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Natural Language Inference (NLI)
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Premise: A homeless man being observed
by a man in business attire.

Hypothesis: Two men are sleeping in a hotel.
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Contradiction Neutral Entailment

Inherent Disagreements in Human Textual Inferences (Pavlick and Kwiatkowski, 2019)
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by a man in business attire.

Hypothesis: Two men are sleeping in a hotel.
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Inherent Disagreements in Human Textual Inferences (Pavlick and Kwiatkowski, 2019)



Data: COmmitmentBank THE OHIO STATE
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Premise: B: Yeah, and EDS is very particular about this,
hair cuts, A: Wow. B: | mean it was like you
can’t have, you know, such and such facial
hair, no beards, you know, and just really
detailed. A: | don’t know that that would be a

good environment to work in.

Hypothesis: that would be a good environment to work in

Label? [2,0,0,0,0,-1,-2,-3]

The CommitmentBank: Investigating projection in naturally occurring discourse (de Marneffe et al., 2019)
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Premise: B: Yeah, and EDS is very particular about this,
hair cuts, A: Wow. B: | mean it was like you
can’t have, you know, such and such facial
hair, no beards, you know, and just really
detailed. A: | don’t know that that would be a

good environment to work in.

Hypothesis: that would be a good environment to work in

Label?  [[2]fo, 0, 0, of1, -2, -3]
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The CommitmentBank: Investigating projection in naturally occurring discourse (de Marneffe et al., 2019)




Finer-grained labels for NLI THEOSTATE
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Premise: B: Yeah, and EDS is very particular about this,
hair cuts, A: Wow. B: | mean it was like you Entailment
can’t have, you know, such and such facial
hair, no beards, you know, and just really —
detailed. A: | don’t know that that would be a
good environment to work in.

- Contradiction
Hypothesis: that would be a good environment to work in

Q Disagreement [ 2, 0,0, 0, 0, -1, -2, -3 ]

The CommitmentBank: Investigating projection in naturally occurring discourse (de Marneffe et al., 2019)



Entailment Neutral Contradiction
-biased -biased -biased

[ PREMISE [SEP] HYPOTHESIS i

P(y|x) = softmax(Wg tanh(W¢le;n;c|))
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AAs perform better across the board
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Dev Test

Acc. Fl Acc. Fl Entail Neutral Contradict Disagree
Always 0 55.00 39.03 4542  28.37 0.00 0.00 0.00 62.46
CBOW 55.25 40.54 45.09  28.37 0.00 0.00 0.69 62.17
Heuristic 65.00 62.08 54.17 50.60 22.54 52.94 64.46 58.20
Vanilla BERT 63.71 63.54 6250 61.93 59.26 49.64 69.09 61.93
Joint BERT 64.47 6428  62.61 62.07 59.77 47.27 67.36 63.21
AAs (ours) 65.15 6441 65.60% 64.97* 61.07 51.27 70.89 66.49%

Baselines and AAs overall performance on CB dev and test sets, and F1 scores of each class on the
test set (average of 10 runs). * indicates a statistically significant difference (t-test, p<0.01).



AAs learn linguistic patterns and
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context-dependent inference better ™"

Correct inference  Correctly predicted (130) Missed (110)
by Heuristic?

Acc. Fl Acc. Fl
V. BERT 30.00 80.45 41.51 42.48
J. BERT 79.74 30.04 4273 44.15
AAS 34.37 34.85 46.97 48.75

BERT-based models performance on test items correctly predicted by vs. items missed by linguistic rules.



Error analysis

Premise: B: Yeah, and EDS is very particular about this,
hair cuts, A: Wow. B: | mean it was like you
can’t have, you know, such and such facial
hair, no beards, you know, and just really
detailed. A: | don’t know that that would be a
good environment to work in.

Hypothesis: that would be a good environment to work in

Heuristics: C V. BERT: C 5
J. BERT: D AAs: C {C, C, C} .
Disagreement 2,0, O, O, O, -1, -2, -3]
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Our Artificial Annotators are a start in this direction but
still far from succeeding (~ 66%).

A method which captures accurately the number of modes in
the annotation distribution would lead to a better model.
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Thanks\

Code is available at:
https://github.com/FrederickXZhang/FgNLI

Contact: zhang.9975@osu.edu
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