

Identifying inherent disagreement in natural language inference

Xinliang Frederick Zhang and Marie-Catherine de Marneffe The Ohio State University

NAACL 2021

Natural Language Inference (NLI)

Premise: A homeless man being observed

by a man in business attire.

Hypothesis: Two men are sleeping in a hotel.

Contradiction

Neutral

Entailment

Natural Language Inference (NLI)

Premise: A homeless man being observed

by a man in business attire.

Hypothesis: Two men are sleeping in a hotel.

Contradiction

Neutral

Entailment

Data: CommitmentBank

Premise:

B: Yeah, and EDS is very particular about this, hair cuts, A: Wow. B: I mean it was like you can't have, you know, such and such facial hair, no beards, you know, and just really detailed. A: I don't know that that would be a good environment to work in.

Hypothesis: that would be a good environment to work in

Label? [2, 0, 0, 0, 0, -1, -2, -3]

Data: CommitmentBank

Premise:

B: Yeah, and EDS is very particular about this, hair cuts, A: Wow. B: I mean it was like you can't have, you know, such and such facial hair, no beards, you know, and just really detailed. A: I don't know that that would be a good environment to work in.

Hypothesis: that would be a good environment to work in

Finer-grained labels for NLI

Premise:

B: Yeah, and EDS is very particular about this, hair cuts, A: Wow. B: I mean it was like you can't have, you know, such and such facial hair, no beards, you know, and just really detailed. A: I don't know that that would be a good environment to work in.

Entailment

Neutral

Contradiction

Disagreement

Hypothesis: that would be a good environment to work in

Disagreement [2, 0, 0, 0, 0, -1, -2, -3]

Model: Artificial Annotators (AAs)

$$P(y|\mathbf{x}) = \operatorname{softmax}(\mathbf{W_s} \tanh(\mathbf{W_t}[\mathbf{e}; \mathbf{n}; \mathbf{c}]))$$

AAs perform better across the board

	Dev		Test						
	Acc.	F1	Acc.	F1	Entail	Neutral	Contradict	Disagree	
Always 0	55.00	39.03	45.42	28.37	0.00	0.00	0.00	62.46	
CBOW	55.25	40.54	45.09	28.37	0.00	0.00	0.69	62.17	
Heuristic	65.00	62.08	54.17	50.60	22.54	52.94	64.46	58.20	
Vanilla BERT	63.71	63.54	62.50	61.93	59.26	49.64	69.09	61.93	
Joint BERT	64.47	64.28	62.61	62.07	59.77	47.27	67.36	63.21	
AAs (ours)	65.15	64.41	65.60*	64.97*	61.07	51.27	70.89	66.49*	

Baselines and AAs overall performance on CB dev and test sets, and F1 scores of each class on the test set (average of 10 runs). * indicates a statistically significant difference (t-test, p≤0.01).

AAs learn linguistic patterns and context-dependent inference better

Correct inference	Correctly pre	Missed (110)		
by Heuristic?	Acc.	F1	Acc.	F1
V. BERT	80.00	80.45	41.51	42.48
J. BERT	79.74	80.04	42.73	44.15
AAs	84.37	84.85	46.97	48.75

BERT-based models performance on test items correctly predicted by vs. items missed by linguistic rules.

Error analysis

Premise: B: Yeah, and EDS is very particular about this,

hair cuts, A: Wow. B: I mean it was like you

can't have, you know, such and such facial

hair, no beards, you know, and just really

detailed. A: I don't know that that would be a

good environment to work in.

Hypothesis: that would be a good environment to work in

Heuristics: C V. BERT: C

J. BERT: D <u>AAs: C {C, C, C}</u>

Disagreement [2, 0, 0, 0, 0, -1, -2, -3]

Towards robust NLI

Our Artificial Annotators are a start in this direction but still far from succeeding (~ 66%).

A method which captures accurately the number of modes in the annotation distribution would lead to a better model.

Code is available at:

https://github.com/FrederickXZhang/FgNLI

Contact: zhang.9975@osu.edu