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(over 10x EPA requirements)
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Analogy: Volkswagen Scandal

Volkswagen exploited the measurable difference between
the EPA test and normal driving

What about malware that detects analysis tools?
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Overview

1. Motivation
2. Background

É Stealthy Malware Analysis and Artifacts
É Introspection

3. Hardware-assisted introspection and debugging
É Transparently acquire program data in two ways:

3.1 MALT: Using SMM for Debugging
3.2 LO-PHI: Using DMA over PCIe for Introspection

4. Transparent program introspection
É HOPS: Limits of transparent program introspection

5. Conclusion
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Motivation
É Symantec blocked an average of 250k attacks per day

during 2014
É McAfee reported 40M new malware samples during each

quarter of 2015
É Kaspersky reported 320k new threats per day in 2015
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Malware Analysis Challenges

É Analysts want to quickly identify malware behavior

É What damage does it do?
É How does it infect a system?
É How do we defend against it?
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Introspection

É Understanding program behavior

É Debugger introspects program to access raw data
É Read variables
É Reconstruct stack traces
É Read disk activity

É Analyst infers behavior of a sample from interpreting this
raw data
É Virtual Machine Introspection (VMI)

É Plugin for a Virtual Machine Manager (slowdown)
É Helper process inside guest VM (detectable process)

But what if the program can detect our introspection tool?
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Artifacts and Stealthy Malware

É Adversary achieves stealth by using artifacts to detect
analysis tools

É Measurable “tells” introduced by analysis
É Timing (nonfunctional) artifacts — overhead incurred by

analysis
É single-stepping instructions with debugger is slow
É imperfect VM environment does not match native speed

É Functional artifacts — features introduced by analysis
É isDebuggerPresent() — legitimate feature abused by

adversaries
É Incomplete or unfaithful emulation of some instructions

by VM
É Device names (hard disk named “VMWare disk”)

Significant effort to fully analyze each stealthy sample
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Malware Analysis

New Sample

Triage System

Manual analysis
(Time consuming)

Signature developed
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Transparency

É We want accurate introspection even in the presence of
stealthy malware
É We want transparency — no artifacts produced by analysis

We want transparent system introspection tools to solve
this ‘debugging transparency problem’
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Thesis Statement

É It is possible to develop a transparent system
introspection tool by independently considering timing
and functional artifacts
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Architecture

Semantics
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System Under Test (SUT)
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Component 1 – Hardware-assisted memory acquisition via PCI-e

Component 2 – Hardware-assisted memory acquisition via SMM

Component 3 – Transparent program introspection
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Hardware-Assisted Introspection

É Two approaches
1. MALT, using System Management Mode (SMM)

É Significant timing artifacts
É No functional artifacts

2. LO-PHI, FPGA-based custom circuit
É Few timing artifacts
É Increased functional artifacts

(e.g., DMA access performance counter)
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SMM-based Memory Acquisition

É Intel x86 feature provides small, OS-transparent and
-agnostic, trusted computing base
É Custom SMI Handler executed in SMM

É Code stored in System Management RAM (SMRAM)
É Trust only the BIOS
É Logically atomically executed transparently from OS
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SMM Architecture

OS/Program
Code

SMI Handler

OS/Program
Code

Protected Mode System Management Mode

1. Find program in memory

2. Dump to remote host

3. Configure next SMI

SMI occurs

Resume from SMM
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SMM Experiments

É Measure time elapsed during each SMM-related operation
1. SMM Switch after SMI
2. Find target program
3. Configure next SMI
4. Switch back from SMM

(Under 12µs total, 8µs from switching)
É Measure system overhead when configuring SMIs:

É Cause SMIs every retired instruction
É Demonstrate feasibility of approach to stealthy malware

É Consider recent packers

17



SMM Overhead

Stepping method Slowdown

Windows Linux
π gzip π gzip

Without MALT 1.00x 1.00x 1.00x 1.00x
far control transfers 1.38x 1.36x 1.46x 1.42x
near returns 46.2x 39.1x 36.1x 34.7x
taken mispredicted 96.5x 40.2x 77.7x 81.2x
taken branches 634x 935x 280x 903x
mispredicted branches 99.6x 149x 45.4x 138x
branches 745x 1196x 290x 1033x
instructions 1021x 1519x 492x 1369x

For reference, the state-of-the-art Ether yields an overhead of 3000x
for a similar operation.
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SMM vs. Packers

Packing Tool MALT OllyDbg DynamoRIO VMware Fusion

UPX v3.08 Ø Ø Ø Ø
Obsidium v1.4 Ø 7 (access violation) 7 (segfault) Ø
ASPack v2.29 Ø Ø Ø Ø
Armadillo v2.01 Ø 7 (access violation) 7 (crash) 7(crash)
Themida v2.2.3.0 Ø 7 (exception) 7 (exception) 7(no VM)
RLPack v1.21 Ø Ø Ø Ø
PELock v1.0694 Ø 7 7 (segfault) Ø
VMProtect v2.13.5 Ø 7 Ø 7 (crash)
eXPressor v1.8.0.1 Ø 7 7 (segfault) 7 (crash)
PECompact v3.02.2 Ø 7 (access violation) Ø Ø
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FPGA Memory and Disk Acquisition

É Use Xilinx ML507
É Gigabit

Ethernet
É 2x SATA

connectors
É PCI Express

connector
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LO-PHI Architecture

SUT

Host
Memory

Host
SATA

Hard drive

LO-PHI FPGA

PCIe
connector

SATA 1 SATA 2

EthernetDMA

SATA

to Remote System
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LO-PHI Experimentation

É Compare performance of SUT when LO-PHI is present
vs. absent on indicative workloads
É Memory throughput: use RAMSpeed benchmarks
É Disk throughput: Use IOZone benchmarks
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LO-PHI Memory Overhead
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LO-PHI Disk Overhead
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LO-PHI Case Studies

É Paranoid Fish (stealthy malware proof-of-concept)
É Failed to detect LO-PHI
É Comparison: State-of-the-art Anubis and Cuckoo were

both detected via virtualization artifacts
É Labeled Malware (429 coarsely-labeled samples)

É LO-PHI correctly matched labels

Technique Employed # Samples

Wait for keyboard 3
BIOS-based 6
Hardware id-based 28
Processor feature-based 62
Exception-based 79
Timing-based 251
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LO-PHI Case Studies (2)

É More Labeled Malware (213 well-labeled samples)
É Blind analysis identified various behaviors, all of which

were confirmed by ground truth
É Unlabeled Malware (1091 samples)

É Used LO-PHI to study behavior of samples

Observed Behavior Number of Samples

Created new process(es) 765
Opened socket(s) 210
Started service(s) 300
Loaded kernel modules 20
Modified GDT 58
Modified IDT 10
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MALT and LO-PHI Summary

É Two alternatives to hardware-assisted introspection
É MALT uses SMM to achieve low functional artifacts

(but causes overhead)
É LO-PHI uses custom FPGA hardware to achieve low

overhead
(but exposes minimal functional artifacts)

É Implemented and demonstrated the feasibility of
prototypes based on both alternatives
É MALT and LO-PHI both provide useful raw

introspection data transparently
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Transparency and the Semantic Gap

É MALT and LO-PHI both provide raw introspection data
transparently
É Periodic snapshots of memory (and potentially disk) via

SMM or PCIe

Raw
memory
snapshots

HOPS:
Transparent

Introspection

Variables

Stack Trace
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Transparent Introspection

É Assume access to source code for ground truth
É Two versions of binary

É “Deployed” version represents sample being analyzed
É “Instrumented” versions helps us hypothesize locations

of semantic information

É Report fraction of variables correctly identified in the
Deployed binary
É Report fraction of function call correctly identified in

runtime stack trace

É What are the tradeoffs between maintaining
transparency vs. fidelity of introspection
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Stack Trace Example

Example Dynamic Stack Trace

S
ta
ck

T
ra
ce

Time t (cycles)

main main

foo

main

foo

bar

main

foo

main

foo

qux

main

foo

main

10 20 30 40 50 60 70
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Introspection Experiments

É Consider indicative programs:
É Wuftpd 2.6.0
É Nullhttpd 0.5.0

É Run programs on indicative test cases
1. Gather ground truth from instrumented binary
2. Gather variable and stack trace information on deployed

binary
É Report fraction of variables correctly reported
É Report stack trace as a function of sampling frequency1

1Recall we assume access to periodic snapshots of memory
33



Call Stack Experiment
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Variable Accuracy

nullhttpd wuftpd

Locals 43% 133/306 46% 202/436
Stack 65% 168/260 56% 119/214

Globals 100% 77/77 92% 4218/4580

Overall 59% 378/643 90% 4539/5230
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Human Study

É 30 participants
É 30 C code snippets
É 3 Program understanding questions (from Sillito et al.)

É Half given HOPS data (treatment)
É Half given gdb data (control)

É treatment group performed the same as control with
significance
É HOPS provides no worse information than gdb wrt code

understanding with the added transparency property
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HOPS Summary

É HOPS explores the tradeoff space between transparency
and fidelity of output
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Publications

Supporting this dissertation

IEEE S&P 2015 Using Hardware Features for Increased Debugging Transparency
TDSC 2016 Towards Transparent Debugging
NDSS 2016 LO-PHI: Low-Observable Physical Host Instrumentation
SANER 2016 Towards Transparent Introspection

Other systems security publications

AsiaCCS 2015 TrustLogin: Securing Password-Login on Commodity Operating Systems
ESORICS 2014 A Framework to Secure Peripherals at Runtime
DSN 2013 Spectre: A Dependable System Introspection Framework
DSN 2013 Barley: Combining Control Flow with Resource Consumption to Detect

Jump-based ROP Attacks

Other publications

BigComp 2016 A MapReduce Framework to Improve Template Matching Uncertainty
Ubicomp 2016 Assessing Social Anxiety Using GPS Trajectories and Point-Of-Interest

Data
DSN 2016 An Uncrewed Aerial Vehicle Attack Scenario and Trustworthy Repair Ar-

chitecture
TIST 2015 DAEHR: A Discriminant Analysis Framework for Electronic Health

Record Data and an Application to Early Detection of Mental Health Dis-
orders

IEEE Big Data 2016 M-SEQ: Early Detection of Anxiety and Depression via Temporal Orders
of Diagnoses in Electronic Health Data
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Summary

É Stealthy malware uses artifacts to detect analysis
environments
É Transparent introspection prevents malware from

subverting analysis
É SMM-based MALT acquires memory snapshots with no

functional artifacts
É FGPA-based LO-PHI acquires memory and disk

snapshots with no timing artifacts
É HOPS computes useful semantic information from

periodic snapshots
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Bonus: Artifacts (1)

Anti-debugging

API Call Kernel32!IsDebuggerPresent returns 1 if a target process is being debugged
ntdll!NtQueryInformationProcess: ProcessInformation field set to -1 if the process is being debugged
kernel32!CheckRemoteDebuggerPresent returns 1 in debugger process
NtSetInformationThread with ThreadInformationClass set to 0x11 will detach some debuggers
kernel32!DebugActiveProcess to prevent other debuggers from attaching to a process

PEB Field PEB!IsDebugged is set by the system when a process is debugged
PEB!NtGlobalFlags is set if the process was created by a debugger

Detection ForceFlag field in heap header (+0x10) can be used to detect some debuggers
UnhandledExceptionFilter calls a user-defined filter function, but terminates in a debugging process
TEB of a debugged process contains a NULL pointer if no debugger is attached; valid pointer if some
debuggers are attached
Ctrl-C raises an exception in a debugged process, but the signal handler is called without debugging
Inserting a Rogue INT3 opcode can masquerade as breakpoints
Trap flag register manipulation to thwart tracers
If entryPoint RVA is set to 0, the magic MZ value in PE files is erased
ZwClose system call with invalid parameters can raise an exception in an attached debugger
Direct context modification to confuse a debugger
0x2D interrupt causes debugged program to stop raising exceptions
Some In-circuit Emulators (ICEs) can be detected by observing the behavior of the undocumented
0xF1 instruction
Searching for 0xCC instructions in program memory to detect software breakpoints
TLS-callback to perform checks
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Bonus: Known Artifacts (2)
Anti-virtualization

VMWare Virtualized device identifiers contain well-known strings
checkvm software can search for VMWare hooks in memory
Well-known locations/strings associated with VMWare tools

Xen Checking the VMX bit by executing CPUID with EAX as 1
CPU errata: AH4 erratum

Other LDTR register
IDTR register (Red Pill)
Magic I/O port (0x5658, ‘VX’)
Invalid instruction behavior
Using memory deduplication to detect various hypervisors including VMware ESX server, Xen, and
Linux KVM

Anti-emulation

Bochs Visible debug port

QEMU cpuid returns less specific information
Accessing reserved MSR registers raises a General Protection (GP) exception in real hardware; QEMU
does not
Attempting to execute an instruction longer than 15 bytes raises a GP exception in real hardware;
QEMU does not
Undocumented icebp instruction hangs in QEMU, while real hardware raises an exception
Unaligned memory references raise exceptions in real hardware; unsupported by QEMU
Bit 3 of FPU Control World register is always 1 in real hardware, while QEMU contains a 0

Other Using CPU bugs or errata to create CPU fingerprints via public chipset documentation
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Bonus Slide: SMM-related Attacks

SMM Attacks Solutions

Unlocked SMRAM Set D_LCK bit
SMRAM reclaiming Lock remapping and TOLUD registers
Cache poisoning SMRR
Graphics aperture Lock TOLUD
TSEG location Lock TSEG base
Call/fetch outside of SMRAM No call/fetch outside of SMRAM
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Bonus: Caching Issues

É LO-PHI: DMA accesses are cache coherent by default
É When disabled, accuracy and overhead are not influenced
É Compute π, query memory, results are the same

with/without LO-PHI
É MALT: Instruction caching potentially influences system

overhead
É The 12µs cost is fixed
É Depending on workload, the OS may switch contexts

more, causing more overhead
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Bonus: MALT Overhead

CPU flow of execution

Clock
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Interrupt handler, switch to Task 2
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Bonus: LO-PHI Disk Writes
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Bonus: Future Directions

1. Transparent program control via CPU interposition
É Can we change the program’s execution without changing

the code in memory?
É Place programmable device between motherboard and

CPU
2. Applications in Cloud Security

É Use transparent introspection to prevent resource stealing
attacks in cloud environments

3. Generalization of stealth
É Models for human typing and mouse movement
É In mobile devices, models for human eye movement
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CPU Interposition

É We interposed SATA traffic with LO-PHI
É CPU interposers exist for Intel and ARM platforms

É Can we transparently alter instructions on the fly?
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Applications in Cloud Security
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Applications in Cloud Security

Protected System

VMM (e.g., Xen)

VM1 VM2 VM3

SMI Handler Data

Remote Monitor

VM1 data
VM2 data
VM3 data

True timer

1

2

3

4

5
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Generalizing Stealth

É We want to improve automated analysis of stealthy
samples

É What if the malware engages the GUI? or measures
keyboard/mouse usage?

É Ultimately, we want to dynamically explore malware state
É But what if the malware detects our automatic actuation?

É We need to explore approaches to modeling how humans
engage malicious processes
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Bonus: Pafish Case Study
É Can HOPS be used to determine Pafish’s stealth

mechanism?
Pafish Stack Trace

S
ta

ck
T

ra
ce

Time t (cycles)
Sample x

main

0

... main

gs m a

12821779
1

main

gs m a

GCP

13089882
2

main

gs m a

Sleep

14157321
3

main

gs m a

GCP

3879031005
4

Code around sample 1

t = ... int gensandbox mouse act(){
12821779 POINT p1, p2;
13089882 GetCursorPos(&p1);
14157321 Sleep(2000);
3879031005 GetCursorPos(&p2);

if (p1.x==p2.x && ...)
traced("found");

else
3879559528 nottraced("not found");
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