AND ENGINEERING

UNIVERSITY OF MICHIGAN

[:S[COMPUTER SCIENCE

NARRATIVE-OF-THOUGHT:
Improving Temporal Reasoning of Large
Language Models via Recounted Narratives

Xinliang Frederick Zhang?, Nick Beauchamp?, and Lu Wang!

1Computer Science and Engineering, University of Michigan
2Political Science and Network Science Institute, Northeastern University

L EMNLP 2024

Introduction: Temporal Reasoning

Preamble: Temporal reasoning is essential for humans to perceive the world, understand daily
communications, and interpret the temporal aspects of experiences (Allen, 1983; Nebel and Burckert,
1995).

Frederick Zhang, University of Michigan

Introduction: Temporal Reasoning

Preamble: Temporal reasoning is essential for humans to perceive the world, understand daily
communications, and interpret the temporal aspects of experiences (Allen, 1983; Nebel and Burckert,
1995).

Background:

* The recent advent of LLMs has gathered substantial attention to reasoning tasks, while few LLMs
exist to handle temporal reasoning well.

« This task is inherently complex, mingled with implicit logical inference and the necessity for
profound world knowledge.

« Existing research mainly focuses on a simple relation extraction task OR a perplexing
commonsense understanding task.

Frederick Zhang, University of Michigan

Introduction: Temporal Reasoning

Preamble: Temporal reasoning is essential for humans to perceive the world, understand daily
communications, and interpret the temporal aspects of experiences (Allen, 1983; Nebel and Burckert,
1995).

Background:

* The recent advent of LLMs has gathered substantial attention to reasoning tasks, while few LLMs
exist to handle temporal reasoning well.

« This task is inherently complex, mingled with implicit logical inference and the necessity for
profound world knowledge.

« Existing research mainly focuses on a simple relation extraction task OR a perplexing
commonsense understanding task.

Research objectives: Uncover and improve the inherent, global temporal reasoning capabilities of
LLMs.

Frederick Zhang, University of Michigan

Task: Temporal Graph Generation (TGG)

Task formulation: Given a high-level goal T
(e.g., business change) and a set of events V,
the objective is to produce a temporal graph
G(V, E) where a directed edge in E reveals
the temporal order between events.

Scenario:
Business Change

A: Government approve
the deal

B: Company plans on
acquisition

C: Offer acquisition deal

D: Companies negotiate

E: Companies merge

F: Companies reach a deal

Frederick Zhang, University of Michigan

Task: Temporal Graph Generation (TGG)

Task formulation: Given a high-level goal T
(e.g., business change) and a set of events V,
the objective is to produce a temporal graph
G(V, E) where a directed edge in E reveals
the temporal order between events.

Finding: Small, open-weight LLMs (<10B parameters)
lag behind large, proprietary LLMs by 25 F1 points.

Scenario:
Business Change

A: Government approve
the deal

B: Company plans on
acquisition

C: Offer acquisition deal

D: Companies negotiate

E: Companies merge

F: Companies reach a deal

Frederick Zhang, University of Michigan

Method: Narrative-of-thought (NoT)

1. Given a scenario and a set of events, NoT
first converts the input into a Python class.

Scenario:
Business Change

A: Government approve
the deal

B: Company plans on
acquisition

C: Offer acquisition deal

D: Companies negotiate

E: Companies merge

F: Companies reach a deal

Structuralize
Pythonify

class BusinessChange:

title = “Business Change" .

steps = 6
def stepA(self):
return “Government approve the deal”
def stepD(self):
return “Companies negotiate”
------ [more events]
def get_relations(self):
return [
“stepB -> stepC,
“stepC -> stepD”,
“stepD -> stepF”,
“stepF -> stepE”,
“stepA -> stepE”,

#\END /

Method: Narrative-of-thought (NoT)

1.

2. NoT guides LLMs to produce a temporally
grounded narrative by arranging events in
the correct temporal order, leveraging
LLMSs’ intrinsic temporal knowledge.

4;;:;Businesschange: 4‘\\\\

def stepE(self):
return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
#Let's think about a
narrative ...
def get_narrative(self):
#TODO
return “This is a report
about ‘business change’. First,
companies plan on an acquisition.
Then, they offer an acquisition
deal to the other company. The
other company accepts the deal and
the two companies start
negotiating the terms of the deal.
After they reach an agreement,
they submit the deal to the
government for approval. Once the
government approves the deal, the
companies can merge. By adhering
to the provided temporal
information, the desired goal is

achieved.”

Method: Narrative-of-thought (NoT)

3. Based on the recounted temporal relations
articulated in the narrative, LLMs are
instructed to sort events into a temporal
graph.

4I;;;Businesschange: ‘\\\\

def stepE(self):
return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
#lLet's think about a
narrative ---
def get_narrative(self):
#TODO
return “This is a report
about ‘business change’. First,
companies plan on an acquisition.
Then, they offer an acquisition
deal to the other company. The
other company accepts the deal and
the two companies start
negotiating the terms of the deal.
After they reach an agreement,
they submit the deal to the
government for approval. Once the
government approves the deal, the
companies can merge. By adhering
to the provided temporal
information, the desired goal is
achieved.”
def get_relations(self):
#TODO
return [
“stepA -> stepE”,

......

Method: Narrative-of-thought

* We further improve NoT by introducing high-
guality reference narratives as part of few-shot
demonstrations.

NARRATIVE-OF-THOUGHT prompting

=

DemoN

és WalkIntoStore: \

def stepA(self):
return “park the car”
def stepD(self):
return “get out of car”
------ [more events]
#let's think about a
narrative ...
def get_narrative(self):
return "This is a
report about walking into a
store. ... Once the car is
parked, the key is taken out of
the ignition. Next, the person
gets out of the car ..+ Finally
they walk into the store."
def get_relations(self):
return [
“stepA -> stepB”,
“stepB -> stepD”,

N)

Q BusinessChange: \

def stepE(self):
return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
#Let's think about a
narrative :--
def get_narrative(self):
#TODO
return “This is a report
about ‘business change’. First,
companies plan on an acquisition.
Then, they offer an acquisition
deal to the other company. The
other company accepts the deal and
the two companies start
negotiating the terms of the deal.
After they reach an agreement,
they submit the deal to the
government for approval. Once the
government approves the deal, the
companies can merge. By adhering
to the provided temporal
information, the desired goal is
achieved.”
def get_relations(self):
#TODO
return [
“stepA -> stepE”,

&)

[TEXT]: Key temporal information pertinent

to the presented partial temporal graph, i.e.,
return statement of get_relations(self).
[TEXT]: Generations by language models (LMs).
Note: Python class and instructions simplified.

Vanilla Demonstrations

4::;5 WalkIntoStore: —\\\
def stepA(self):

return “park the car”
def stepD(self):
return “get out of car”
s++ +oo [more events]
def get_relations(self):
return [
“stepB -> stepD”,
“stepA -> stepB”,

END

/

Narrative-aware
Demonstrations

és WalkIntoStore: \

def stepA(self):
return “park the car”
def stepD(self):
return “get out of car”
[more events]
#Let's think about a
narrative ---
def get_narrative(self):
return "This is a
report about walking into a
store. --- Once the car is
parked, the key is taken out of
the ignition. Next, the person
gets out of the car --- Finally
they walk into the store."
def get_relations(self):
return [
“stepA -> stepB”,
“stepB -> stepD”,

J

QD

Standard structural prompting

IS

(ass BusinessChange: \
def stepE(self):

return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
def get_relations(self):
#TODO
return [
“stepE -> stepF”,
“stepA -> stepB”,

Y/

Structuralized Chain-of-Thought

i

+

és BusinessChange: \
def stepE(self):

return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
#Let's think step by step
The “BusinessChange” class
represents the steps involved in
a business acquisition. ... StepE
leads to stepA, as the companies
merge and then the government
approves the deal ---
def get_relations(self):
#TODO
return [
“stepE -> stepA”,

_ -

Narrative-of-Thought overview and comparison

NARRATIVE-OF-THOUGHT prompting

[

DemoN

"4

Temporally Grounded
Narrative:

+ Better factuality
* More structural

¢ Lower redundancy

More accurate temporal
graph generation!

N

/

class BusinessChange: 4‘\\\\
def stepE(self):
return “companies merge”
def stepA(self):
return “government approve
the deal”
------ [more events]
#Let's think about a
narrative - .-
def get_narrative(self):
#TODO
return “This is a report
about ‘business change’. First,
companies plan on an acquisition.
Then, they offer an acquisition
deal to the other company. The
other company accepts the deal and
the two companies start
negotiating the terms of the deal.
After they reach an agreement,
they submit the deal to the
government for approval. Once the
government approves the deal, the
companies can merge. By adhering
to the provided temporal
information, the desired goal is
achieved.”
def get_relations(self):
#TODO
return [
“stepA -> stepE”,

g 2y,

TEXT]: Key temporal information pertinent

to the presented

partial temporal graph, i.e.,

return statement of get_relations(self).
[TEXT]: Generations by language models (LMs).
Note: Python class and instructions simplified.

Experimental Setup

Dataset: ProScript (Sakaguchi et al., 2021), Schema-11 evaluation set (Dror et al., 2023), and
WikiHow Script corpus (Lyu et al., 2021).

#iscenarios #events Max #events #temporal links Event length %Non-linear Domain

ProScrpt (Sakaguchi et al.) 2,077 7.46 9 0.95 4.64 39% Daily
Schema-11 (Dror et al.) 11 7.91 11 7.18 3.48 27% News
WikiHow Script (Lyu et al.) 291 8.37 20 7.37 9.63 0% Daily

Base LLMs:

* Open-weights: MISTRAL-7B (Jiang et al., 2023), GEMMA-7B (Mesnard et al., 2024), and
LLAMAS-8B (Al@Meta, 2024).

* Propriertary: GPT-3.5 and GPT-4 (OpenAl, 2023).

Evaluation Metric: We compare both semantic and structural similarities between ground-truth

temporal graph and machine-generated ones. We also report Pair-wise Consistency between two

generated graphs by the same model.

« Semantic similarity: we report edge-wise precision (P), recall (R) and F1.

« Structural similarity: We adopt Graph Edit Distance (GED; Abu-Aisheh et al., 2015) and Graph
Statistics.

Frederick Zhang, University of Michigan

Experimental Results (Selected)

Method Proscript Schema-11 WikiHow Script Avg.
FIt GEDJ k(G) Cons.T F11t GED| k(G) Cons.T F1t GEDJ| k(g) Cons.t F1t GED|
Baselines
Random 14.0 147 1.00 7.8 19.4 3.91 1.00 7.8 14.2 0.06 1.00 8.8 159 1.81
GPT-3.5 (0-shot)* 18.4 2.25 1.06 38.6 30.1 448 1.27 30.2 17.2 280 1.11 40.8 219 3.18
GPT-3.5 43.4 1.71 1.07 38.8 628 330 136 502 310 1.58 1.10 354 457 2.20
GPT-4 63.9 1.64 1.02 614 44.1 797 0.64 463 43.0 1.71 1.04 48.5 503 3.77
LLAMA3-8B (Al@Meta, 2024)
Standard Prompting 25.1 239 1.18 199 283 442 124 199 206 1.17 1.07 212 247 2.66
_Chain-of-Thought _ _ _ 30.1 _2.06 100 _ 233 373 579 08 _ 235 226 039 102 _243 300 _ 255

NOT (no reference) 35.5 1.88 1.00 253 526 318 1.12 35.0 254 099 1.02 209 [37.8 2.02

NOT (alphabetical meta) | 39.5 1.87 1.01 28.8 59.0 372 1.12 39.1 263 1.01 1.03 225 416 2.20
NOT (descriptive meta) 38.7 1.86 1.01 284 615 357 1.09 45.6 26.5 1.04 1.03 223 422 2.16

Note: Results of Gemma and Mistral refer to our paper. Results of fine-tuning also refer to our paper.

Frederick Zhang, University of Michigan

Experimental Results (Selected)

1)
2)
3)
4)

5)
6)

Method Proscript Schema-11 WikiHow Script Avg.
FI+ GED) k(G) Cons.t FIt GED| k(G) Const FIt GED) k(G) Cons.t FIt GED|
Baselines
Random 140 147 1.00 78 194 391 100 78 142 006 1.00 88 159 181
GPT-3.5 (0-shot)* 184 225 106 386 30.1 448 127 302 172 280 111 408 219 3.8
GPT-3.5 434 171 107 388 628 330 136 502 310 158 110 354 457 220
GPT-4 63.9 164 1.02 614 441 797 064 463 430 171 1.04 485 503 377
LLAMA3-8B (Al@Meta, 2024)

Standard Prompting 251 239 LIS 199 283 442 124 199 206 117 107 212 247 266
Chain-of-Thought 301 _ 206 100 233 373 579 085 235 226 099 102 243 300 295
NOT (no reference) 355 (188 1.00 253 526 [348 [i12] 350 (254 099 102 209 378 [202
NOT (alphabetical meta) | 39.5 [1.87 1.0l 288 (590 (372 [I12 (391 (263 101 1.03 225 (416 (220
NOT (descriptive meta) | 387 1.86 1.01 284 [61.5 (357 [109 (456 (265 104 [1.03 223 422 [206

Small LLMs struggle with temporal reasoning even with few-shot examples.

CoT is also ineffective at temporal reasoning, in line with existing findings (Chu et al., 2023).

GPT-4 sometimes falls off the throne due to additional alignment, when answering sensitive queries.

NoT is a powerful tool to assist small LLMs to catch up with or even surpass GPT-3.5, and presents strong
compatibility with various base LLMs. The average F1 improvements are between 16%-71%.
Temporally grounded narratives are significant in improving LLMs’ temporal reasoning process.

Al systems are far from mastering temporal reasoning, trailing the human baseline by 30 F1 points.

Frederick Zhang, University of Michigan

Further Analyses

RQ1: Does the number of shots matter?

RQ2: What characteristics define effective reference
narratives?

RQ3: How faithful is the temporal graph to intermediate narratives?

Frederick Zhang, University of Michigan

Further Analyses

RQ1: Does the number of shots matter?
Ans: The performance generally reaches its peak around

the range of 5-10 shots.

F1 scores of different methods with different number of shots

F1 score on Proscript
w .
[=] L

ra
(=]

[=)]
[=]

B
[=]

F1l score on Schema-11

204

S
[=]

w
w

o)
(8]

.//

\/

8 10 12 14

w
=

L)
(=]

] 63.5 -
» 62\ ‘
»

.-_______-________-———__

v

i‘f%'\:

Number of shots

—— GPT-3.5 NoT Prompting —— CoT

Frederick Zhang, University of Michigan

F1 comparison of meta prompt type,
input format and underlying model

Further Analyses T g

[GPT35 Descriptive
[GPT4 Alphabet
[GPT4 Descriptive

w w w
~ [++] o

F1 scores on Proscript

w
(1]

RQ2: What characteristics define effective reference 3
narratlves? . i i i o I GPT35 Alphabet
Ans: We identify three key characteristics for quality 60 = GPT35 Descriptive

[GPT4 Alphabet

News Report Simple English Role Play Simple Report

reference narratives: conciseness, simplicity and -y 58| [GPT4 Descriptive
factuality. E 56

%54

552

=
@

Avg: 47.57

=
=

MNews Report Simple English Role Play Simple Report
Meta prompt type

Further Analyses

RQ3: How faithful is the temporal graph to intermediate narratives?
Ans: We find a medium-to-high self-faithfulness of 72.8% where the

generated narrative and the temporal graph is aligned in terms of the
temporal order of events.

Frederick Zhang, University of Michigan

— o,

P

L)

Codebase and dataset are available at
https://github.com/launchnlp/NoT.

Contact: xlfzhang@umich.edu

This work supported by

M ‘ AHE AFOSR and UM Advanced
Research Computing.

Frederick Zhang, University of Michigan

	Slide 1: NARRATIVE-OF-THOUGHT: Improving Temporal Reasoning of Large Language Models via Recounted Narratives
	Slide 2: Introduction: Temporal Reasoning
	Slide 3: Introduction: Temporal Reasoning
	Slide 4: Introduction: Temporal Reasoning
	Slide 5: Task: Temporal Graph Generation (TGG)
	Slide 6: Task: Temporal Graph Generation (TGG)
	Slide 7: Method: Narrative-of-thought (NoT)
	Slide 8: Method: Narrative-of-thought (NoT)
	Slide 9: Method: Narrative-of-thought (NoT)
	Slide 10: Method: Narrative-of-thought
	Slide 11: Narrative-of-Thought overview and comparison
	Slide 12: Experimental Setup
	Slide 13: Experimental Results (Selected)
	Slide 14: Experimental Results (Selected)
	Slide 15: Further Analyses
	Slide 16: Further Analyses
	Slide 17: Further Analyses
	Slide 18: Further Analyses
	Slide 19

