

CliniQG4QA: Generating Diverse Questions for Domain Adaptation of Clinical Question Answering

Xiang Yue^{1*}, Xinliang Frederick Zhang^{1,2*}, Ziyu Yao³, Simon Lin⁴ and Huan Sun¹

- ¹ The Ohio State University
 - ² University of Michigan
- ³ George Mason University
- ⁴ Nationwide Children's Hospital

^{*} These two authors contributed equally

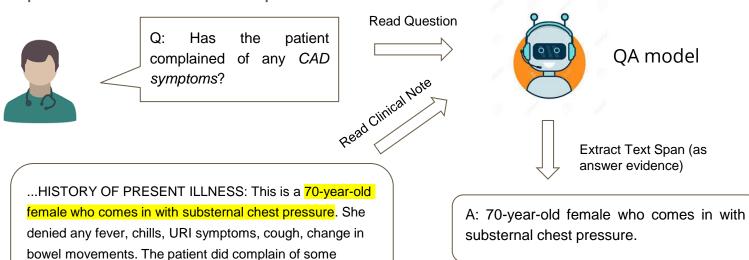
Question Answering

What is COVID-19?

What is the risk of my child becoming sick with COVID-19?

What is the main cause of HIV-1 infection in children?

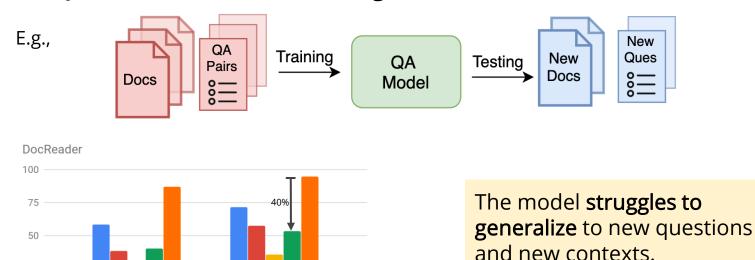
AUTOMATIC QUESTION ANSWERING



Clinical Reading Comprehension (CliniRC)

bilateral foot edema 1-2 weeks prior to admission.

Automatically answer a user (e.g., doctor/clinician/researcher) question for a specific patient based on the patient clinical note.



Generalization Issue

■ Existing ■ Paraphrased ■ New ■ Overall ■ emrQA Test set

25

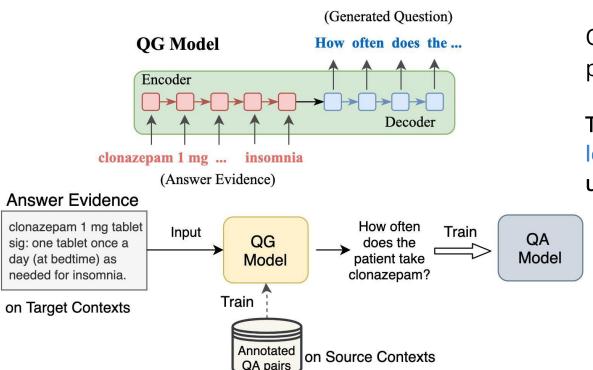
A fully-trained QA model should generalize to a new environment

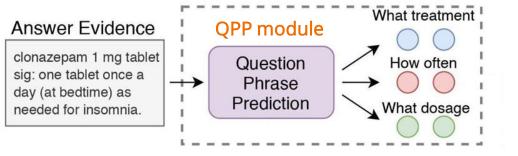
4

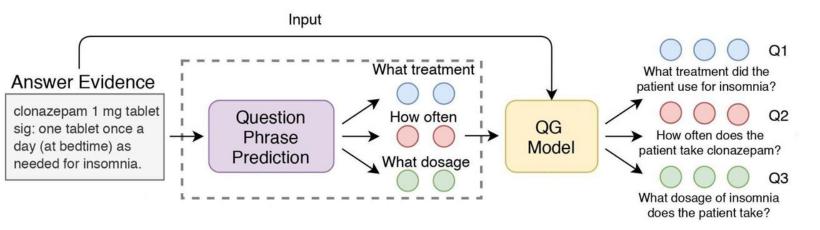
Crowdsourcing? Full Human Annotations?

Highly Impractical!

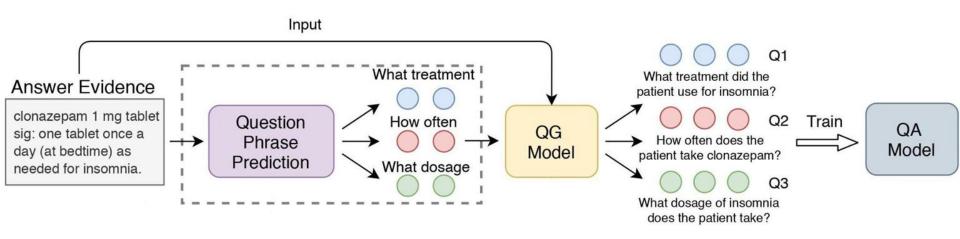
- Considerable medical expertise
- Data handling must be specifically designed
- Ethical issues
- Privacy concerns
- Time-consuming
- Costly
- ...

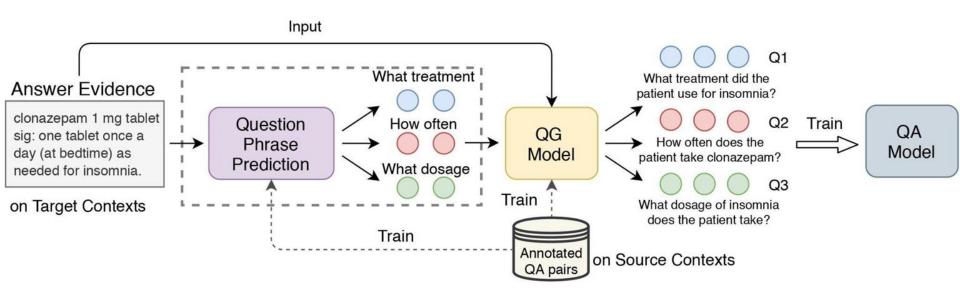



Question Generation for Question Answering (QA)

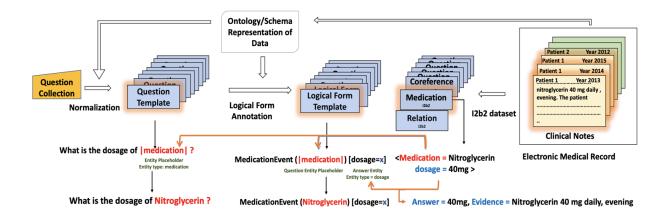

One issue we observe in our preliminary experiment:

The generated questions are less diverse, which are less useful for improving QA


Step 1: Diverse question phrase generation via our QPP module


Step 2: QG model completes the rest of the question

Step 3: Generated QA pairs are used to further train QA model



QG and QPP are trained on the source domain data

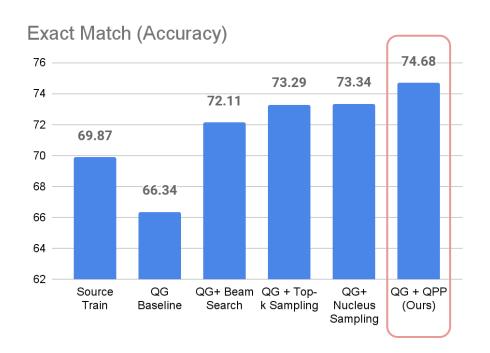
Datasets

Source domain data: emrQA [Pampari+ 2018]

Datasets

Target domain Test data: We ask clinical experts to annotate <u>1,287</u> QA pairs on **MIMIC-III clinical texts** for testing purpose.

- Human-Generated (HG) (<u>312</u> QA pairs): Questions created by human experts.
- Human-Verified (HV) (<u>975</u> QA pairs): Questions automatically generated by 3 base QG models and their variants used in this work, which are further verified by experts to ensure the correctness.

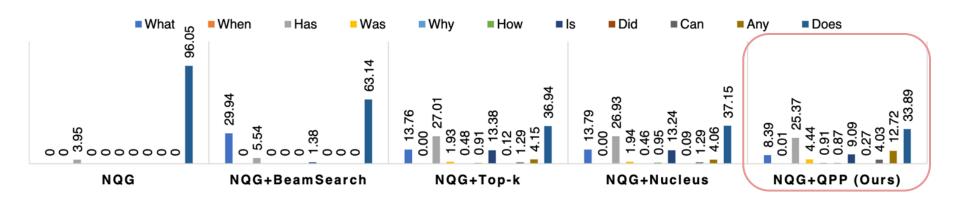

QA Results on New Documents

	DocReader [6]							ClinicalBERT [31]						
QA Datasets	Human		Human		Overall		Human		Human		Overall			
	Generated		Verified		Test		Generated		Verified		Test			
	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1		
emrQA [3]	69.87	83.66	61.44	78.82	63.48	79.99	69.23	82.83	61.23	78.56	63.17	79.59		
NQG [10]	66.99	79.67	64.71	79.36	65.26	79.43	67.30	82.59	59.49	76.68	61.38	78.11		
+ BeamSearch	71.15	83.07	67.07	81.21	68.07	81.66	68.91	84.26	63.17	79.17	64.56	80.40		
+ Top-k Sampling	71.58	83.48	66.77	80.45	67.94	81.19	67.74	81.96	60.82	78.16	62.50	79.08		
+ Nucleus Sampling	70.62	83.68	67.16	80.37	68.00	81.17	68.70	83.21	62.36	77.89	63.90	79.18		
+ QPP (Ours)	74.36	85.18	68.82	82.89	70.09	83.44	69.23	84.33	63.79	79.56	65.11	80.72		
NQG++ [15]	66.34	81.34	65.94	78.71	66.04	79.35	65.06	80.11	59.59	75.85	60.92	76.88		
+ BeamSearch	72.11	84.56	68.10	80.09	69.07	81.17	68.26	83.70	64.61	80.30	65.50	81.12		
+ Top-k Sampling	73.29	85.56	69.11	82.38	69.41	83.35	70.19	85.61	62.84	79.77	64.62	81.19		
+ Nucleus Sampling	73.34	84.95	68.94	81.72	70.01	82.51	70.19	84.72	63.93	79.54	65.45	80.80		
+ QPP (Ours)	74.68	85.92	70.05	83.47	71.10	84.06	70.83	85.76	65.33	80.64	66.67	81.88		
BERT-SQG [34]	70.19	81.47	66.05	79.64	67.05	80.08	65.06	82.20	59.59	78.04	60.92	79.05		
+ BeamSearch	73.71	84.44	68.71	81.98	69.93	82.58	67.31	82.54	61.94	79.02	63.25	79.88		
+ Top-k Sampling	72.81	84.16	69.20	82.24	70.07	82.71	69.12	84.20	60.44	78.27	62.55	79.71		
+ Nucleus Sampling	70.73	83.60	68.56	81.80	69.09	82.24	67.74	83.16	61.61	78.74	63.09	79.81		
+ QPP (Ours)	74.36	85.53	70.77	83.60	71.64	84.07	69.23	85.38	64.21	80.53	65.43	81.71		

QA Results on New Documents

	DocReader [6]							ClinicalBERT [31]						
QA Datasets	Human Generated		Human Verified		Overall Test		Human Generated		Human Verified		Overall Test			
													EM	F1
	emrQA [3]	69.87	83.66	61.44	78.82	63.48	79.99	69.23	82.83	61.23	78.56	63.17	79.59	
NQG [10]	66.99	79.67	64.71	79.36	65.26	79.43	67.30	82.59	59.49	76.68	61.38	78.11		
+ BeamSearch	71.15	83.07	67.07	81.21	68.07	81.66	68.91	84.26	63.17	79.17	64.56	80.40		
+ Top-k Sampling	71.58	83.48	66.77	80.45	67.94	81.19	67.74	81.96	60.82	78.16	62.50	79.08		
+ Nucleus Sampling	70.62	83.68	67.16	80.37	68.00	81.17	68.70	83.21	62.36	77.89	63.90	79.18		
+ QPP (Ours)	74.36	85.18	68.82	82.89	70.09	83.44	69.23	84.33	63.79	79.56	65.11	80.72		
NQG++ [15]	66.34	81.34	65.94	78.71	66.04	79.35	65.06	80.11	59.59	75.85	60.92	76.88		
+ BeamSearch	72.11	84.56	68.10	80.09	69.07	81.17	68.26	83.70	64.61	80.30	65.50	81.12		
+ Top-k Sampling	73.29	85.56	69.11	82.38	69.41	83.35	70.19	85.61	62.84	79.77	64.62	81.19		
+ Nucleus Sampling	73.34	84.95	68.94	81.72	70.01	82.51	70.19	84.72	63.93	79.54	65.45	80.80		
+ QPP (Ours)	74.68	85.92	70.05	83.47	71.10	84.06	70.83	85.76	65.33	80.64	66.67	81.88		
BERT-SQG [34]	70.19	81.47	66.05	79.64	67.05	80.08	65.06	82.20	59.59	78.04	60.92	79.05		
+ BeamSearch	73.71	84.44	68.71	81.98	69.93	82.58	67.31	82.54	61.94	79.02	63.25	79.88		
+ Top-k Sampling	72.81	84.16	69.20	82.24	70.07	82.71	69.12	84.20	60.44	78.27	62.55	79.71		
+ Nucleus Sampling	70.73	83.60	68.56	81.80	69.09	82.24	67.74	83.16	61.61	78.74	63.09	79.81		
+ QPP (Ours)	74.36	85.53	70.77	83.60	71.64	84.07	69.23	85.38	64.21	80.53	65.43	81.71		

QA Results on New Documents


QG baseline: NQG++ QA baseline: DocReader

Dataset: Human-Generated (HG) Set

Our diverse QG (QG+QPP) method:

- 5% absolute improvement over source training
- 2) 1%-2% absolute gain over other diverse generation strategies

Why QG Boosts QA on New Documents?

Diverse Questions Matter!

Why QG Boosts QA on New Documents?

QA Example from MIMIC-III

Context: ... he was guaiac negative on admission. hematocrit remained stable overnight. 5. abd pain: suspect secondary to chronic pancreatitis. amylase unchanged from previous levels. ...

Question: Why did the patient get abd pain?

Answer by QA model trained on

-emrQA: 5. abd pain *-NOG*: 5. abd pain:

-NQG+BeamSearch: 5. abd pain:

-NQG+Top-k: 5. abd pain: -NOG+Nucleus: 5. abd pain:

-NQG+QPP: 5. abd pain: suspect secondary to chronic pancreatitis.

QG Example from MIMIC-III

Context: ... the patient was taking at home prior to admission were not restarted. 25. acetaminophen 325-650 mg po/ng q6h:prn pain 26. dabigatran etexilate 150 mg po bid...

Questions generated by

-NQG: Does the patient have any pain?

-NQG+BeamSearch: Does the patient have any pain history? Does the patient have pain? Does the patient have any pain?

-NQG+Top-k: Has the patient ever had any pain? Has the patient ever reported pain? Does the patient have a history pain?

-NQG+Nucleus: Has the patient ever gone into pain? What happened when she was given morphine? Is there mention pain anywhere in the record?

-NQG+QPP: Why did the patient have acetaminophen? What treatment has the patient had for his pain? How was pain treated? Does the patient have any pain? ...

Diverse Questions Matter!

Summary

- Generating diverse QA pairs on the target contexts
 - QPP module plays an important role in generating diverse questions
 - Diverse synthetic data improves clinical QA performance on the target clinical documents

Future Work

- Test our method on more target datasets
- Explore more advanced QG methods

Code is available at:

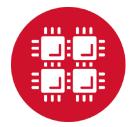
https://github.com/sunlab-osu/CliniQG4QA/

Data is available at:

https://physionet.org/content/mimic-iii-question-answer/1.0.0/

Git Repo QR code

Data QR code


Thanks!

Questions?

Research Supported by NSF, PCORI, ARO, Ohio Supercomputer Center