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Breaking Down the Title

• Transparent System Introspection in 
Support of Analyzing Stealthy Malware

1. Stealthy Malware
• Malware that hides itself from analysis

2. Introspection
• Acquisition of data about malware behavior

3. Transparency
• Sample cannot tell if it is under analysis
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Malware Proliferation
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Malware Analysis

• Analysts want to quickly identify malware 
behavior

• What damage does it do?
• How does it infect a system?
• How do we defend against it?
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Stealthy Malware

• Adversary wants to hide from user and analyst
• Prevent user from knowing

• Don’t want user to end a malicious process
• Prevent analyst from developing a defense

• Make zero-days last as long as possible

• Malware that hides itself is stealthy
• More effort required to analyze

• Over 30% of malware exhibits stealth
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Artifacts and Stealthy Malware

• To maintain secrecy, adversary uses artifacts to detect 
analysis techniques

• Timing (nonfunctional) artifacts – overhead introduced by 
analysis

• Single-stepping instructions with debugger is slow
• Imperfect VM environment does not match native speed

• Functional artifacts – features introduced by analysis
• isDebuggerPresent() – legitimate feature abused by 

adversaries
• Incomplete emulation of some instructions by VM
• Device names (hard drive named “VMWare disk”)

• Too much effort to fully analyze each stealthy sample
• Automated techniques exist, but they fail against stealthy samples
• Manual analysis is time consuming and expensive
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Introspection
• Understanding program behavior
• Debugger introspects program to access its raw data

• Read variables
• Reconstruct stack traces
• Write variables to change execution path

• Analyst infers behavior of a sample from interpreting 
and changing this raw data

• Virtual Machine Introspection (VMI)
• Plugin for a Virtual Machine Manager (slowdown)
• Helper process inside guest VM (detectable process)

• If this sample is stealthy, the acquired introspection 
data may not be accurate
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Transparency

• We want accurate introspection even in the 
presence of stealthy malware

• We want transparency – no artifacts produced by analysis

• We want transparent system introspection 
tools to solve this ‘debugging transparency 
problem’
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Research Question

• Can we develop a transparent introspection 
technique that admits analyzing stealthy 
malware?

1. Can we transparently acquire snapshots of 
process memory?

2. Can we reconstruct the semantics of these 
snapshots?

3. Can we transparently alter the execution path of 
the program?
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Formal Thesis Statement

It is possible to develop a transparent debugging 
system capable of reading variable values, 
reconstructing stack traces, and writing variable 
values by combining hardware assisted memory 
acquisition, process introspection, and CPU 
interposition.
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Proposal Overview

1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware
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We propose yes!



Proposed Architecture
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Hardware-Assisted Introspection

•Two proposed approaches
• PCI-Express based

• Few timing artifacts
• Functional artifact 

(DMA access performance counter)
• System Management Mode

• Significant timing artifacts
• No functional artifacts
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PCI Express Memory Acquisition

• Use Xilinx ML507
• Gigabit Ethernet
• PCI Express Connector
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To remote host

To SUT



PCI Express Memory Acquisition

• Proposed Experiments
• Compare performance of SUT when 

uninstrumented and instrumented on indicative 
workloads

• Note deviation in performance
• If medians are within margin of error, we conclude 

success
• Use RAMSpeed Benchmarks

• Runs instructions from each unit on x86
(i.e., INT, FLOAT, SSE, MMX)

• Records throughput of RAM only (not cache)
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PCI Express Preliminary Results
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RAMSpeed Benchmark Results (n=500)

0.4% between medians



PCI Express Memory Acquisition

• Fast, low overhead
• Under 1%, within margin of error
• Not practically measurable by malware

• Potentially presents functional artifacts
• DMA access performance counter
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System Management Mode

• Intel x86 feature provides small, transparent, 
trusted computing base

• SMM akin to Protected Mode
• System Management Interrupt (SMI) to enter 

SMM
• SMI Handler executed in SMM

• Code stored in System Management RAM 
(SMRAM)

• Trust only the BIOS
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SMM Architecture
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OS/Program 
code

Continue 
OS/program 

execution

SMI Handler

Protected Mode System Management Mode

SMI occurs

Resume from SMM

1. Find program in memory
2. Dump to remote host
3. Configure next SMI



SMM Experiments

• Measure time elapsed during each SMM-related 
operation

1. SMM Switch after SMI
2. Find target program
3. Configure next SMI
4. Switch back from SMM

(Under 12𝜇𝜇𝑠𝑠 total)

• Measure system overhead when configuring SMIs:
1. Retired far control transfer instructions
2. Retired near return instructions
3. Retired taken branch instructions
4. Retired instructions (i.e., per-instruction)

K. Leach – Ph.D. Proposal Component 1, Approach 2: Proposed Experiments 20



SMM Preliminary Results
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Stepping Methods Windows

pi ls ps pwd tar

Far control 2 2 2 3 2

Near returns 30 21 22 28 29

Taken branches 565 479 527 384 245

All instructions 973 880 897 859 704

Linux

Far control 2 3 2 2 2

Near returns 26 41 28 10 15

Taken branches 192 595 483 134 159

All instructions 349 699 515 201 232

For reference, state-of-the-art Ether yields an overhead of roughly 3000x for a similar operation.



Process Introspection

1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware
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Program Introspection

• First component gives us raw memory
• Periodic snapshots from PCI-e or SMM support

• We want useful semantic information from snapshots
• Variables
• Activation records
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Program Introspection

• Assume access to source code for ground truth
• Two versions of binary

• “Deployed” version represents the sample we would analyze
• “Instrumented” version helps us hypothesize locations of semantic 

information

• Report fraction of variables correctly identified in 
Deployed binary

• Report fraction of function calls correctly identified in 
runtime stack trace
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Introspection Experiments

• Consider indicative programs:
• Wuftpd 2.6.0 (with CVE-2000-0573)
• Nullhttpd 0.5.0 (with CVE-2002-1496)

• Run programs on indicative test cases
• Gather ground truth on instrumented binary
• Gather variable and stack trace information on deployed 

binary
• Report fraction of variables correctly reported
• Report stack trace as a function of sampling frequency 

(recall component 1 is polling-based)

K. Leach – Ph.D. Proposal Component 2: Proposed Experiments 25



Introspection Preliminary Results
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nullhttpd wuftpd
Locals 43% 133/306 46% 202/436
Stack 65% 168/260 56% 119/214

Globals 100% 77/77 92% 4218/4580
Overall 59% 378/643 90% 4539/5230



Introspection Preliminary Results
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Introspection Preliminary Results
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1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware
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CPU Interposition

• Interposer sits between platform mainboard and CPU
• Allows snooping and changing all signals to CPU

• In practice, far too slow for full scale debugging
• We propose using this hardware to insert instructions

• Component 2 permits reading values, but we also want to 
write values

• Alternatively, we can insert instructions to change software
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Risk Mitigation: 2 Options

• Propose two potential avenues to explore 
CPU interposition

• Support black box testing of Android Malware
• Support patching of ARM-based firmware in 

autonomous aerial vehicles
• Propose fail early experiments, pick one option 

to take to completion
• This component is speculative
• Fail-early to help us ensure timely completion of 

satisfactory component
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Option 1: Android Black Boxing

• CPU Interposition allows inserting instructions to 
change variable values

• Assume we know location of a variable
• Component 2 gives us the location
• Also must consider variables only in registers

• Specifically, find locations implicated in branches
• Stealthy malware may have a branch instruction to decide 

the presence of artifacts
• if (artifact) then x; else y;

• We want to change ‘artifact’ so we can exercise a different branch in 
the program

• Fail early experiment: retarget component 2 for ARM
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Option 1: Proposed Experiments

• Overarching question: what fraction of the outcomes 
of branches can we successfully change?

• Consider every branch in program reachable via given 
test cases

• Every branch has an associated register it checks
• Attempt inserting instruction to change value of variable 

before branch
• If we can change the outcome of a branch 80% of the time, 

we are successful 
• Can repeat if we fail: 5 repeats yields 99.97% success (3 sigma 

rule)
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Option 2: Save the Quadcopters

• Program repair permits automatically patching 
software

• Quadcopters are realtime, resource-constrained 
platforms that fail

• Cannot change source code or reflash EEPROM while 
running
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Option 2: Quadcopter Firmware

• CPU interposition allows inserting instructions, but 
not removing them

• We want to convert a given patch to a sequence of 
instructions for insertion while running

• We can undo some instructions
• add rax, rax, 5 can be undone with
sub rax, rax, 5

• We must also deploy the patch transparently
• After current program counter to ensure execution
• Before target location of insertion
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Option 2: Proposed Experiments

• Early failure: classify indicative patches according to 
general operations

• We hypothesize that patches consist of categories of general 
‘building block’ operations (e.g., ‘remove call to function’)

• This approach is feasible if we can take 100 indicative patches 
and manually convert 80 of them into fewer than 10 building 
block operations

• Assume we have a patch and desired deployment location
• Periodically check program counter and compare to desired 

location
• Determine whether to deploy the patch based on comparison
• We are successful if we insert and exercise 80% of patches (3 

sigma rule as before)
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Proposed Timeline and Venues

• Typical venues:
• USENIX (January/February)
• RAID (April/May)
• ACSAC (May/June)
• ACM CCS (May)
• ASPLOS (July)
• NDSS (August)
• IEE S&P (November/December)
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Summary

• Three components to provide debugging transparency
• Hardware-assisted memory acquisition

• PCI-e presents low overhead
• SMM exposes few functional artifacts

• Program Introspection
• Use snapshots to reconstruct useful semantic information

• CPU Interposition
• Allow writing variable values to help exercise different paths of 

execution in a sample

• Questions?
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Why ARM vs. x86?

• Preliminary investigation supports CPU interposition 
for ARM platforms

• x86 challenges
• CPU interposition is not precise enough for proposed use cases
• Hardware is prohibitively expensive (>$35,000)

• ARM benefits
• CPU interposition is better supported by community
• Hardware is much cheaper (~$3,000)
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Known Artifacts (1)

Anti-debugging
API Calls isDebuggerPresent

NtQueryInformationProcess.ProcessInformation
CheckRemoteDebuggerPresent
NtSetInformationThread with ThreadInformationClass = 0x11
DebugActiveProcess prevents attaching other debuggers

PEB Field IsDebugged flag
NtGlobalFlags

Detection ForceFlag in heap header
UnhandledExceptionFilter calls user-defined function, but terminates in a debugging process
TEB contains valid pointer under debug
Ctrl-C raises exception under debug, signal handler not scoped by debugger
Rogue INT-3 instructions
Trap flag register manipulation thwarts tracers
entryPoint RVA = 0 erases magic MZ value in PE files
ZwClose system call with invalid paramters raises exception in attached debugger
Direct context modification confuses debuggers
0x2D interrupt causes program to stop raising exceptions
Undocumented 0xF1 instruction
Searching for CC instructions
TLS-callback to perform checks
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Known Artifacts (2)

Anti-Virtualization
VMWare Virtualized device identifiers contain well-known strings

Checkvm software searches for VMWare hooks in memory
Well-known locations/strings associated with VMWare Tools

Other LDTR register
IDTR register (Red Pill)
Magic I/O port (0x5658, ‘VX’)
Invalid instruction behavior
Memory deduplication to detect hypervisors

Anti-emulation
Bochs Visible debug port
QEMU Cpuid returns less specific information

Accessing reserved MSRs raises General Protection (GP) exception on bare metal
Execution instruction longer than 15 bytes raises GP exception on bare metal
Undocumented icebp instructions hangs QEMU (bare metal raises exception)
Unaligned memory references raise exceptions in bare metal; unsupported by QEMU
Bit 3 of FPU Control World register always 1 on bare metal, QEMU contains a 0

Other Use CPU bugs or errata to create CPU fingerprints via public chipset documentation
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Remarks on SMM

• SMM is generalizable
• Every Intel platform since 386 includes SMM

• Relatively small trusted code base (TCB)
• TCB restricted to BIOS

• Thousands of lines of code
• VMI systems require trust to extend to kernel and VMM

• Millions of lines of code

• Configuration of subsequent SMI necessary for 
periodicity

• Also ensures transparency (DOS attacks from kernel space)
• Configured according to available performance counters
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SMM Preliminary Results

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 44

Operation Mean (𝜇𝜇𝑠𝑠) STD (𝜇𝜇𝑠𝑠)

SMM Switch 3.29 0.08

Program Acquisition 2.19 0.09

SMI Configuration 1.66 0.06

SMM Resume 4.58 0.10

Total 11.72
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Clarifying Stack Traces
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More on ARM Branches

• ARM branching instructions
• B, BL, BX, BLX, BXJ (one register operand)
• IT (x, y, z, cond)
• CBZ CBNZ (one register operand)
• TBB TBH (two register operands)
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Relating Quadcopters to Malware

• Technical challenges posed by patching quadcopter 
firmware are indicative of challenges in stealthy 
malware analysis

• If we insert the patch too early, self-verifying code 
could prevent patch from executing

• Failure to path requires repeated attempt
• This is the heart of transparent breakpointing
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