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• Latent-factor Techniques, e.g., interaction matrix factorization

• Learnable User Embedding

Feature Engineering

Pre-defined Feature Set
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• Prompt Engineering

• Retrieval-augmented Generation

• Training-based parameterization

Implementation: Prepend user context to the model’s input

Past Interactions

Conversation on Day 1:

Conversation on Day 2:

Profile Summary

Book and gifts recommendation 

Experience of visiting parks 

Improving drawing skills 
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• Prompt Engineering

• Retrieval-augmented Generation

• Training-based parameterization

Embedding Learning RLHF (DPO)

Adapter
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• In the community, there lacks a unified framework for systematically identifying which 

approach makes personalization more effective

Literature Review: Limitations
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• In the community, there lacks a unified framework for systematically identifying which 

approach makes personalization more effective

Our First Contribution: PRIME
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Existing benchmarks mainly focus on 

short-context queries and surface-level 

imitation: LaMP (Salemi et al., 2024).
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To embark on genuine personalization, 

capturing users’ latent beliefs and 

perspectives, we introduce CMV.

Change My View (CMV) Reddit forum:

participants engage in extended dialogues, 

seeking to change original posters’ opinions.
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To embark on genuine personalization, 

capturing users’ latent beliefs and 

perspectives, we introduce CMV.

To excel on CMV:

Understand nuanced user 

beliefs and preferences in 

long-context setting
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PRIME = Personalized Reasoning with Integrated MEmory
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https://human-memory.net/episodic-semantic-memory/

Episodic memory: autobiographical events we can re-

experience

Semantic memory: general facts and knowledge we 

have accumulated

Psychological research have converged on the 

following long-term memory components
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Multi-modal inputs: 

chats, videos/audios, 

game activities, search 

histories, etc. 

In this project:

Text-only data (e.g., 

CMV data)

WRITE & READ!!!
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Recall Complete History

Recall Recent History

Recall Relevant History
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Parametric form:

• Input-Only Training (i.e., no target)

• Fine-Tuning (FT)

• Preference Tuning

Textual form:

• Hierarchical Summarization

• Parametric Knowledge Reification (Novel)
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• Episodic memory grounded in simple recency

often outperforms a semantic-similarity retrieval 

strategy.

• PKR-produced summaries are of equal qualities 

as Hierarchical Summarization.

• Overall, using SM alone leads to better results 

compared to using EM alone. 

• EM < Textual SM < Parametric SM

• Surprisingly, DPO is underperforming, possibly 

due to data pairing issue (1 positive paired with 

6-10 negatives).
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Slow thinking, though showing promises, is still in 

its infant stage when applying to personalization.

Non-thinking Thinking (R1-

distill)

Llama-3.1-8B 26.58 25.18 (-5.27%)

Qwen2.5-7B 27.89 23.36 (-16.24%)

Qwen2.5-14B 30.24 31.15 (+3.01%)

Naively applying thinking models backfires!
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• No preference data at hand for verifier training in RLHF

• No strong open-sourced thinking LLM from which we can distill 

personalized thinking trace

• Fast-thinking Fine-tuned LLMs cannot produce meaningful 

thoughts when prompted
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• Step 1 (Profile Generation): We prompt an semantic-memory-instantiated 

LLM, M, to generate a profile summary, following PKR procedure.

• Step 2 (Review History Engagement):  We convert each historical 

engagement into a query, and prompt the same M to answer them.

• Step 3 (Fast-thinking Filtering): We apply rejection sampling to keep 

the queries the model M is able to get right.

• Step 4 (Proxy LLM Initialization & Reasoning): We follow the textual 

semantic memory reading process to instantiate M’, where the summary 

is generated by M. We apply reverse engineering by feeding into M’ the 

input query and the answer, and prompt it to generate meaningful 

intermediate thoughts.

• Step 5 (Slow-thinking Filtering): Final round of rejection sampling to 

keep reasoning traces where the final answer matches the ground truth.
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Generic reasoning has limitations

Semantic memory (SM) beats episodic 

memory (EM)

DUAL often underperforms SM alone

Model-agnostic effectiveness of PRIME

Personalized thinking is crucial
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Contact: xlfzhang@umich.edu

Codebase & DataPaper
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