
FINDR: A Fast Influential Data Selector for NL2Code Pretraining

Xinliang Frederick Zhang and Lu Wang

Computer Science and Engineering, University of Michigan, Ann Arbor, MI

{xlfzhang,wangluxy}@umich.edu

Abstract

Pretraining on massive corpora has given rise
to large language models (LLMs) with multi-
task capabilities. However, real-world appli-
cations often require more specialized train-
ing, as is the case of NL2Code. We ap-
proach this specialization through the lens of
data selection, i.e., identifying a subset of a
large corpus that aligns with a desired target
distribution—a challenge that remains under-
explored within NL2Code. Existing methods
are typically designed for selecting instruction-
tuning data, and might not easily scale to
large-scale code repositories; while methods
for NL2Code do exist, they primarily rely
on coarse heuristics—–such as repo stars—–
for filtering. To bridge this gap, we propose
FINDR, an efficient data selection method that
extends logistic regression with feature-wise
importance reweighting—marking it, to our
knowledge, the first fine-grained solution to
NL2Code pretraining. Our method uses hashed
n-grams and code-aware features to capture
code-specific patterns, and then apply informa-
tive priors to reweight feature importance when
computing influence scores. Extensive experi-
ments on NL2Python and NL2SQL, with two
model families, show that FINDR consistently
outperforms strong baselines in both execution
accuracy and token efficiency. Notably, pre-
training on only 2% of FINDR-selected data
boosts Gemma by over 29% in both domains,
even surpassing CodeGemma (pretrained on
300x more examples) by 10% in Python.1

1 Introduction

Large language models (LLMs), such as GPT-
4 (OpenAI, 2023), LLaMA3 (AI@Meta, 2024),
Gemma (Mesnard et al., 2024), and Mistral (Jiang
et al., 2023) have demonstrated remarkable capabil-
ities across a wide range of natural language (NL)

1Due to budget constraints, we study the pretraining of
small LLMs (< 3B) in this work (see Limitation section).

 Selection
 Efficiency

 Token
 Efficiency

Compatibility

Python
Skill

SQL
Skill

Overall
Rating

1

2

3

4

5

Random

Quality

BM25

DSIR

FINDR
(Ours)

Overall Comparison of Data Selectors
Random
Quality
BM25
DSIR
FINDR
(Ours)

Figure 1: Overall comparison of our proposed FINDR
with strong baseline data selectors. FINDR yields the
best rating by balancing effectiveness and efficiency.
See §A for detailed rubric behind this chart.

tasks, often surpassing expert-engineered NLP sys-
tems. Their success can be largely attributed to
training on massive corpora (Gao et al., 2021),
which capture diverse linguistic patterns and world
knowledge (Chowdhery et al., 2023). However, as
these models are adapted to more specialized down-
stream tasks, a significant fraction of pretraining
data can become extraneous and counterproduc-
tive to such target tasks. In NL2Code (translat-
ing natural language into code; Dehaerne et al.,
2022; Xu and Zhu, 2022), the choice of relevant
and quality training data is even more crucial, since
irrelevant data could introduce noisy, misleading
examples that hinder the model’s code generation
quality (Wang et al., 2023a; Zan et al., 2023). Thus,
selecting a subset of code-specific data is essential
for adapting a general-purpose LLM to NL2Code
tasks. However, manually curated code datasets are
time-consuming, error-prone, and limit both scale
and diversity (Yu et al., 2018; Hendrycks et al.,
2021). Therefore, there presents a pressing need for
automated data selection framework for NL2Code
to mitigate these drawbacks and dynamically tailor
to users’ needs.

A growing body of work highlights the impor-
tance of data selection for efficient pretraining or
fine-tuning of LLMs (Feng et al., 2022; Chowdhery
et al., 2023; Albalak et al., 2024). Two comple-
mentary perspectives are typically involved in this
space: data composition (Soldaini et al., 2024)—
deciding the ratio and types of data to include
(e.g., NL vs. code)—and coreset selection (Phillips,
2016), where the goal is to identify the most im-
portant subset of the training data. In this work,
we focus on coreset selection, where we seek a
small subset of pretraining data that leads to per-
formance on par with or better than full-dataset
training. Recent advances, such as targeted instruc-
tion tuning (Xia et al., 2024), further highlight the
impact of selecting the “right” data to cut computa-
tional costs and improve target skills.

Despite growing interest in data selection (Xie
et al., 2023; Han et al., 2023; Xia et al., 2024),
most existing methods remain computationally ex-
pensive because they were originally designed for
instruction-tuning data (Wang et al., 2024), which
might not scale easily to large pretraining cor-
pora. While data selection techniques do exist for
NL2Code (e.g., filtering by doc length or repo stars;
Cao et al., 2023; Zan et al., 2023), they primarily
rely on overly coarse heuristics that overlook subtle
differences in examples. Consequently, scalable
and fine-grained data selection in NL2Code are
left relatively under-explored. To address these
limitations, we propose an efficient data selector,
FINDR (Fast INfluential Data Ranker), an exten-
sion of logistic regression with feature-wise impor-
tance reweighting. In addition, to capture code-
specific constructs (e.g., vectorized function calls;
Nasrabadi et al., 2023), we augment FINDR’s
hashed n-gram feature extractor with code-aware
feature.2 With these fast yet accurate designs,
FINDR manages to strike a balance between data
selection effectiveness and efficiency, making it par-
ticularly well-suited for large-scale settings.

We perform extensive experiments to evaluate
FINDR on NL2Python (Lai et al., 2022) and
NL2SQL (Li et al., 2024b) using two distinct small
LLM (sLLM) families, demonstrating both its ef-
fectiveness and efficiency. Our results reveal that
FINDR selects on-target data that consistently
boosts base models across domains and generally
outperforms strong baselines by non-trivial mar-

2Although we introduce code feature tailored to NL2Code,
FINDR can be seamlessly adapted to large-scale unlabeled
data by adjusting the custom feature space for other domains.

gins. For instance, on Python, FINDR improves
the base model by 16% to 36%, and surpasses
the SOTA selector, DSIR (Xie et al., 2023), by
10%. While BM25 remains a strong baseline (Xia
et al., 2024), FINDR is substantially more effi-
cient, processing 47 million Python files in 3.5
GPU hours compared to BM25’s 760 CPU hours.
Notably, training Gemma on 2% of data selected by
FINDR outperforms CodeGemma by 10%, which
consumes 300 times more examples. Moreover,
the proposed FINDR exhibits robust generaliza-
tion as verified in two model families including
both general-domain and code-specific sLLMs.

We summarize major contributions as follows:
• We are the first to systematically study a suite

of data selection methods for NL2Code con-
tinued pretraining, and perform comprehen-
sive comparison among them (Figure 1).

• We propose FINDR, an efficient data se-
lector to capture nuanced data influence at
scale, which integrates code-aware features
into hashed n-gram representations, and aug-
ments logistic regression with informative pri-
ors for feature-wise importance reweighting.

• Experiments on downstream NL2Python and
NL2SQL tasks showcase that FINDR boosts
base models substantially while efficiently
identifying on-target data from large-scale
pretraining corpus.

• We validate that FINDR robustly outperforms
four baselines, including the SOTA selec-
tor (Xie et al., 2023), across two sLLMs
(DeepSeek-Coder and Gemma) and two lan-
guages (Python and SQL) by large margins.

2 Related Work

2.1 Data Selection
Data selection has recently emerged as a fundamen-
tal research topic for LLMs (Coleman et al., 2020;
Xia et al., 2020; Paul et al., 2021; Sachdeva et al.,
2024). Two primary directions are data composi-
tion (Soldaini et al., 2024), which optimizes the mix
of different data sources (e.g., natural language vs.
code), and coreset selection (Phillips, 2016), which
identifies a small, representative subset (the “core-
set”) that captures the dataset’s essential features.
While data composition can improve transparency
and help inform decision-making process (Gebru
et al., 2021; Elazar et al., 2024), ever higher com-
pute spending has attracted increasing attention
to coreset selection (Killamsetty et al., 2021; Xia

et al., 2023; Griffin et al., 2024). By focusing on the
most influential data, coreset selection significantly
cuts training costs without degrading performance,
benefiting both pretraining (Xie et al., 2023; Han
et al., 2023) and instruction tuning (Xia et al., 2024;
Wang et al., 2024). In this work, we frame data se-
lection as a coreset selection problem, developing
efficient methods for identifying training subsets
that match, or even exceed, the performance of
training on manual selections (Feng et al., 2022) or
even the full corpus.

Existing data selection approaches mainly fall
into three broad categories. The first is random
sampling, which, despite its simplicity and unbi-
ased nature, results in uninformative selections that
fail to represent the target domain (Devlin et al.,
2019; Gururangan et al., 2020; Guo et al., 2022).
The second relies on surface-level matching to
make informed but efficient selections, including
BM25 (Robertson and Zaragoza, 2009), DSIR (Xie
et al., 2023), among others (Jiang and Zhai, 2007;
Moore and Lewis, 2010; Du et al., 2022). DSIR, for
instance, uses hashed n-gram features to represent
documents and applies a Naïve Bayes model for
data selection. Yet, they struggle with document-
length variations: BM25 favors lengthy documents
while DSIR selects overly short ones. Quality Clas-
sifier (Brown et al., 2020) is a more robust method,
which leverages logistic regression and has be-
come a standard for pretraining data selection (Gao
et al., 2021; Chowdhery et al., 2023). However,
this approach overlooks per-feature importance.
FINDR is a surface-level matching method which,
inspired by importance weighting for domain adap-
tation (Shimodaira, 2000; Sugiyama et al., 2007),
introduces feature-wise importance reweighting to
capture nuances among features.

The third category relies on fine-grained feature
representations—such as embeddings (Chen et al.,
2023; Wu et al., 2023; Xiao et al., 2024), gradi-
ents (Han et al., 2023; Xia et al., 2024), perplex-
ities (Li et al., 2024c) or entropies (Kousar et al.,
2025)—often combined with pairwise comparisons.
While these methods can capture more subtleties
in the data, they typically incur quadratic compute
complexity, thus restricted to instruction data selec-
tion only (Wang et al., 2024). Recent approaches
use ChatGPT (Zheng et al., 2023; Liu et al., 2024)
to assess data relevance via prompting, but high
API costs limit their scalability, especially when
re-runs are needed. In contrast, FINDR offers
an informed solution that is tractable at the scale

needed for unlabeled pretraining data selection.

2.2 Natural Language to Code (NL2Code)
Translating natural language problem description
into code (NL2Code) has attracted substantial atten-
tion for its potential to enhance developer produc-
tivity and democratize software development (Alla-
manis et al., 2018; Dehaerne et al., 2022; Zan et al.,
2023). Early studies approached NL2Code through
RNN (Iyer et al., 2016), LSTM (Eriguchi et al.,
2016) and CodeBERT models (Feng et al., 2020),
often incorporating syntax-aware architectures to
capture the structural nature of code (Yin and Neu-
big, 2017). While these methods mark significant
progress over rule-based baselines (Allamanis and
Sutton, 2014), they rely on large amounts of la-
beled language-code pairs, limiting coverage and
incurring considerable implementation costs.

Most recent progress stems from LLMs (Chen
et al., 2021a; Fried et al., 2023; Guo et al., 2024)
(continuously) pretrained on massive unlabeled
code from GitHub and StackOverflow. These mod-
els exhibit strong zero- and few-shot learning ca-
pabilities, often requiring minimal tuning or just
prompt engineering to excel at coding tasks (Barke
et al., 2023; Zheng et al., 2024a; Zhang et al.,
2024b). As model sizes grow, LLMs demonstrate
emergent capabilities such as debugging (Kang
et al., 2025). Despite showing promise as coding
assistants, LLMs can still introduce bugs (Nguyen
and Nadi, 2022), indicating a need for further re-
finement before reaching human-level competence.

While data selection has been increasingly stud-
ied for NL generation, it remains under-explored
for NL2Code. In contrast to NL domains, where
selecting instruction data drives sophisticated algo-
rithms, NL2Code datasets are predominantly unla-
beled (HuggingFace, 2021; Kocetkov et al., 2022).
Consequently, current practice for NL2Code is lim-
ited to basic filtering techniques to ensure code files
are deduplicated, complete, and clean (Chen et al.,
2021a; Li et al., 2022; Fried et al., 2023; Nijkamp
et al., 2023): remove incomplete or auto-generated
files and discard rarely used repos. While these
heuristics offer decent opportunities for filtering
out undesired code, they are not meant for filtering
in (“finding”) the relevant code for a target domain.

Move beyond coarse heuristics, we introduce
FINDR, a more fine-grained data selection al-
gorithm tailored to NL2Code, while extensible
to other large-scale unlabeled scenarios. To our
knowledge, this is the first systematic study of data

Training Candidates Features Validation
Samples

Features
Select data
using FINDR

Feed Dtrain
into LLM

Stage 1a: Feature Extraction
on Training Candidates

Stage 1b: Feature Extraction
on Validation Samples

Stage 2: Influence Calculation

Training Corpus (Draw): StackV2
47 million Python scripts & 4
million SQL scripts

Validation Set (Dvalid):
105 Python samples,
50 SQL samples

Data Selection: Logistic regression model
with feature-wise importance reweighting

unigram
Hashed
bigrams

Code
features

Dtrain

FINDR 𝑥 = 𝜎 𝐖⊤Agg Φ⊙ Emb 𝐹 𝑥 LLMs: Gemma,
DeepSeek-Coder

Python: DS1000
SQL: BIRD-mini

Informative
Priors

FINDR

Train

Figure 2: Overview of FINDR. We first extract code-feature-augmented representations (§3.1), and then leverage
informative priors to apply feature importance reweighting to compute influence scores (§3.2). The light blue bubble
(stage 2) denotes decision boundary.

selection for NL2Code, enabling more efficient and
targeted pretraining of sLLMs for code generation.

3 Method: FINDR

Figure 2 provides an overview of the two stages
behind FINDR, feature extraction and influ-
ence calculation, specifically instantiated in the
NL2Code setting. Here, we aim to select the most
influential subset of data, Dtrain, from a large cor-
pus, Draw, for continued pretraining of LLMs.

To begin, we obtain code-tailored features by
running our feature extractor (§3.1) over the entire
training corpus (Draw). Next, we utilize a small
set of validation examples, Dval, which mirrors the
target test data, Dtest. Indeed, small-scale valida-
tion sets have proven effective for model tuning
and domain adaptation (Kirstain et al., 2022; Zhou
et al., 2023; Zhang et al., 2024c). The stage 1 pro-
cess is highly flexible: whenever we have a new
target dataset (Dtest) or a shift in domain, we can
easily gather a reasonably small validation set to
guide the data selection. Hence, FINDR becomes
a plug-and-play solution that can seamlessly adapt
to evolving requirements.

Stage 2 is where we measure the influence of
candidate training points with respect to the small
validation set (Dval), detailed in §3.2. By focusing
on the most influential data, we can reduce training
time and resource consumption, which is especially
critical for LLMs. After computing the influence
scores, we feed the selected data into an LLM for
continued pretraining. Notably, this can be done
either stochastically—sampling data points based
on normalized FINDR scores (with high-scoring
samples possibly repeated in Dtrain)—or deter-
ministically by selecting the top k%3 of Draw to

3In this paper, we set a fixed k = 2 unless otherwise noted,
similarly to Xia et al. (2024).

construct Dtrain, ensuring stable coverage of top-
scoring examples. We adopt the deterministic ap-
proach because, as seen in preliminary experiments,
it yields more consistent improvements and simpli-
fies hyperparameter tuning, leaving the stochastic
approach for future exploration.

3.1 Feature Extraction (Stage 1)

Considering our goal is to extract features for a
massive number of data points in an efficient man-
ner, we choose to trade off some representational
expressiveness for higher efficiency. Instead of
relying on semantically rich embedding methods
(e.g., static (Pennington et al., 2014) and genera-
tive (Devlin et al., 2019) embeddings), we adopt
n-gram bag-of-words as a practical solution. In-
spired by existing work on feature extraction for NL
data (Joulin et al., 2017; Xie et al., 2023), we note
that using unigrams alone fails to capture subtle
surface-level signals, such as word-pair interactions
and ordering cues, but enumerating all bigrams is
intractable. Hashed bigrams, instead, strike a prac-
tical balance by reducing computational overhead
while retaining valuable contextual information.

Beyond textual features, we additionally intro-
duce a code-specific representation—code fea-
ture—that model programming language-specific
functions/patterns. For instance, one feature bucket
tracks the frequency of NumPy array creation
functions (e.g., numpy.array(), numpy.zeros()).
This helps highlight operations that are particularly
relevant to coding. Refer to Table A6 for more
examples of code-feature buckets. To summarize,
our feature extractor encapsulates both lexical and
semantic properties of code (i.e., surface-level un-
igram, hashed bigrams, and abstracted function
descriptions), enabling richer representation for
subsequent selection steps.

3.2 Influence Calculation (Stage 2)

In order to efficiently compute influence scores
from the feature representations introduced in §3.1,
we build upon a logistic regression (LR) model.
LR has long been favored in large-scale natural lan-
guage understanding tasks for its simplicity, ease
of interpretation, and robust performance (Brown
et al., 2020; Chowdhery et al., 2023; Gao et al.,
2021). Equation (1) depicts our FINDR score
calculation for each data point x, extending prior
LR-based models with feature-wise importance
reweighting and incorporating a novel Φ[·] func-
tion that implements informative priors.

FINDR(x)=σ
(
W⊤Agg (Φ⊙(Emb (F (x))))

)
(1)

where the parameters W and Emb[·] are trainable,
while Agg[·] denotes the aggregation function (i.e.,
generating document-level representations), and
F (x) ∈ RN is the extracted feature for an input
data x (described in §3.1).

The feature-wise importance score is computed
using Φ[·] ∈ RN ,4 formulated as in eq. (2).

Φ[Dval,Draw] = min(REG[
Φ′
Dval

[f]

Φ′
D′

raw
[f]

],M) (2)

where Φ′
D[f] is the frequency-based raw impor-

tance score (eq. (3)), REG is a regularization factor
balancing priors vs. uniform weights (eq. (4)), and
M caps scores to prevent feature-wise shortcuts.

Raw Importance Score Calculation. We begin
with computing raw importance scores,5 by count-
ing the relative frequency of each individual feature
for two sets of data: Dval as the positive set and
D′

raw
6 as the negative set. Formally,

Φ′
D[f] =

∑n
j=1 fj∑n

i=1 1
⊤fi

(3)

where fi represents the feature vector for the code
file i, extracted as in §3.1, and n denotes the size
|D|. This frequency-based score calculation strikes
a balance between simplicity and scalability, mak-
ing it especially appropriate for large collections of
unlabeled code.

Regularization Component (REG). The REG
component serves as a regularization mechanism
controlled by the hyperparameter γ ∈ [0, 1]. The

4For simplicity, we use Φ[·] to represent Φ[Dval,Draw].
5We use “influence” to denote data point-level FINDR

score, while “importance” means feature-wise weights.
6The construction of D′

raw is detailed in §E.1.

γ modulates the reliance on priors versus uniform
feature weighting as follows:

• γ = 1: The model reduces to a standard LR
model, assigning equal weights to features.

• γ = 0: The model fully leverages priors, al-
lowing nuanced feature distinctions.

REG[ϕ] = γ(1− ϕ) + ϕ (4)

where ϕ is instantiated as the difference of raw
importance scores between positive and negative
sets, as shown in eq. (2).

Furthermore, to address the size imbalance be-
tween Dval and D′

raw, we introduce a rescaling fac-
tor C, and thus replace ϕ with ϕ

C in Equation (4).
In fact, such imbalances can lead to skewed fea-
ture importance scores, particularly when smaller
sets disproportionately influence the learning pro-
cess (Henning et al., 2023). In contrast, the factor
C ensures comparability between sets of varying
sizes. Specifically, we implement two types of
rescaling factors: accumulated feature count differ-
ence (AFC) and document count difference (DC).
That is, AFC addresses the size difference based on
the total number of feature occurrences, while DC
is only concerned about the number of code files.

Capping Scores. In our preliminary studies, we
find that certain features, e.g., project-specific vari-
able names, can show up in short bursts, yielding
tremendously large importance scores. Those rare
yet inconsequential tokens will, however, disrupt
the training process of FINDR. Thereby, as indi-
cated in eq. (2), we cap each feature’s importance
score at M to resolve such anomalies and prevent
FINDR from picking up unexpected artifacts.

4 Experiments

4.1 Datasets and Evaluation Metrics

Pretraining corpus. We consider StackV2
(Lozhkov et al., 2024) as Draw for selecting Dtrain

for our target tasks. StackV2 is a large-scale code
corpus of more than 3 billion files in 600+ pro-
gramming languages, primarily sourced from pub-
lic GitHub repos. Our focus is on two subsets:
Python and SQL. Combined, these subsets com-
prise approximately 50 million scripts with an aver-
age length of 3, 412 characters. Specifically, there
are 46.64M Python scripts (totaling 300GB) and
3.63M SQL scripts (totaling 40GB).

Evaluation benchmarks. To assess performance
and generalizability, we evaluate baselines and

DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

Base Model 19.9 9.2 17.5 6.8 12.0 15.1 13.8 7.2 9.8 4.9 7.6 10.1
Random Selection 20.7 8.6 16.7 4.9 11.0 14.7 15.3 6.6 10.7 6.2 8.2 10.9

Quality Classifier 21.2 9.3 15.8 6.2 11.2 15.1 17.0 10.5 11.5 6.2 9.7 12.5

BM25 22.2 6.6 14.1 5.6 9.5 14.4 21.0 7.9 14.5 4.9 9.8 14.2
DSIR 22.2 9.9 17.5 5.9 12.0 15.9 15.3 5.3 12.4 5.6 8.4 11.1
FINDR (Ours) 24.2 12.2 18.4 7.1 13.3 17.5 19.0 9.2 14.1 6.2 10.4 13.7

Table 1: Comparison of FINDR with data selection baselines in the Python domain, measured by Pass@1, when
training with 2% of selected data. Base model denotes out-of-the-box evaluation without additional training. Per Lai
et al. (2022), we conduct 0-shot evaluation, and we report individual results on 4 problem types and the aggregated
perturbation set. Best results are bold, and informed data selectors that outperform the base model are highlighted
on a scale of 5 red shades (color schemes in §B). Overall, FINDR improves base Coder and Gemma by 16%
and 36%. Notably, FINDR attains the highest score on perturbed items, showcasing the robustness of FINDR.
Efficiency comparison, i.e., data selection efficiency, is provided in Table A4 (Selection Time column).

FINDR on two target tasks/domains (Dtest).7 In
the Python domain, we focus on the still largely
unresolved DS-1000 (Lai et al., 2022), instead of
widely studied benchmarks like HumanEval (Chen
et al., 2021b) and MBPP (Austin et al., 2021),
which have approached saturated performance (Ta-
ble A8). DS-1000 comprises 1, 000 data science-
oriented code generation problems spanning seven
scientific computing libraries, e.g., NumPy. For
SQL, we adopt the challenging BIRD (Li et al.,
2024b), which comprises 95 databases across 37
professional areas, and narrows the gap between
experimental and real-world settings seen in other
benchmarks (Zhong et al., 2017; Yu et al., 2018).
In this work, we use its recent derivative, BIRD-
miniDev,8 released in June 2024, which supports
diverse database management systems.

Following the literature (Xia et al., 2024), we
also hold out a subset of examples as Dval for guid-
ing data selection. Statistics are shown in Table A5.

Evaluation metrics. For Python DS1000 (Lai
et al., 2022), we use the pass@1 accuracy, which
evaluates functional correctness based on test case
success and adherence to surface-form constraints
(e.g., mandatory use of vectorized operations). For
SQL (Li et al., 2024b), we report Execution (EX),
which checks if predicted and ground-truth queries
produce identical results, and Soft F1-score, which
measures the similarity between the tables pro-
duced by generated and reference SQL queries.

4.2 Experiment Setup

We include recent small LLMs that excel at reason-
ing and code completion tasks: coding-specialized
sLLM, DeepSeek-Coder-1.3B-base (hearafter,

7We rigorously compared nearly 20 benchmarks to deter-
mine the most suitable ones for our evaluation (Table A7).

8https://github.com/bird-bench/mini_dev

Coder; Guo et al., 2024), and generalist sLLM,
Gemma-2B (Mesnard et al., 2024).

As our goal is to study if a selected subset of
influential data can boost sLLM performance on
the target task, we only perform continued pre-
training on Dtrain without additional fine-tuning.
We use base versions of the models and employ
Llama-Factory (Zheng et al., 2024b) for parallel
training with 8 40GB GPUs. We set the context
length to 4, 096, gradient accumulation to 32 and
per-device batch size to 1. Models are trained for
2 epochs for Python and 3 epochs for SQL. For all
other hyperparameters, we keep the default values.

For evaluation, we follow the official evaluation
protocols (Lai et al., 2022; Li et al., 2024b), and
use greedy decoding with few-shot demonstrations
if needed (0-shot for Python and 1-shot for SQL).
FINDR Setup and Training: We build DFINDR
for training FINDR, using Dval and a sample of
Draw as positive and negative sets. In the feature
extractor, we use all unigrams in DFINDR and, for
bigrams, apply the FNV-1a algorithm (Fowler et al.,
2012) to obtain hashed features using 100k buckets.
The code feature is enabled only for Python, and
we semi-automatically define 618 classes (buckets),
covering 8, 721 Python functions.9 The training
process of FINDR consists of two stages: first,
learning Φ[·] (§E.2), and then supervised learning
on DFINDR,10 which updates the randomly initial-
ized parameters W and Emb[·] for 10 epochs.

4.3 Data Selector Baselines

We include major efficient prtreaining data selec-
tion baselines. The simplest baseline is random
selection, where we randomly sample data from
the training corpus. For informed data selection

9See §D for semi-automatic construction process.
10|DPython

FINDR| = 1, 000 and |DSQL
FINDR| = 500.

https://github.com/bird-bench/mini_dev

DeeoSeek-Coder Gemma

Easy Med. Hard Overall Easy Med. Hard Overall

Base 26.5 8.8 2.0 11.1 12.2 2.8 3.9 5.1
Random 18.4 5.7 2.0 7.6 11.2 2.8 2.9 4.7
Quality 19.4 3.8 1.0 6.6 18.9 2.0 2.9 5.9
BM25 22.5 6.4 2.0 8.9 17.9 3.2 2.0 6.1
DSIR 4.1 0.0 0.0 0.9 6.6 0.6 0.0 1.8
FINDR 25.5 11.2 2.0 12.2 18.9 2.8 3.9 6.6

Table 2: EM performance in the SQL domain when
training with 2% of selected data (F1 in Table A2). Base
model denotes out-of-the-box evaluation. Following Li
et al. (2024b), we conduct 1-shot evaluation, and we re-
port individual results on 3 problem types. Best results
are bold, and data selectors superior to Base are high-
lighted on a scale of 5 red shades. In general, FINDR
leads to the best performance across the board.

baselines, we compare with BM25 (Robertson and
Zaragoza, 2009), which is based on word frequency
statistics to rank examples to determine how rel-
evant a training document is. Another baseline,
LR-based Quality Classifier, is widely used for fil-
tering and selecting data from large-scale pretrain-
ing corpora (Gao et al., 2021; Chowdhery et al.,
2023). We also compare to prior art for selecting
unlabelled data, DSIR (Xie et al., 2023). It applies
n-gram features to weight candidate training data
through Naive Bayes formulation, and sample data
points accordingly.

We do not compare to instruction data selec-
tion approaches, due to extremely slow pace and
high compute cost (Wang et al., 2024), such as
representation-(Xiao et al., 2023) and gradient-
based (Xia et al., 2024) methods, often exceeding
10k GPU hours to process StackV2 Python subset.

5 Results

5.1 Main Results and Analyses
We present our main results in Table 1 and Table 2
for Python and SQL domains, respectively, com-
pared against baseline approaches. More results
are in §C. We summarize five key findings.

1) Random selection often degrades perfor-
mance. It can be tempting to assume that adding
more data—no matter how it is sampled—will im-
prove model performance. But in line with pre-
LLM findings (Moore and Lewis, 2010; van der
Wees et al., 2017), our experiments confirm that
randomly chosen data can degrade performance,
even compared with using the base model out-of-
the-box. Thus, in the absence of an informed data
selector, defaulting to the base model is preferred.

2) FINDR selects on-target data that consis-
tently boosts base models across domains. As

has been shown, training on FINDR-selected data
consistently enhances code generation capabilities
across all evaluated sLLMs. In particular, over-
all performance gains range from 16% to 36% on
Python and 9% to 29% on SQL. These results sug-
gest that FINDR can indeed select the most in-
fluential examples, which works robustly across
experimental settings.

3) FINDR generally outperforms strong base-
lines by non-trivial margins. Apart from Gemma
model on Python, FINDR performs the best across
the board. Interestingly, BM25 sometimes sur-
passes FINDR, but at a significant computational
cost: it has the slowest selection pace (Figure 1),
and the Python scripts it selects are five times
longer (Table A4). As a result, token counts rise
substantially, thereby increasing LLM training time.
In contrast, FINDR offers a more balanced so-
lution for token-efficiently capturing the most in-
fluential data. Notably, on “Perturbed” Python
examples—which mitigate potential data leakage
from LLM pretraining—FINDR achieves the high-
est scores, underscoring its robust performance in
settings that rely less on memorized knowledge.
For further evidence, see Table A1 and Table A2.

4) FINDR demonstrates superior robustness
on “Difficult” examples. Beyond the overall per-
formance leap, a key advantage of FINDR is its
robustness in handling “difficult” scenarios. On
Python’s “Difficult” split, FINDR consistently
yields the largest improvement relative to other
baselines, indicating that its selected examples ef-
fectively target the reasoning skills needed for com-
plex code generation. Likewise in SQL, FINDR
preserves, and sometimes improves (Table A2),
the ability to generate challenging SQL queries,
whereas several baselines worsen performance in
these tough cases.

5) NL-targeted selectors do not necessarily ex-
cel at NL2Code. Finally, we note that DSIR (Xie
et al., 2023), SOTA method for selecting pure NL
data, proves much less effective when adapting to
code, especially on the SQL domain. Indeed, as
discussed in Xia et al. (2024), we have also ob-
served that DSIR-selected examples are extremely
short, thus weakening the code generation capac-
ity of trained models. Furthermore, our finding
highlights a notable gap between NL-only and
NL2Code data, while our method, FINDR, offers—
to the best of our knowledge—the first solution to
help bridge the gap.

500 750 1000 1250 1500 1750 2000 2250 2500
Steps (1 step = 1 million tokens)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0
Pe

rf
or

m
an

ce
 (

Pa
ss

@
1)

CodeGemma Origin

CodeGemma Perturbation

CodeGemma Overall

Impact of Optimazation Steps on Performance

Coder Origin
Coder Perturbation
Coder Overall
Gemma Origin
Gemma Perturbation
Gemma Overall

Figure 3: Pass@1 scores of continuously trained sLLMs
in the Python domain, in relation to the optimization
steps. We identify the performance peaking at around
1, 500 steps, trained with 1.5B on-target tokens, and
Gemma even outperforming CodeGemma, despite the
latter being trained on 500B general tokens.

5.2 Further Study on Data Selection

Data, the essential component in this study, has
been the driving force behind ever capable LLMs.
Here, we are particularly interested in how LLMs
respond to varying training data. We address this
question under two conditions: (1) varying the op-
timization steps (which translates to the number of
training tokens), and (2) varying the selection ratio
(i.e., the proportion of data selected by FINDR).

Impact of Optimization Steps. We first analyze
how increasing the training budget—in terms of op-
timization steps—impacts final performance. Fig-
ure 3 shows performance trends for Coder and
Gemma up to 2, 500 steps.11 Both models im-
prove until about 1, 500 steps (1.5B tokens), af-
ter which Coder plateaus and Gemma slightly de-
clines. Thus, 1, 500 steps provides a clear balance
of performance gains and training efficiency under
the default 2% selection ratio. We also compare
Gemma to CodeGemma (Zhao et al., 2024), which
benefits from extra 500B tokens of continued pre-
training. Despite CodeGemma being a stronger
LLM, Gemma continuously trained on 1.5B on-
target tokens chosen by FINDR effectively closes
the gap. This highlights the advantage of informed
data selection like FINDR—it consumes just 0.3%
of the CodeGemma training tokens yet outperforms
massive-scale training at random.

Impact of Selection Ratio. We next examine
how different selection ratios (1%, 2%, 5%, 10%)
affect performance, as depicted in Figure 4 and Fig-

11Each optimization step processes 1M tokens, so 500–
2,500 steps correspond to training on 0.5B–2.5B tokens.

Origin Perturbation Overall
Problem Types

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Pe
rf

or
m

an
ce

 (
Pa

ss
@

1)

14.7

7.7

10.4

19.0

10.4

13.7

22.1

10.3

14.9

23.4

11.7

16.2
17.3

9.3

12.4

Impact of Selection Ratios on Python Performance
1%
2%
5%
10%
CodeGemma

Figure 4: Gemma results in Python domain with varying
selection ratios. Dashed line denotes the off-the-shelf
Gemma’s result. Performance improves steadily with
higher selection ratios, with a notable cut-off at 2%,
where additional training yields benefits. Complete re-
sults refer to Figure A1. We also observe similar trend
for the SQL domain, shown in Figure A2.

ure A2. Dashed lines denote the out-of-the-box
Gemma’s performance. On both tasks, continu-
ously trained models exceed the base model once
the ratio reaches 2%. Beyond that threshold, perfor-
mance generally rises further, albeit with marginal
gains from 2% to 5% in certain splits (e.g., Python
Perturbation, SQL Hard). Moreover, for Python,
starting at 2%, Gemma trained on FINDR-selected
data surpasses CodeGemma despite its extensive
pretraining. However, no such leap is observed for
SQL, even at 10%. This is likely due to the fact that
Python’s full set (47M scripts) far exceeds SQL’s
(4M), so 10% of SQL data still translates to fewer
samples than 1% of Python.

In summary, our findings reveal that both the size
of the training budget (i.e., the number of steps)
and FINDR’s selection ratio play significant roles
in reshaping downstream NL2Code capabilities.
More importantly, informed data selection can sub-
stantially improve performance with only a small
fraction of the entire corpus. In the future, we will
explore optimal training steps for each selection
ratio and further investigate the scaling law for in-
formed data selection.

5.3 Ablation Study of FINDR
We conduct ablation experiments to analyze contri-
butions of design elements in FINDR.

5.4 η Ratio for Φ Estimation
We vary η12 from 1 to 100 to assess how the sam-
pling size of negatives for informative priors es-

12a hyperparameter introduced in the learning process of
Φ[·] (§E.2).

Origin Surface Semantic Difficult Perturbation Overall
Problem Type

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Pe
rf

or
m

an
ce

 (
Pa

ss
@

1)

24.2

12.2

18.4

7.1

13.3

17.5

24.4

11.9

18.6

6.8

13.3

17.6

25.1

11.8

17.3

7.7

12.9

17.7

23.2

12.8

21.0

7.1

14.6

18.0

23.5

11.5

18.6

6.5

13.1

17.1

The Impact of on Performance
1
2
5
10
100

Figure 5: Impact of η (sampling size of negatives for
informative priors estimation) on performance in Python
domain. We have witnessed a steady performance boost
from η = 1 to 10, but a sharp drop afterwards, likely
due to diminishing returns from overly large sampling
of negatives.

timation influences downstream performance. In-
tuitively, a larger set should yield more accurate
feature-weight estimates, thus improving down-
stream selection. Figure 5 confirms this trend for
most problem types, recording a steady perfor-
mance boost from η = 1 to 10. However, a no-
ticeable drop is observed beyond that point, as evi-
denced by the lowest overall result when η = 100,
likely due to diminishing returns from overly large
sampling of negatives.

Balancing efficiency and accuracy, we adopt
η = 1 in our main experiments. This setting re-
quires minimal computational overhead yet main-
tains near-peak performance. Future work can ex-
plore adaptive strategies for tuning η to improve
the informative priors estimation.

Code Features and Rescaling Approach. We
ablate the code feature in feature extractor (§3.1),
and test DC-based versus AFC-based rescaling
approaches (§3.2). As displayed in Table 3, re-
moving code features consistently degrades results
across all splits, showing the importance of code-
specific features in code-related tasks (Nasrabadi
et al., 2023; Jiang et al., 2024). While DC rescaling
sometimes performs competitively, AFC generally
yields superior results. This reflects the benefit
of fine-grained rescaling for data imbalance issues
(Henning et al., 2023). Altogether, the ablation
studies validate the design choices in FINDR.

6 Conclusion

In this work, we introduce FINDR, an efficient
pretraining data selection method based on logistic
regression but enhanced with feature importance
reweighting. Concretely, we augment hashed n-

Gemma

Origin Surface Semantic Difficult Perturbation Overall

FINDR 19.0 9.2 14.1 6.2 10.4 13.7
- Code feature 17.4 8.6 11.1 4.6 8.5 12.0

FINDR (DC rescaling) 18.3 6.9 11.5 6.2 8.7 12.4
- Code feature 19.0 9.2 12.8 3.7 9.1 12.9

Table 3: Ablation study of FINDR. We find that remov-
ing code features consistently degrades results across all
splits. Complete results (incl. DS-Coder) see Table A3.

gram features with code features to capture code-
specific constructs, then apply informative priors to
reweight feature importance when computing influ-
ence scores. Notably, our FINDR is the first data
selection algorithm tailored to NL2Code pretrain-
ing. Experiments on Python and SQL demonstrate
FINDR’s superiority over strong baselines and its
compatibility across diverse sLLMs. Our further
study confirms that a small, influential subset of
data can yield significant performance improve-
ments, even outperforming an LLM trained on 300
times more examples.

Limitation

GPU resources. The base sLLMs used for
continued-pretraining in this work are of 1.3 to 2.5
billions parameters. It is thus more time-consuming
than training smaller previous-generation models
like BART (Lewis et al., 2020), which in turn
results in a significantly higher carbon footprint.
Specifically, we train each model on 8 NVIDIA
A100 (40GB VRAM) with significant CPU and
memory resources. The training time for each
model ranges from several hours to 2 days, de-
pending on the configurations.

Meanwhile, due to the limited GPU resources at
hand (8 NVIDIA A100-40GB), this work serves as
a pilot study to rigorously assess the effectiveness
of various data selection methods for continued
pretraining of small LLMs on the NL2Code task.
We will study the scaling effect (i.e., increasing
model sizes) in future work, as additional compute
becomes available.

Evaluation Domains. In this work, we have in-
cluded two challenging evaluation benchmarks,
aiming to cover a diverse array of code styles
and domains. Yet, these two benchmarks cannot
comprehensively represent the entire spectrum of
the NL2Code space. Indeed, evaluation remains
an ongoing challenge in data selection—–existing
studies typically rely on only 3–4 benchmarks as
well (Xia et al., 2024; Li et al., 2024a). In future re-
search, we plan to extend FINDR to more program-

ming languages, e.g., Java and C++, and examine
its robustness as new large-scale benchmarks are
constructed.

Generalizability of FINDR. In this work, we fo-
cus primarily on developing and validating FINDR
for NL2Code. As is common in this area (Wang
et al., 2024), evaluations are typically performed
on the motivating target domains only, leaving the
question of generalizability to a broader range of
domains for future work. For instance, DSIR (Xie
et al., 2023), a SOTA data selector in the natural
language (NL) space, performs poorly in the cod-
ing space (Table 1, Table 2). Therefore, we plan
subsequent work focusing on extending the eval-
uation of FINDR to non-NL and non-NL2Code
domains, while expecting others to also investigate
FINDR beyond NL2Code as we have done with
the strong baselines (e.g., DSIR) in this work.

References
AI@Meta. 2024. Llama 3 model card.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne
Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Hae-
won Jeong, Colin Raffel, Shiyu Chang, Tatsunori
Hashimoto, and William Yang Wang. 2024. A sur-
vey on data selection for language models. Trans.
Mach. Learn. Res., 2024.

Miltiadis Allamanis, Earl T. Barr, Premkumar T. De-
vanbu, and Charles Sutton. 2018. A survey of ma-
chine learning for big code and naturalness. ACM
Comput. Surv., 51(4):81:1–81:37.

Miltiadis Allamanis and Charles Sutton. 2014. Mining
idioms from source code. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014, pages 472–
483. ACM.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi,
Arjun Guha, Molly Q Feldman, and Carolyn Jane An-
derson. 2024. Studenteval: A benchmark of student-
written prompts for large language models of code.
In Findings of the Association for Computational
Linguistics.

Shraddha Barke, Michael B. James, and Nadia Polikar-
pova. 2023. Grounded copilot: How programmers
interact with code-generating models. 7(OOPSLA1).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun.
2023. Instruction mining: Instruction data selection
for tuning large language models.

Shubham Chandel, Colin B. Clement, Guillermo Ser-
rato, and Neel Sundaresan. 2022. Training and
evaluating a jupyter notebook data science assistant.
CoRR, abs/2201.12901.

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xi-
aomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo
Zhao. 2023. Maybe only 0.5% data is needed: A pre-
liminary exploration of low training data instruction
tuning. CoRR, abs/2305.09246.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=XfHWcNTSHp
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1145/2635868.2635901
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:264590782
https://api.semanticscholar.org/CorpusID:264590782
https://arxiv.org/abs/2201.12901
https://arxiv.org/abs/2201.12901
https://doi.org/10.48550/ARXIV.2305.09246
https://doi.org/10.48550/ARXIV.2305.09246
https://doi.org/10.48550/ARXIV.2305.09246
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021b. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2020. Selection
via proxy: Efficient data selection for deep learning.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Ste-
fan De Gendt, and Wannes Meert. 2022. Code gener-
ation using machine learning: A systematic review.
IEEE Access, 10:82434–82455.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten P. Bosma, Zongwei
Zhou, Tao Wang, Yu Emma Wang, Kellie Webster,
Marie Pellat, Kevin Robinson, Kathleen S. Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,

Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2022. Glam: Efficient scaling of language mod-
els with mixture-of-experts. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
5547–5569. PMLR.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. Preprint,
arXiv:2308.01861.

Yanai Elazar, Akshita Bhagia, Ian Magnusson, Abhi-
lasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, Hannaneh Hajishirzi, Noah A. Smith,
and Jesse Dodge. 2024. What’s in my big data? In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 823–833,
Berlin, Germany. Association for Computational Lin-
guistics.

Yukun Feng, Patrick Xia, Benjamin Van Durme, and
João Sedoc. 2022. Automatic document selection
for efficient encoder pretraining. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9522–9530, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Glenn Fowler, Landon Noll, Kiem-Phong Vo, and
Donald E. Eastlake 3rd. 2012. The FNV Non-
Cryptographic Hash Algorithm. Internet-Draft draft-
eastlake-fnv-03, Internet Engineering Task Force.
Work in Progress.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://openreview.net/forum?id=RvfPnOkPV4
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/2022.emnlp-main.647
https://doi.org/10.18653/v1/2022.emnlp-main.647
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://datatracker.ietf.org/doc/draft-eastlake-fnv/03/
https://datatracker.ietf.org/doc/draft-eastlake-fnv/03/
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL

Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione,
Jennifer Wortman Vaughan, Hanna M. Wallach,
Hal Daumé III, and Kate Crawford. 2021. Datasheets
for datasets. Commun. ACM, 64(12):86–92.

Brent A. Griffin, Jacob Marks, and Jason J. Corso. 2024.
Zero-shot coreset selection: Efficient pruning for un-
labeled data. CoRR, abs/2411.15349.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022.
Deepcore: A comprehensive library for coreset se-
lection in deep learning. In Database and Expert
Systems Applications - 33rd International Confer-
ence, DEXA 2022, Vienna, Austria, August 22-24,
2022, Proceedings, Part I, volume 13426 of Lecture
Notes in Computer Science, pages 181–195. Springer.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don‘t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yu-
lia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.
2023. Understanding in-context learning via sup-
portive pretraining data. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12660–
12673, Toronto, Canada. Association for Computa-
tional Linguistics.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Sophie Henning, William Beluch, Alexander Fraser,
and Annemarie Friedrich. 2023. A survey of meth-
ods for addressing class imbalance in deep-learning
based natural language processing. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
523–540, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement,
and Nan Duan. 2022. Execution-based evaluation for
data science code generation models. In Proceedings
of the Fourth Workshop on Data Science with Human-
in-the-Loop (Language Advances), pages 28–36, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

HuggingFace. 2021. Github code dataset. https:
//huggingface.co/datasets/codeparrot/
github-code.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073–2083, Berlin, Germany. Association for Com-
putational Linguistics.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2025. Live-
codebench: Holistic and contamination free evalua-
tion of large language models for code. In The Thir-
teenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In Proceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 264–271, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024. A survey on large language
models for code generation. CoRR, abs/2406.00515.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang
Lou. 2025. Explainable automated debugging via
large language model-driven scientific debugging.
Empir. Softw. Eng., 30(2):45.

KrishnaTeja Killamsetty, Xujiang Zhao, Feng Chen, and
Rishabh K. Iyer. 2021. RETRIEVE: coreset selec-
tion for efficient and robust semi-supervised learning.

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.1145/3458723
https://doi.org/10.1145/3458723
https://doi.org/10.48550/ARXIV.2411.15349
https://doi.org/10.48550/ARXIV.2411.15349
https://doi.org/10.1007/978-3-031-12423-5_14
https://doi.org/10.1007/978-3-031-12423-5_14
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2023.acl-long.708
https://doi.org/10.18653/v1/2023.acl-long.708
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.18653/v1/2023.eacl-main.38
https://doi.org/10.18653/v1/2023.eacl-main.38
https://doi.org/10.18653/v1/2023.eacl-main.38
https://aclanthology.org/2022.dash-1.5/
https://aclanthology.org/2022.dash-1.5/
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://aclanthology.org/P07-1034/
https://aclanthology.org/P07-1034/
https://doi.org/10.48550/ARXIV.2406.00515
https://doi.org/10.48550/ARXIV.2406.00515
https://aclanthology.org/E17-2068/
https://aclanthology.org/E17-2068/
https://doi.org/10.1007/S10664-024-10594-X
https://doi.org/10.1007/S10664-024-10594-X
https://proceedings.neurips.cc/paper/2021/hash/793bc52a941b3951dfdb85fb04f9fd06-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/793bc52a941b3951dfdb85fb04f9fd06-Abstract.html

In Advances in Neural Information Processing Sys-
tems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 14488–14501.

Yuval Kirstain, Patrick Lewis, Sebastian Riedel, and
Omer Levy. 2022. A few more examples may be
worth billions of parameters. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 1017–1029, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code. Preprint.

Humaira Kousar, Hasnain Irshad Bhatti, and Jaekyun
Moon. 2025. Pruning-based data selection and
network fusion for efficient deep learning. CoRR,
abs/2501.01118.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-
1000: A natural and reliable benchmark for data sci-
ence code generation. ArXiv, abs/2211.11501.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Dongyue Li, Ziniu Zhang, Lu Wang, and Hongyang R.
Zhang. 2024a. Scalable fine-tuning from multiple
data sources: A first-order approximation approach.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 5608–5623, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024c. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7602–7635, Mexico City, Mexico. Association
for Computational Linguistics.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. CoRR, abs/2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2024. What makes good data for align-
ment? A comprehensive study of automatic data
selection in instruction tuning. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten
Scholak, Sébastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, and et al.
2024. Starcoder 2 and the stack v2: The next genera-
tion. CoRR, abs/2402.19173.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.

https://doi.org/10.18653/v1/2022.findings-emnlp.72
https://doi.org/10.18653/v1/2022.findings-emnlp.72
https://doi.org/10.48550/ARXIV.2501.01118
https://doi.org/10.48550/ARXIV.2501.01118
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2024.findings-emnlp.321
https://doi.org/10.18653/v1/2024.findings-emnlp.321
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173

2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden. Association for
Computational Linguistics.

Morteza Zakeri Nasrabadi, Saeed Parsa, Mohammad
Ramezani, Chanchal Roy, and Masoud Ekhtiarzadeh.
2023. A systematic literature review on source code
similarity measurement and clone detection: Tech-
niques, applications, and challenges. J. Syst. Softw.,
204:111796.

Nhan Nguyen and Sarah Nadi. 2022. An empirical
evaluation of github copilot’s code suggestions. In
Proceedings of the 19th International Conference on
Mining Software Repositories, MSR ’22, page 1–5,
New York, NY, USA. Association for Computing
Machinery.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. In Ad-
vances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 20596–20607.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Jeff M. Phillips. 2016. Coresets and sketches. CoRR,
abs/1601.00617.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng
Kang, Jianmo Ni, Lichan Hong, Ed H. Chi, James
Caverlee, Julian J. McAuley, and Derek Zhiyuan
Cheng. 2024. How to train data-efficient llms. CoRR,
abs/2402.09668.

Hidetoshi Shimodaira. 2000. Improving predictive in-
ference under covariate shift by weighting the log-
likelihood function. Journal of Statistical Planning
and Inference, 90:227–244.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai
Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian
Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A.
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groen-
eveld, Jesse Dodge, and Kyle Lo. 2024. Dolma:
an open corpus of three trillion tokens for language
model pretraining research. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
15725–15788. Association for Computational Lin-
guistics.

Masashi Sugiyama, Matthias Krauledat, and Klaus-
Robert Müller. 2007. Covariate shift adaptation
by importance weighted cross validation. J. Mach.
Learn. Res., 8:985–1005.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine translation. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1400–1410, Copenhagen, Denmark.
Association for Computational Linguistics.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data selection
for LLM instruction tuning. CoRR, abs/2402.05123.

Shiqi Wang, Li Zheng, Haifeng Qian, Chenghao Yang,
Zijian Wang, Varun Kumar, Mingyue Shang, Samson
Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nal-
lapati, Murali Krishna Ramanathan, Dan Roth, and
Bing Xiang. 2022. Recode: Robustness evaluation
of code generation models.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023a. How
far can camels go? exploring the state of instruction
tuning on open resources. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2023b. Execution-based evaluation for
open-domain code generation. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 1271–1290, Singapore. Association for
Computational Linguistics.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin,
Qi Su, and Chang Zhou. 2023. Self-evolved diverse
data sampling for efficient instruction tuning. CoRR,
abs/2311.08182.

https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://aclanthology.org/P10-2041/
https://aclanthology.org/P10-2041/
https://doi.org/10.1016/J.JSS.2023.111796
https://doi.org/10.1016/J.JSS.2023.111796
https://doi.org/10.1016/J.JSS.2023.111796
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ac56f8fe9eea3e4a365f29f0f1957c55-Abstract.html
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://arxiv.org/abs/1601.00617
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.48550/ARXIV.2402.09668
https://api.semanticscholar.org/CorpusID:9238949
https://api.semanticscholar.org/CorpusID:9238949
https://api.semanticscholar.org/CorpusID:9238949
https://doi.org/10.18653/V1/2024.ACL-LONG.840
https://doi.org/10.18653/V1/2024.ACL-LONG.840
https://doi.org/10.18653/V1/2024.ACL-LONG.840
https://doi.org/10.5555/1314498.1390324
https://doi.org/10.5555/1314498.1390324
https://doi.org/10.18653/v1/D17-1147
https://doi.org/10.18653/v1/D17-1147
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/arXiv.2212.10264
https://doi.org/10.48550/arXiv.2212.10264
http://papers.nips.cc/paper_files/paper/2023/hash/ec6413875e4ab08d7bc4d8e225263398-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ec6413875e4ab08d7bc4d8e225263398-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ec6413875e4ab08d7bc4d8e225263398-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.48550/ARXIV.2311.08182
https://doi.org/10.48550/ARXIV.2311.08182

Mengzhou Xia, Antonios Anastasopoulos, Ruochen Xu,
Yiming Yang, and Graham Neubig. 2020. Predicting
performance for natural language processing tasks.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 8625–8646. Associa-
tion for Computational Linguistics.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and
Tongliang Liu. 2023. Moderate coreset: A universal
method of data selection for real-world data-efficient
deep learning. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 641–649. ACM.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy Liang. 2023. Data selection for language mod-
els via importance resampling. In Advances in Neu-
ral Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023.

Yichen Xu and Yanqiao Zhu. 2022. A survey on pre-
trained language models for neural code intelligence.
CoRR, abs/2212.10079.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE
2024, Lisbon, Portugal, April 14-20, 2024, pages
37:1–37:12. ACM.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir

Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. 2023. Large language models meet
NL2Code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7443–
7464, Toronto, Canada. Association for Computa-
tional Linguistics.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng,
Zehan Qi, Xiaotao Gu, Yuxiao Dong, and Jie Tang.
2024a. NaturalCodeBench: Examining coding per-
formance mismatch on HumanEval and natural user
queries. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 7907–7928,
Bangkok, Thailand. Association for Computational
Linguistics.

Xinliang Frederick Zhang, Nicholas Beauchamp, and
Lu Wang. 2024b. Narrative-of-thought: Improving
temporal reasoning of large language models via re-
counted narratives. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
16507–16530, Miami, Florida, USA. Association for
Computational Linguistics.

Xinliang Frederick Zhang, Carter Blum, Temma Choji,
Shalin Shah, and Alakananda Vempala. 2024c. UL-
TRA: Unleash LLMs’ potential for event argument
extraction through hierarchical modeling and pair-
wise self-refinement. In Findings of the Associ-
ation for Computational Linguistics: ACL 2024,
pages 8172–8185, Bangkok, Thailand. Association
for Computational Linguistics.

Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen,
Siqi Zuo, Andrea Hu, Christopher A. Choquette-
Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal,
Luke Vilnis, Mateo Wirth, Paul Michel, Peter
Choy, Pratik Joshi, Ravin Kumar, Sarmad Hashmi,
Shubham Agrawal, Zhitao Gong, Jane Fine, Tris
Warkentin, Ale Jakse Hartman, Bin Ni, Kathy Ko-
revec, Kelly Schaefer, and Scott Huffman. 2024.
Codegemma: Open code models based on gemma.
CoRR, abs/2406.11409.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.

https://doi.org/10.18653/V1/2020.ACL-MAIN.764
https://doi.org/10.18653/V1/2020.ACL-MAIN.764
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=7D5EECbOaf9
https://openreview.net/forum?id=7D5EECbOaf9
https://openreview.net/forum?id=7D5EECbOaf9
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878
http://papers.nips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2212.10079
https://doi.org/10.48550/ARXIV.2212.10079
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2024.findings-acl.471
https://doi.org/10.18653/v1/2024.findings-acl.471
https://doi.org/10.18653/v1/2024.findings-acl.471
https://doi.org/10.18653/v1/2024.findings-emnlp.963
https://doi.org/10.18653/v1/2024.findings-emnlp.963
https://doi.org/10.18653/v1/2024.findings-emnlp.963
https://doi.org/10.18653/v1/2024.findings-acl.487
https://doi.org/10.18653/v1/2024.findings-acl.487
https://doi.org/10.18653/v1/2024.findings-acl.487
https://doi.org/10.18653/v1/2024.findings-acl.487
https://doi.org/10.48550/ARXIV.2406.11409
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

2024a. OpenCodeInterpreter: Integrating code gener-
ation with execution and refinement. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 12834–12859, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024b. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 400–410, Bangkok,
Thailand. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

https://doi.org/10.18653/v1/2024.findings-acl.762
https://doi.org/10.18653/v1/2024.findings-acl.762
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

A Rubrics for Radar Plot

In order to produce the overall comparison radar
plot (Figure 1), we consider five distinct metrics.

• Selection Efficiency: This metric is derived
from the Selection Time column in Table A4.
Specifically, we first apply add-one smooth-
ing to all raw values, followed by a logarith-
mic transformation, and is finally rescaled to
a range of 1 to 5 using min-max normaliza-
tion. Note, for all raw values (unit: hours),
they represent the entire time cost of selecting
2% of data from the Python set of StackV2,
including parameter learning and inference
(i.e., data selection) stages. For the random
baseline, the time cost is trivial, so we assign
0.

• Token Efficiency: This metric is directly de-
rived from the Character Count column in Ta-
ble A4, and is rescaled to a range of 1 to 5
using min-max normalization. The raw value
indicates the average number of characters in
a Python script within the selected data.

• Compatibility: TThe purpose of this met-
ric is to assess whether a data selection ap-
proach can boost performance for both eval-
uated models, and whether it exhibits any
model preference or bias. This metric is
relatively subjective, and the scores we as-
sign to each approach are displayed in Ta-
ble A4. For example, both Quality Classifier
and BM25 yield improvements when the un-
derlying model is Gemma, but no improve-
ment is observed for Coder. Therefore, we
rate their compatibility as moderate (3). How-
ever, since Quality classifier does not hurt
the performance in the Python domain, we
slightly increase its score to 3.5.

• Python Skill: This metric is directly derived
from Table 1, and is rescaled to a range of 1
to 5 using min-max normalization.

• SQL Skill: This metric is directly derived
from Table 2, and is rescaled to a range of 1
to 5 using min-max normalization.

Finally, we derive the overall rating by plac-
ing equal emphasis on both efficiency and effec-
tive/performance dimensions. The efficiency di-
mension encompasses the selection and token effi-
ciencies, while the other three metrics are grouped
under the effective/performance dimension. At
the authors’ discretion, we assign the five metrics
weights of [1, 1, 0.5, 0.75, 0.75], considering that

compatibility is a relatively subjective metric. We
then compute a weighted sum of per-metric ranks
for each data selection approach, which is subse-
quently rescaled to a range of 1 to 5 using min-max
normalization.

B Color Scheme

For all data selectors (including both FINDR and
baseline approaches), we highlight them on a scale
of 5 red shades based on the relative improvements
over the off-the-shelf base models. We design the
following scheme to color Table 1, Table 2, Ta-
ble A1 and Table A2:

• if the relative gain is in the range of (0%, 5%],
the value is highlighted in pale pink .

• if the relative gain is in the range of
(5%, 15%], the value is highlighted in pink .

• if the relative gain is in the range of
(15%, 30%], the value is highlighted in
rose-pink .

• if the relative gain is in the range of
(30%, 50%], the value is highlighted in
rose-red .

• if the relative gain is over 50%, the value is
highlighted in dark red .

C Supplementary Main Results

Due to space limitation in the main text, this section
supplements §5.1.

Python. Table A1 presents results where features
for validation data are extracted from the complete
script, including both context and answer, whereas
for Table 1, features are extracted solely from the
context. Overall, the performance difference be-
tween the context-only and complete script settings
is minimal. Therefore, for all the other experiments
performed in the Python domain, we extract fea-
tures using only the context for two reasons: (1)
Context is shorter than the complete script, making
feature extraction more efficient, and (2) incorporat-
ing solutions requires extensive human annotation,
which limits scalability.

SQL. As discussed in §4.1, we adopt two eval-
uation metrics for the SQL domain: EM and F1.
Table A2 complements Table 2 by presenting per-
formance in terms of F1. Note, for all SQL domain
experiments, features for validation data are only
extracted from the answer. This choice is based on
our observation that using context-only or complete

DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

Base Model 19.9 9.2 17.5 6.8 12.0 15.1 13.8 7.2 9.8 4.9 7.6 10.1
Random Selection 20.7 8.6 16.7 4.9 11.0 14.7 15.3 6.6 10.7 6.2 8.2 10.9
Quality Classifier 23.6 9.9 17.9 6.8 12.4 16.8 19.9 7.9 12.4 7.4 9.7 13.6
BM25 22.8 6.6 15.4 5.6 10.1 15.0 23.1 5.3 15.0 6.2 9.7 14.9
DSIR 21.0 9.2 18.8 6.8 12.6 15.9 16.4 7.9 12.0 4.9 8.8 11.7
FINDR (Ours) 23.3 12.5 18.8 7.4 13.7 17.4 20.1 9.2 16.2 3.7 10.6 14.3

Table A1: Comparison of FINDR with strong data selection baseline approaches in the Python domain, measured by
Pass@1, when training with 2% of selected data. Base model denotes out-of-the-box evaluation without additional
training. In contrast to Table 1, features of validation examples are extracted from the complete script (i.e., context
and answer). Following Lai et al. (2022), we conduct 0-shot evaluation, and we report individual results on 4
problem types and the aggregated perturbation set. Best results are bold, and informed data selectors that outperform
the base model are highlighted on a scale of 5 red shades (see color schemes in §B). Overall, FINDR improves
over base Coder and Gemma by 15% and 39%, respectively. Notably, FINDR achieves the highest score on
perturbed items, showcasing the robustness of FINDR.

Origin Surface Semantic Difficult Perturbation Overall
Problem Types

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 (
Pa

ss
@

1)

14.7

5.6

10.5

5.6

7.7

10.4

19.0

9.2

14.1

6.2

10.4

13.7

22.1

6.9

15.2

6.5

10.3

14.9

23.4

7.3

17.9

6.8

11.7

16.2
17.3

3.3

15.0

6.8

9.3

12.4

Impact of Selection Ratios on Python Performance
1%
2%
5%
10%
CodeGemma

Figure A1: Gemma results in Python domain with varying selection ratios. Dashed line denotes the off-the-shelf
Gemma’s result. Performance improves steadily with higher selection ratios, with a notable cut-off at 2%, where
additional training leads to better performance than base Gemma and CodeGemma.

DeeoSeek-Coder Gemma

Simple Moderate Challenging Overall Simple Moderate Challenging Overall

Base 28.4 10.7 3.3 12.8 13.3 3.6 4.6 6.0
Random 19.1 6.5 4.1 8.7 12.8 3.4 4.2 5.6
Quality 19.8 4.4 1.5 7.1 18.5 2.7 3.3 6.3
BM25 24.0 7.9 3.3 10.3 19.6 4.3 4.1 7.6
DSIR 4.1 0.1 0.0 1.0 7.0 0.7 0.8 1.8
FINDR 27.5 11.7 2.7 13.1 20.0 4.1 4.9 7.7

Table A2: F1 performance comparison in the SQL do-
main when training with 2% of selected data. Base
model denotes out-of-the-box evaluation. Following Li
et al. (2024b), we conduct 1-shot evaluation, and we
report individual results on 3 problem types. Best re-
sults are bold, and data selectors superior to base are
highlighted on a scale of 5 red shades. In general,
FINDR leads to the best performance across the board.
EM results refer to Table 2.

scripts results in inferior performance and higher
results variance.

D Construction of Code Feature Buckets

To construct a comprehensive set of code feature
buckets, we leverage powerful LLMs such as GPT-
3.5.13 Using the Numpy library as an example, we
prompt GPT-3.5 to generate major function cate-

13https://chat.openai.com/;
gpt-35-turbo-16k-0613, training data up to Sept. 2021

gories and their corresponding expressions. This
process is performed three times with varying out-
put sizes: 10, 50, and 70 classes. We merge the re-
sults, removing only duplicated expressions while
retaining all unique classes. This procedure is re-
peated for each of the seven libraries. In total, we
compile 618 feature classes encompassing 8,721
distinct Python expressions. Examples of these
feature buckets are presented in Table A6.

E More details of Informative Priors (Φ)

The informative priors (Φ) are intended to capture
global beliefs about the relative importance of dif-
ferent features. In an ideal scenario, Φ would be
independent of any specific experience. However,
in practice, Φ inevitably depends on the target do-
main. Moreover, generating an exhaustive list of
importance scores for all features in the training
set is impractical—especially since the training
set is dynamic, and even if it were fixed, manually
assigning these scores would be prohibitively labor-
intense. To this end, we decide to estimate Φ in an
on-demand fashion using Equation (2).

https://chat.openai.com/

DeepSeek-Coder Gemma

Origin Surface Semantic Difficult Perturbation Overall Origin Surface Semantic Difficult Perturbation Overall

FINDR 24.2 12.2 18.4 7.1 13.3 17.5 19.0 9.2 14.1 6.2 10.4 13.7
- Code feature 22.5 11.2 18.8 6.8 13.1 16.8 17.4 8.6 11.1 4.6 8.5 12.0

FINDR (DC rescaling) 23.4 10.6 18.6 6.8 12.9 17.0 18.3 6.9 11.5 6.2 8.7 12.4
- Code feature 22.2 11.9 20.5 6.5 14.0 17.2 19.0 9.2 12.8 3.7 9.1 12.9

Table A3: Ablation study of FINDR. We find that removing code features consistently degrades results across all
splits. Meanwhile, using DC rescaling approach generally hurts the performance, in comparison with the default
AFC.

EM-Simple EM-Moderate EM-Challenging EM-Overall F1-Simple F1-Moderate F1-Challenging F1-Overall
Problem Types

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 (
EM

/F
1)

11.7

1.8 1.5

3.9

12.1

2.0 2.0

4.2

18.9

2.8
3.9

6.6

20.0

4.1
4.9

7.7

21.4

3.6 3.9

7.6

23.7

4.0 4.4

8.4

24.0

5.0 4.9

9.1

25.2

7.0 6.6

10.9

27.6

8.8

3.9

11.8

28.3

10.4

6.8

13.5

Impact of Selection Ratios on SQL Performance
1%
2%
5%
10%
CodeGemma

Figure A2: Gemma results (EM and FI) in SQL domain with varying selection ratios. Dashed line denotes the
off-the-shelf Gemma’s result. Performance improves steadily with higher selection ratios, with a notable cut-off at
2%, where additional training leads to better performance than base Gemma.

Selection Time Character Count Compatibility

Random 0 3,410 2.0
Quality 2 3,855 3.5
BM25 760 10,788 3.0
DSIR 145 533 3.5
FINDR (Ours) 3.5 1,762 5.0

Table A4: Raw statistics for radar plot (Figure 1), and
efficiency comparison (i.e., selection time) among se-
lect baselines and FINDR. The unit for selection time
is hours, including parameter learning and inference
stages. The detailed usage of each column is docu-
mented in §A.

E.1 Construction of D′
raw

To address the large size disparity between Dval

and Draw, and mitigate shortcut learning (see §3.2),
we introduce a reduced negative set, D′

raw. Specif-
ically, D′

raw is a small subset of Draw that serves
as a proxy for negative examples. To stabilize sub-
sequent supervised learning stage of FINDR, we
ensure that all negative instances in DFINDR are
contained within D′

raw. We further introduce a hy-
perparameter η, which defines the size of D′

raw as
as a multiple of the negative set in DFINDR. That is,
|D′

raw| = η|D−
FINDR|. By tuning η, we can balance

data coverage against computational overhead.

E.2 Learning Process of Φ
After obtaining D′

raw, we combine it with D′
val

(serving as the positive set) to learn Φ. The learn-
ing process of Φ is detailed in §3.2. Once Φ is
learned, the corresponding parameters are frozen
in the subsequent supervised learning stage.

E.3 Default Setting of Φ
Our FINDR method introduces three core hyper-
parameters in Φ:

• γ: Balances the contribution of the priors vs.
uniform weighting (γ = 0.75 by default).

• M : Caps the maximum importance score for
each feature (M = 3 by default).

• η: Controls the ratio of negative samples be-
tween the training set and the Prior estimation
set (η = 1 by default, due to efficiency and
representativeness).

Benchmarks |D_val| |D_test| Splits |C| |A| #Shot #Tasks Domain

DS1000 (Lai et al., 2022) 105 895 452 (105)/152/234/162 2,857 141 0 7 Python
BIRD-miniDev (Li et al., 2024b) 50 450 148 (50)/250/102 4,270 201 1 12 SQL

Table A5: Statistics of evaluation benchmarks. |D_val| and |D_test| denote the size of validation and test sets. Splits
represent the fine-grained data splits by problem types, as seen in Table A1 and Table 2. That is, there are Origin,
Surface, Semantic and Difficult in the Python domain, and Simple, Moderate and Challenging in the SQL domain.
We also ensure that all validation data are sampled from the simplest category, as indicated by parentheses, allowing
for the study of LLM generalizability and true intelligence. |P | and |A| denote the average length of context (C) and
answer (A). For #Shot, we follow the official practice in respective benchmarks (Lai et al., 2022; Li et al., 2024b).
#Tasks represent the number of libraries (Python) and subjects (SQL) included in each benchmark.

Library Feature Bracket Expressions/Functions

Matplot Plotting Functions pyplot.plot, plot, matplotlib.pyplot.hist,
plt.hist, boxplot, plt.scatter, bar,
matplotlib.pyplot.boxplot, matplotlib.pyplot.plot,
scatter, matplotlib.pyplot.bar, plt.bar,
pyplot.bar, plt.plot, pyplot.scatter,
pyplot.hist, hist, pyplot.boxplot, plt.boxplot,
matplotlib.pyplot.scatter

Numpy Array Creation np.ones, numpy.eye, array, numpy.zeros, numpy.array,
np.zeros, np.array, numpy.ones, empty, zeros, np.eye,
ones, eye, np.empty, numpy.empty

Pandas Input/Output to_csv, pd.read_json, pandas.read_csv, pd.read_sql,
pandas.to_csv, pandas.read_html, pandas.read_sql,
read_csv, read_html, read_json, pandas.read_json,
pd.to_csv, read_sql, pd.read_html, pd.read_csv,
pandas.read_excel, pd.read_excel, read_excel

PyTorch Math Operations torch.log, torch.cos, add, torch.sub, pow, sub,
torch.sqrt, exp, sin, cos, sqrt, mul, div, torch.sin,
torch.exp, torch.mul, log, torch.pow, torch.add,
torch.div

SciPy Data Structures scipy.sparse.dok_matrix, coo_matrix,
scipy.sparse.coo_matrix, scipy.sparse.bsr_matrix,
scipy.sparse.lil_matrix, sparse.lil_matrix,
sparse.dok_matrix, lil_matrix,
scipy.sparse.csc_matrix, bsr_matrix,
sparse.coo_matrix, csc_matrix, sparse.csc_matrix,
sparse.bsr_matrix, dok_matrix

Sklearn Model Selection sklearn.model_selection.KFold,
model_selection.GridSearchCV, StratifiedKFold,
sklearn.model_selection.GridSearchCV,
cross_val_score, model_selection.train_test_split,
KFold, sklearn.model_selection.cross_val_score,
train_test_split, model_selection.StratifiedKFold,
sklearn.model_selection.train_test_split,
GridSearchCV, sklearn.model_selection.StratifiedKFold,
model_selection.KFold, model_selection.cross_val_score

TensorFlow Tensor Manipulation tf.constant, tf.Variable, concat, tf.concat, Variable,
constant, tf.reshape, reshape, transpose, tf.transpose

Table A6: Example feature brackets. For each library in DS1000, we show one bracket with associated expressions.

Benchmark Size #PL

HumanEval (Chen et al., 2021b) 164 Python
HumanEval+ (Liu et al., 2023) 164 Python
MBPP (Austin et al., 2021) 974 Python
MBPP+ (Liu et al., 2023) 378 Python
Spider (Yu et al., 2018) 8,034 SQL
BIRD-Dev (Li et al., 2024b) 500 SQL
ODEX (Wang et al., 2023b) 945 Python
CoderEval (Yu et al., 2024) 460 Python, Java
ReCode (Wang et al., 2022) 1,138 Python
StudentEval (Babe et al., 2024) 1,749 Python
BigCodeBench (Zhuo et al., 2024) 1,140 Python
ClassEval (Du et al., 2023) 100 Python
NaturalCodeBench (Zhang et al., 2024a) 140 Python, Java
LiveCodeBench (Jain et al., 2025) 713 Python
DSP (Chandel et al., 2022) 1,119 Python
ExeDS (Huang et al., 2022) 534 Python
DS-1000 (Lai et al., 2022) 1,000 Python

Table A7: Overview of major NL2Code benchmarks.
We pick BIRD-DEV and DS-1000 based on the follow-
ing rationales: 1) we chose Python for it being widely
used in NL2Code benchmarks, and we adopted DS-
1000 due to the unsaturated performance (also see Ta-
ble A8); 2) we included SQL, particularly BIRD-Dev,
because of the introduced challenges due to its com-
plexity and recency (2024), helping mitigate data con-
tamination issues; and 3) we excluded Java, as the Java
partitions of NaturalCodeBench only contains 70 prob-
lems, which seemed insufficient to reveal models’ true
performance. For each benchmark, we report its size
and programming languages covered.

Model Human Eval (%) MBPP (%)

DeepSeek-Coder-1.3B (Guo et al., 2024) 65.9 65.3
DeepSeek-Coder-6.7B (Guo et al., 2024) 74.4 74.9
GPT-4 Turbo (OpenAI, 2023) 85.4 85.7

Table A8: Model performance on two widely adopted
NL2Code benchmarks, Human Eval and MBPP. As
explained in §4.1, we do not use these two since they
have approached saturated performance. Results are
reported as of 04/03/2025.

	Introduction
	Related Work
	Data Selection
	Natural Language to Code (NL2Code)

	Method: FINDR
	Feature Extraction (Stage 1)
	Influence Calculation (Stage 2)

	Experiments
	Datasets and Evaluation Metrics
	Experiment Setup
	Data Selector Baselines

	Results
	Main Results and Analyses
	Further Study on Data Selection
	Ablation Study of FINDR
	 Ratio for Estimation

	Conclusion
	Rubrics for Radar Plot
	Color Scheme
	Supplementary Main Results
	Construction of Code Feature Buckets
	More details of Informative Priors ()
	Construction of D'raw
	Learning Process of
	Default Setting of

