
Transparent System Introspection in
Support of Analyzing Stealthy Malware

Kevin Leach
University of Virginia

Computer Engineering

May 12, 2015

Breaking Down the Title

• Transparent System Introspection in
Support of Analyzing Stealthy Malware

1. Stealthy Malware
• Malware that hides itself from analysis

2. Introspection
• Acquisition of data about malware behavior

3. Transparency
• Sample cannot tell if it is under analysis

Problem Introduction and Motivation 2K. Leach – Ph.D. Proposal

Malware Proliferation

K. Leach – Ph.D. Proposal Problem Motivation 3

Malware Analysis

• Analysts want to quickly identify malware
behavior

• What damage does it do?
• How does it infect a system?
• How do we defend against it?

K. Leach – Ph.D. Proposal Problem Motivation 4

Stealthy Malware

• Adversary wants to hide from user and analyst
• Prevent user from knowing

• Don’t want user to end a malicious process
• Prevent analyst from developing a defense

• Make zero-days last as long as possible

• Malware that hides itself is stealthy
• More effort required to analyze

• Over 30% of malware exhibits stealth

K. Leach – Ph.D. Proposal Problem Motivation 5

Artifacts and Stealthy Malware

• To maintain secrecy, adversary uses artifacts to detect
analysis techniques

• Timing (nonfunctional) artifacts – overhead introduced by
analysis

• Single-stepping instructions with debugger is slow
• Imperfect VM environment does not match native speed

• Functional artifacts – features introduced by analysis
• isDebuggerPresent() – legitimate feature abused by

adversaries
• Incomplete emulation of some instructions by VM
• Device names (hard drive named “VMWare disk”)

• Too much effort to fully analyze each stealthy sample
• Automated techniques exist, but they fail against stealthy samples
• Manual analysis is time consuming and expensive

K. Leach – Ph.D. Proposal Problem Motivation 6

Introspection
• Understanding program behavior
• Debugger introspects program to access its raw data

• Read variables
• Reconstruct stack traces
• Write variables to change execution path

• Analyst infers behavior of a sample from interpreting
and changing this raw data

• Virtual Machine Introspection (VMI)
• Plugin for a Virtual Machine Manager (slowdown)
• Helper process inside guest VM (detectable process)

• If this sample is stealthy, the acquired introspection
data may not be accurate

K. Leach – Ph.D. Proposal Problem Motivation 7

Transparency

• We want accurate introspection even in the
presence of stealthy malware

• We want transparency – no artifacts produced by analysis

• We want transparent system introspection
tools to solve this ‘debugging transparency
problem’

K. Leach – Ph.D. Proposal Problem Motivation 8

Research Question

• Can we develop a transparent introspection
technique that admits analyzing stealthy
malware?

1. Can we transparently acquire snapshots of
process memory?

2. Can we reconstruct the semantics of these
snapshots?

3. Can we transparently alter the execution path of
the program?

K. Leach – Ph.D. Proposal Problem Statement 9

Formal Thesis Statement

It is possible to develop a transparent debugging
system capable of reading variable values,
reconstructing stack traces, and writing variable
values by combining hardware assisted memory
acquisition, process introspection, and CPU
interposition.

K. Leach – Ph.D. Proposal 10

Proposal Overview

1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware

K. Leach – Ph.D. Proposal Proposal Outline 11

We propose yes!

Proposed Architecture

K. Leach – Ph.D. Proposal Proposed System Architecture 12

Hardware-Assisted Introspection

•Two proposed approaches
• PCI-Express based

• Few timing artifacts
• Functional artifact

(DMA access performance counter)
• System Management Mode

• Significant timing artifacts
• No functional artifacts

K. Leach – Ph.D. Proposal Component 1: Physical Memory Acquisition 13

PCI Express Memory Acquisition

• Use Xilinx ML507
• Gigabit Ethernet
• PCI Express Connector

K. Leach – Ph.D. Proposal Component 1, Approach 1: PCI-e Hardware 14

To remote host

To SUT

PCI Express Memory Acquisition

• Proposed Experiments
• Compare performance of SUT when

uninstrumented and instrumented on indicative
workloads

• Note deviation in performance
• If medians are within margin of error, we conclude

success
• Use RAMSpeed Benchmarks

• Runs instructions from each unit on x86
(i.e., INT, FLOAT, SSE, MMX)

• Records throughput of RAM only (not cache)

K. Leach – Ph.D. Proposal Component 1, Approach 1: PCI-e Hardware 15

PCI Express Preliminary Results

K. Leach – Ph.D. Proposal Component 1, Approach 1: Preliminary Results 16

RAMSpeed Benchmark Results (n=500)

0.4% between medians

PCI Express Memory Acquisition

• Fast, low overhead
• Under 1%, within margin of error
• Not practically measurable by malware

• Potentially presents functional artifacts
• DMA access performance counter

K. Leach – Ph.D. Proposal Component 1, Approach 1 Summary 17

System Management Mode

• Intel x86 feature provides small, transparent,
trusted computing base

• SMM akin to Protected Mode
• System Management Interrupt (SMI) to enter

SMM
• SMI Handler executed in SMM

• Code stored in System Management RAM
(SMRAM)

• Trust only the BIOS

K. Leach – Ph.D. Proposal Component 1, Approach 2: SMM 18

SMM Architecture

K. Leach – Ph.D. Proposal Component 1, Approach 2: SMM Description 19

OS/Program
code

Continue
OS/program

execution

SMI Handler

Protected Mode System Management Mode

SMI occurs

Resume from SMM

1. Find program in memory
2. Dump to remote host
3. Configure next SMI

SMM Experiments

• Measure time elapsed during each SMM-related
operation

1. SMM Switch after SMI
2. Find target program
3. Configure next SMI
4. Switch back from SMM

(Under 12𝜇𝜇𝑠𝑠 total)

• Measure system overhead when configuring SMIs:
1. Retired far control transfer instructions
2. Retired near return instructions
3. Retired taken branch instructions
4. Retired instructions (i.e., per-instruction)

K. Leach – Ph.D. Proposal Component 1, Approach 2: Proposed Experiments 20

SMM Preliminary Results

K. Leach – Ph.D. Proposal Component 1, Approach 2: Preliminary Results 21

Stepping Methods Windows

pi ls ps pwd tar

Far control 2 2 2 3 2

Near returns 30 21 22 28 29

Taken branches 565 479 527 384 245

All instructions 973 880 897 859 704

Linux

Far control 2 3 2 2 2

Near returns 26 41 28 10 15

Taken branches 192 595 483 134 159

All instructions 349 699 515 201 232

For reference, state-of-the-art Ether yields an overhead of roughly 3000x for a similar operation.

Process Introspection

1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware

K. Leach – Ph.D. Proposal Component 2 22

Program Introspection

• First component gives us raw memory
• Periodic snapshots from PCI-e or SMM support

• We want useful semantic information from snapshots
• Variables
• Activation records

K. Leach – Ph.D. Proposal Component 2: Introspection 23

Program Introspection

• Assume access to source code for ground truth
• Two versions of binary

• “Deployed” version represents the sample we would analyze
• “Instrumented” version helps us hypothesize locations of semantic

information

• Report fraction of variables correctly identified in
Deployed binary

• Report fraction of function calls correctly identified in
runtime stack trace

K. Leach – Ph.D. Proposal Component 2: Introspection 24

Introspection Experiments

• Consider indicative programs:
• Wuftpd 2.6.0 (with CVE-2000-0573)
• Nullhttpd 0.5.0 (with CVE-2002-1496)

• Run programs on indicative test cases
• Gather ground truth on instrumented binary
• Gather variable and stack trace information on deployed

binary
• Report fraction of variables correctly reported
• Report stack trace as a function of sampling frequency

(recall component 1 is polling-based)

K. Leach – Ph.D. Proposal Component 2: Proposed Experiments 25

Introspection Preliminary Results

K. Leach – Ph.D. Proposal Component 2: Preliminary Results 26

nullhttpd wuftpd
Locals 43% 133/306 46% 202/436
Stack 65% 168/260 56% 119/214

Globals 100% 77/77 92% 4218/4580
Overall 59% 378/643 90% 4539/5230

Introspection Preliminary Results

K. Leach – Ph.D. Proposal Component 2: Preliminary Results 27

Introspection Preliminary Results

K. Leach – Ph.D. Proposal Component 2: Preliminary Results 28

1. Hardware-assisted introspection
• Transparently acquire program data

• PCI Express
• System Management Mode (SMM)

2. Transparent program introspection
• Transparently reconstruct program semantics from data

3. CPU Interposition
• Transparently change program data to affect execution

• Black box testing of Android malware
• Patching quadcopter firmware

K. Leach – Ph.D. Proposal Component 3 29

CPU Interposition

• Interposer sits between platform mainboard and CPU
• Allows snooping and changing all signals to CPU

• In practice, far too slow for full scale debugging
• We propose using this hardware to insert instructions

• Component 2 permits reading values, but we also want to
write values

• Alternatively, we can insert instructions to change software

K. Leach – Ph.D. Proposal Component 3: CPU Interposition 30

Risk Mitigation: 2 Options

• Propose two potential avenues to explore
CPU interposition

• Support black box testing of Android Malware
• Support patching of ARM-based firmware in

autonomous aerial vehicles
• Propose fail early experiments, pick one option

to take to completion
• This component is speculative
• Fail-early to help us ensure timely completion of

satisfactory component

K. Leach – Ph.D. Proposal Component 3: Risk Mitigation Strategy 31

Option 1: Android Black Boxing

• CPU Interposition allows inserting instructions to
change variable values

• Assume we know location of a variable
• Component 2 gives us the location
• Also must consider variables only in registers

• Specifically, find locations implicated in branches
• Stealthy malware may have a branch instruction to decide

the presence of artifacts
• if (artifact) then x; else y;

• We want to change ‘artifact’ so we can exercise a different branch in
the program

• Fail early experiment: retarget component 2 for ARM

K. Leach – Ph.D. Proposal Component 3, Option 1: Android Malware 32

Option 1: Proposed Experiments

• Overarching question: what fraction of the outcomes
of branches can we successfully change?

• Consider every branch in program reachable via given
test cases

• Every branch has an associated register it checks
• Attempt inserting instruction to change value of variable

before branch
• If we can change the outcome of a branch 80% of the time,

we are successful
• Can repeat if we fail: 5 repeats yields 99.97% success (3 sigma

rule)

K. Leach – Ph.D. Proposal Component 3, Option 1: Proposed Experiments 33

Option 2: Save the Quadcopters

• Program repair permits automatically patching
software

• Quadcopters are realtime, resource-constrained
platforms that fail

• Cannot change source code or reflash EEPROM while
running

K. Leach – Ph.D. Proposal Component 3, Option 2: Quadcopters 34

Option 2: Quadcopter Firmware

• CPU interposition allows inserting instructions, but
not removing them

• We want to convert a given patch to a sequence of
instructions for insertion while running

• We can undo some instructions
• add rax, rax, 5 can be undone with
sub rax, rax, 5

• We must also deploy the patch transparently
• After current program counter to ensure execution
• Before target location of insertion

K. Leach – Ph.D. Proposal Component 3, Option 2: Quadcopter Firmware 35

Option 2: Proposed Experiments

• Early failure: classify indicative patches according to
general operations

• We hypothesize that patches consist of categories of general
‘building block’ operations (e.g., ‘remove call to function’)

• This approach is feasible if we can take 100 indicative patches
and manually convert 80 of them into fewer than 10 building
block operations

• Assume we have a patch and desired deployment location
• Periodically check program counter and compare to desired

location
• Determine whether to deploy the patch based on comparison
• We are successful if we insert and exercise 80% of patches (3

sigma rule as before)

K. Leach – Ph.D. Proposal Component 3, Option 2: Proposed Experiments 36

Publications Supporting Research
1. K. Leach, W. Weimer. HOPS: Towards Transparent Introspection. In preparation.

2. K. Leach. LO-PHI: Low Observable Physical Host Instrumentation. Under review at
USENIX 2015. February 2015.

3. F. Zhang, K. Leach, A. Stavrou, H. Wang. Using Hardware Features for Increased Debugging
Transparency. In the 36th IEEE Symposium on Security and Privacy (Oakland 2015). To appear.

4. F. Zhang, K. Leach, H. Wang, A. Stavrou. TrustLogin: Securing Password-Login on
Commodity Operating Systems. In Proceedings of the 10th ACM Symposium on Information,
Computer, and Communications Security (ASIACCS2015). Singapore. Acceptance rate: 17.8%.

5. F. Zhang, H. Wang, K. Leach, A. Stavrou. A Framework to Secure Peripherals at Runtime.
Proceedings of the 19th European Symposium on Research in Computer Security (ESORICS 2014).
September 2014. Wroclaw, Poland. Acceptance rate: 24.7%.

6. F. Zhang, K. Leach, K. Sun, A. Stavrou. Spectre: A Dependable System Introspection
Framework. In the 43rd IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2013). June 24-27, Budapest, Hungary. Acceptance rate: 19%.

7. K. Leach. Barley: Combining Control Flow with Resource Consumption to Detect Jump-
based ROP Attacks. In the 43rd IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2013). June 24-27, Budapest, Hungary. Acceptance rate: 33%

K. Leach – Ph.D. Proposal Publications 37

Proposed Timeline and Venues

• Typical venues:
• USENIX (January/February)
• RAID (April/May)
• ACSAC (May/June)
• ACM CCS (May)
• ASPLOS (July)
• NDSS (August)
• IEE S&P (November/December)

K. Leach – Ph.D. Proposal Proposed schedule and venues 38

Summary

• Three components to provide debugging transparency
• Hardware-assisted memory acquisition

• PCI-e presents low overhead
• SMM exposes few functional artifacts

• Program Introspection
• Use snapshots to reconstruct useful semantic information

• CPU Interposition
• Allow writing variable values to help exercise different paths of

execution in a sample

• Questions?

K. Leach – Ph.D. Proposal 39

Why ARM vs. x86?

• Preliminary investigation supports CPU interposition
for ARM platforms

• x86 challenges
• CPU interposition is not precise enough for proposed use cases
• Hardware is prohibitively expensive (>$35,000)

• ARM benefits
• CPU interposition is better supported by community
• Hardware is much cheaper (~$3,000)

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 40

Known Artifacts (1)

Anti-debugging
API Calls isDebuggerPresent

NtQueryInformationProcess.ProcessInformation
CheckRemoteDebuggerPresent
NtSetInformationThread with ThreadInformationClass = 0x11
DebugActiveProcess prevents attaching other debuggers

PEB Field IsDebugged flag
NtGlobalFlags

Detection ForceFlag in heap header
UnhandledExceptionFilter calls user-defined function, but terminates in a debugging process
TEB contains valid pointer under debug
Ctrl-C raises exception under debug, signal handler not scoped by debugger
Rogue INT-3 instructions
Trap flag register manipulation thwarts tracers
entryPoint RVA = 0 erases magic MZ value in PE files
ZwClose system call with invalid paramters raises exception in attached debugger
Direct context modification confuses debuggers
0x2D interrupt causes program to stop raising exceptions
Undocumented 0xF1 instruction
Searching for CC instructions
TLS-callback to perform checks

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 41

Known Artifacts (2)

Anti-Virtualization
VMWare Virtualized device identifiers contain well-known strings

Checkvm software searches for VMWare hooks in memory
Well-known locations/strings associated with VMWare Tools

Other LDTR register
IDTR register (Red Pill)
Magic I/O port (0x5658, ‘VX’)
Invalid instruction behavior
Memory deduplication to detect hypervisors

Anti-emulation
Bochs Visible debug port
QEMU Cpuid returns less specific information

Accessing reserved MSRs raises General Protection (GP) exception on bare metal
Execution instruction longer than 15 bytes raises GP exception on bare metal
Undocumented icebp instructions hangs QEMU (bare metal raises exception)
Unaligned memory references raise exceptions in bare metal; unsupported by QEMU
Bit 3 of FPU Control World register always 1 on bare metal, QEMU contains a 0

Other Use CPU bugs or errata to create CPU fingerprints via public chipset documentation

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 42

Remarks on SMM

• SMM is generalizable
• Every Intel platform since 386 includes SMM

• Relatively small trusted code base (TCB)
• TCB restricted to BIOS

• Thousands of lines of code
• VMI systems require trust to extend to kernel and VMM

• Millions of lines of code

• Configuration of subsequent SMI necessary for
periodicity

• Also ensures transparency (DOS attacks from kernel space)
• Configured according to available performance counters

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 43

SMM Preliminary Results

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 44

Operation Mean (𝜇𝜇𝑠𝑠) STD (𝜇𝜇𝑠𝑠)

SMM Switch 3.29 0.08

Program Acquisition 2.19 0.09

SMI Configuration 1.66 0.06

SMM Resume 4.58 0.10

Total 11.72

0%

20%

40%

60%

80%

100%

SMM Breakdown

SMM Resume

SMI Configuration

Program Acquisition

SMM Switch

Clarifying Stack Traces

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 45

More on ARM Branches

• ARM branching instructions
• B, BL, BX, BLX, BXJ (one register operand)
• IT (x, y, z, cond)
• CBZ CBNZ (one register operand)
• TBB TBH (two register operands)

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 46

Relating Quadcopters to Malware

• Technical challenges posed by patching quadcopter
firmware are indicative of challenges in stealthy
malware analysis

• If we insert the patch too early, self-verifying code
could prevent patch from executing

• Failure to path requires repeated attempt
• This is the heart of transparent breakpointing

K. Leach – Ph.D. Proposal Doctoral Dissertation Proposal 47

	Transparent System Introspection in Support of Analyzing Stealthy Malware
	Breaking Down the Title
	Malware Proliferation
	Malware Analysis
	Stealthy Malware
	Artifacts and Stealthy Malware
	Introspection
	Transparency
	Research Question
	Formal Thesis Statement
	Proposal Overview
	Proposed Architecture
	Hardware-Assisted Introspection
	PCI Express Memory Acquisition
	PCI Express Memory Acquisition
	PCI Express Preliminary Results
	PCI Express Memory Acquisition
	System Management Mode
	SMM Architecture
	SMM Experiments
	SMM Preliminary Results
	Process Introspection
	Program Introspection
	Program Introspection
	Introspection Experiments
	Introspection Preliminary Results
	Introspection Preliminary Results
	Introspection Preliminary Results
	Slide Number 29
	CPU Interposition
	Risk Mitigation: 2 Options
	Option 1: Android Black Boxing
	Option 1: Proposed Experiments
	Option 2: Save the Quadcopters
	Option 2: Quadcopter Firmware
	Option 2: Proposed Experiments
	Publications Supporting Research
	Proposed Timeline and Venues
	Summary
	Why ARM vs. x86?
	Known Artifacts (1)
	Known Artifacts (2)
	Remarks on SMM
	SMM Preliminary Results
	Clarifying Stack Traces
	More on ARM Branches
	Relating Quadcopters to Malware

