ClinicalBERT{p1, ..., pm}. (A.1)

where U ∈ Rm×d, and d is size of the dimension.

Following the same paradigm of the BERT model for the sequence labeling task (Devlin

et al., 2019b), we predict the BIO tag for each aj as follows:

Pr(aj|pi) = softmax(U ·W + b), ∀pi ∈ p (A.2)

We train model on source contexts by minimizing the negative log-likelihood loss.

Post-processing Heuristic Rules We observe that when we directly apply the ClinicalBERT

(Alsentzer et al., 2019) system described in Section 2.3.1 on clinical texts, the extracted

answer evidences sometimes are broken sentences due to the noisy nature and uninformative

language (e.g., acronyms) of clinical texts. To make sure the extracted evidences are mean-

ingful, we designed a “merge-and-drop” heuristic rule to further improve the extractor’s
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accuracy. Specifically, for each extracted evidence candidate, we first examine the length

(number of tokens) of the extracted evidence. If the length is larger than the threshold η, we

keep this evidence; otherwise, we compute the distance, i.e., the number of tokens between

the current candidate span and the closest span. If the distance is smaller than the threshold

γ, we merge these two “close-sitting” spans; otherwise, we drop this over-short evidence

span. In our experiments, we set η and γ to be 3 and 3, respectively, since they help the QA

system achieve the best performance on the dev set.

A.1.2 Question Phrases Identification

In order to utilize the Question Phrase Prediction (QPP) module and make the QPP

module generic enough without loss of generality, we identify valid n-gram Question Phrases

in an automatic way.

To prepare an exhaustive list of valid n-gram Question Phrases, we first collect all of the

first n words appearing in questions in emrQA, forming three (i.e., n=1, 2, 3) raw Question

Phrases set.

We observe that all uni-grams are valid question phrases (e.g., “How”, “When”, “What”),

so we don’t do any pruning and keep the uni-gram question phrases set as it is.

As for n-gram (n ≥ 2) Question Phrases set, we conduct fine-grained filtering. We only

consider n-grams with occurrence frequency greater than the threshold ζ as valid n-gram

Question Phrases. In our experiment, we set ζ as 0.02%. Less frequent n-gram words

(i.e., frequency < 0.02%) will degrade to unigram Question Phrases in accordance with

corresponding question types (e.g., “Has lasix”→ “Has”*) so as to maintain lossless. In the

end, n-gram (n ≥ 2) Question Phrases sets, without any information loss, consist of both

n-gram Question Phrases and degraded unigram Question Phrases.
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A.1.3 Dev Set Construction

The dev set on MIMIC-III is constructed by sampling generated questions from 9 QG

models and is used to tune the hyper-parameters only. Instead of uniformly sampling from

9 QG models, we followed the sampling ratio of 1:3:6 (Base model, Base+BeamSearch,

Base+QPP) for each QG method, which made the dev set cover as many diverse questions

as possible.
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