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“Understanding understanding”
Cognition: Mental processes involved in comprehension and 
gaining knowledge
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“Computational Logic”

Computers do not think like humans do!
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“Computational Logic”

Logical reasoning in CS forms a core 
component of undergraduate CS curricula

Introductory CS courses structured around 
cultivating creative thinking and problem 
solving using logical reasoning
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Computers do not think like humans do!

Future industry professionals and academics 
need to be trained for computational logic 
reasoning 



Defining “Logic”
Digital logic

(e.g., hardware designs; EECS 215, 270)
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Defining “Logic”
Digital logic

(e.g., hardware designs; EECS 215, 270)

Mathematical logic
(e.g., proofs about algorithms; EECS 203, 376)

Programming logic
(e.g., manipulating data structures; EECS 183, 281)
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Why should we care about cognition?
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9

Why should we care about how computers think?
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We want to better understand how programmers 
reason about computers.



Desired Properties in Our Study
(1) Non-intrusive Methodology

instead of 
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Desired Properties in Our Study
(2) Objective Measures
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instead of 



Desired Properties in Our Study
(3) Context-specific Models

vs.
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Desired Properties in Our Study
(3) Context-specific Models

vs. vs.
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It is possible to use objective measures to obtain mathematical 
models of the cognitive processes underlying computational logic 

reasoning tasks, and these models can highlight prospective 
cognitive interventions for student training.
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Three Research Components



 

Using automated program repair for hardware as a debugging 
assistant for designers

19

Three Research Components



Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

20

Three Research Components



Three Research Components

Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using neurostimulation to investigate the relationship between spatial 
reasoning and programming
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Automated Program Repair for 
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?
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Have you ever spent a long time finding 
and fixing a small bug in a program?
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Automated Program Repair (APR)

Faulty software 
program w/ bug(s)

Test suite w/ at least 
one failing test

Repaired 
program

Fault 
localization

Patch

Validation

No repairs 
found

OR
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Hardware Designs
Digital specifications for electronic 
devices, computer systems, or integrated 
circuits
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Hardware Designs
Digital specifications for electronic 
devices, computer systems, or integrated 
circuits

Typically written using hardware 
description languages (HDLs) like Verilog 
and VHDL

module counter ( input clk, 
    input rstn, 
    output reg[3:0] 
out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule
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Hardware Designs
Digital specifications for electronic 
devices, computer systems, or integrated 
circuits

Typically written using hardware 
description languages (HDLs) like Verilog 
and VHDL

Correspond to the “stage 0” of the 
hardware design process

module counter ( input clk, 
    input rstn, 
    output reg[3:0] 
out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule
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A Tale of Two Debugging Worlds

What software developers expect
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What hardware designers use

Goal: Bridge the gap between tool 
support for software and hardware



Software vs. Hardware

A key difference: serial execution vs. parallelism
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module counter ( input clk, 
    input rstn, 
    output reg[3:0] out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule

animals = [“cat”, “dog”, “cat”]
cat_counter = 0
for animal in animals:

if animal == “cat”:
cat_counter += 1

print(cat_counter)

Serial Python code Parallel Verilog code



Software vs. Hardware
Another key difference: test suites vs. testbenches
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Compiler version N-2017.12-SP2-1_Full64; Runtime version N-2017.12-SP2-1_Full64;  Jan 11 11:37 2021
                time,   clk,    reset,  enable, count_out,      overflow_out
                   0,   0,      0,      0,       x,             x
                   5,   1,      0,      0,       x,             x
                      ...
                 250,   0,      0,      1,       5,             1
                 255,   1,      0,      1,       5,             1
                 256,   1,      0,      1,       6,             1
$finish called from file "first_counter_tb_t3.v", line 70.
$finish at simulation time                  258



Software APR to Hardware?

Problem: Existing techniques from software APR cannot be directly 
applied to hardware designs!

How do we repurpose software APR for hardware designs?
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Introducing: CirFix

CirFix: A hardware-design focused automated repair algorithm 

● First-of-its kind APR tool for hardware designs
● Novel fault localization approach suitable for hardware 

designs 

32

Fault 
localization



CirFix: A hardware-design focused automated repair algorithm 

● First-of-its kind APR tool for hardware designs
● Novel fault localization approach suitable for hardware 

designs 
● Novel approach to guide the search for repairs using the 

existing hardware design process 
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Fault 
localization

Patch

Validation

● Results published in ASPLOS’22 and TSE’23

Introducing: CirFix



CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

● No public benchmarks available for Verilog defects (largely due to IP constraints)

● Constructed a benchmark suite of 32 different hardware defects to evaluate CirFix
○ 6 classroom-level designs and 5 larger, open-source designs
○ 19 “easy” defects and 13 “hard” defects

● Benchmark suite publicly available for future researchers to evaluate hardware 
repair approaches
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CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

● Ran five resource-constrained, independent CirFix trials for each defect, 
stopping when a repair was found

● CirFix produced high-quality (i.e., correct upon manual inspection) repairs for 
16/32 (50%) defects

● Repair rate comparable to strong results from software-based APR                
(e.g., GenProg at 52.5%, Angelix at 34.1%)

35

CirFix is effective at automatically repairing 
defects in hardware designs!



CirFix: Human Study Design

“How useful do developers find CirFix?”

● IRB-approved experimental protocol (HUM00199335)
● 41 participants in the study (predominantly Michigan 

students)

● Participants asked to identify and fix defects from the 
CirFix benchmark, with or without debugging hints
○ Debugging hint: highlighting lines of code implicated 

by CirFix
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● Participants also asked to rate the accuracy and helpfulness of presented hints
● Designer performance assessed by evaluating F-scores (F

1
) and time taken to 

complete each debugging task 



CirFix: Human Study Results

“How useful do developers find CirFix?”

● No statistically significant difference in time taken to localize faults with 
debugging hints (p = 0.41, Student t-test)

● Trend for participant debugging accuracy better with debugging hints (F
1
 = 0.67) 

vs. no hints (F
1
 = 0.29)

○ Trend does not rise to statistical significance (p = 0.12)

● Debugging hints on classroom-level designs rated as more helpful and accurate 
than those on larger open-source designs (p < 0.01, statistically significant)
○ Helps beginners and experts alike
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CirFix could be beneficial as a debugging 
assistant in a classroom context!



CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?
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CirFix: Wrapping it Up

● CirFix can automatically repair hardware designs, achieving a 
repair rate comparable to that of software APR
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Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?



CirFix: Wrapping it Up

● CirFix can automatically repair hardware designs, achieving a 
repair rate comparable to that of software APR

● Programmers using CirFix as a debugging assistant
○ Rate the tool as significantly helpful for classroom-level designs
○ Show trends of improved debugging accuracy
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Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?



Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using neurostimulation to investigate the relationship between spatial 
reasoning and programming

41

Three Research Components



Eye-Tracking for Computer Science 
Formalisms

Can we use eye-tracking to investigate how students read and 
understand computer science formalisms (i.e., mathematical 
logic)?
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Common Student Sentiment:
“I find iterative reasoning easier than recursive reasoning for 
algorithmic problem solving.”
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vs.



Formalism Comprehension

Students sometimes have a hard time with logical 
algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses 
focusing on formal reasoning (e.g., discrete math, theory, 
algorithm analysis)

At Michigan: EECS 203, 376, MATH 416
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Formalism Comprehension

Formal reasoning is widely used to improve software quality and reliability!
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and many, many more…



46

Are students learning and retaining effective strategies 
for reasoning about computer science formalisms?



“Formalism” Defined 
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Enter: Eye-Tracking

● Cheap and non-invasive measure of problem 
solving strategies

● Approximates dynamics of visual attention (e.g., 
where we focus, and for how long)

● Serves as a proxy for cognitive load (i.e., strain on 
working memory) and task difficulty
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How Does Eye-Tracking Work?
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An eye-tracker consists of cameras and projectors
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An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared 
light on the eyes
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An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared 
light on the eyes

The cameras take high-resolution images of the 
eyes and the pattern

Machine learning, image processing, and 
mathematical algorithms are used to determine 
the eyes’ position and “gaze point”

How Does Eye-Tracking Work?



Formalism Comprehension:     
Some Eye-Tracking Terminology
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Areas of Interest 
(AOIs)



Formalism Comprehension:     
Some Eye-Tracking Terminology
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Fixation



Formalism Comprehension:      
Some Eye-Tracking Terminology

55

Attention 
Switching



Formalism Comprehension:   
Human Study Design
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● IRB-approved experimental protocol (HUM00204278)
● 34 participants in the study (predominantly Michigan students)

● Participants shown a series of algorithmic proofs from a textbook, each with an 
associated figure and possible mistake

● Participants asked to identify the presence of mistakes in each proof
● Eye-tracking used to assess comprehension strategy

● Results published in ICSE’23

“How do students find mistakes in proofs?”



“Is more preparation correlated with better efficacy at finding mistakes in proofs?”

● No statistically significant difference in response times and accuracies between 
more and less prepared participants 
○ “More prepared”: Have taken more than 4 courses covering CS formalisms 

and pass a pre-screening test (16/34 participants)
○ No correlation between formalism course count and response accuracy 

(Pearson’s r = 0.036, p = 0.84)

● More prepared participants fixate longer on the proof text, correct answer, and 
distractor choices (p < 0.03, statistically significant), but achieve similar results
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Formalism Comprehension:   
Human Study Results

Taking more classes prepares students to read the proof and answer 
choices more thoroughly, but that may not be enough!



“Are students able to assess their performances for proof reading tasks?”

● No evidence of correlations between 
○ Response accuracy and self-reported expertise with formalisms (Kendall’s τ 

test, τ = 0.21, p = 0.18)
○ Response accuracy and self-perceived task difficulty (τ = 0.14, p = 0.35)
○ Response accuracy and self-perceived proof readability (τ = -0.14, p = 0.32)
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Formalism Comprehension:   
Human Study Results

Student self-reports of their experience or familiarity with formalism 
comprehension tasks may not be reliable!



“What sets apart higher-performing participants from lower-performing ones?”

● Ability to spot mistakes in proofs for recursive algorithms (p = 0.006, 
statistically significant)

● Ability to spot mistakes in inductive proofs (p = 0.01, statistically significant)

● Iterative algorithms, direct proofs, and proofs by contradiction do not pose as 
many challenges in a mistake-finding context
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Formalism Comprehension:   
Human Study Results

Students struggling with proof comprehension may benefit 
from practicing inductive reasoning and recursion!



● Higher-performing participants display more attention switching behavior, 
i.e., frequently go back and forth between presented information (p = 0.002, 
statistically significant)

60

Formalism Comprehension:   
Human Study Results

Students working on proof comprehension tasks should 
consider going back and forth between the presented 

information to let it assimilate!



Formalism Comprehension: 
Wrapping it Up

Can we use eye-tracking to investigate how students read and 
understand computer science formalisms (i.e., mathematical 
logic)?
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Formalism Comprehension: 
Wrapping it Up

● Incoming preparation and student self-reports are not accurate 
predictors of success with formalism comprehension
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Can we use eye-tracking to investigate how students read and 
understand computer science formalisms (i.e., mathematical 
logic)?



Formalism Comprehension: 
Wrapping it Up

● Incoming preparation and student self-reports are not accurate 
predictors of success with formalism comprehension

● Higher-performing students 
○ Are more effective at inductive and recursive reasoning
○ Display more attention-switching behaviors

63

Can we use eye-tracking to investigate how students read and 
understand computer science formalisms (i.e., mathematical 
logic)?



Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using neurostimulation to investigate the relationship between spatial 
reasoning and programming
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Three Research Components



Neurostimulation and Programming

Can we use neurostimulation to investigate brain activity for 
coding tasks (i.e., programming logic)?
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How is our brain activity for programming related that for 
mentally rotating and manipulating objects? 
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≟



Brain activity for spatial reasoning correlates with that for programming tasks

Programming and Spatial Reasoning

67

≟



68

Is brain activity for spatial reasoning causally related to that 
for programming tasks?

Programming and Spatial Reasoning
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Is brain activity for spatial reasoning causally related to that 
for programming tasks?

Should we be training people to mentally rotate 3D objects to get 
better at programming?

Programming and Spatial Reasoning



Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for 

depression, smoking cessation, OCD, etc.
● Well-established research tool
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Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for 

depression, smoking cessation, OCD, etc.
● Well-established research tool

● Time-efficient way to investigate causal 
relationships in brain activity (e.g., 
compared to longitudinal studies over the 
course of weeks, months, or even years!)
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How does TMS work?

TMS pulses produce a magnetic field 
around the TMS coil
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How does TMS work?

TMS pulses produce a magnetic field 
around the TMS coil
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neurons of the brain region of interest

The induced current excites or inhibits 
brain activity in the region
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By altering activity in certain brain regions, we can investigate 
the causal involvement of the regions for certain tasks!



TMS for Programming: 
Human Study Design

● IRBMED-approved experimental protocol (HUM00216195)
● 16 participants in the study (Michigan students and industry 

developers)

● Participant brain scans collected through functional magnetic 
resonance imaging (fMRI)
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TMS for Programming: 
Human Study Design

● IRBMED-approved experimental protocol (HUM00216195)
● 16 participants in the study (Michigan students and industry 

developers)

● Participant brain scans collected through functional magnetic 
resonance imaging (fMRI)

● Established anatomical landmark-based localization approaches 
used to identify brain regions of interest
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TMS for Programming: 
Human Study Design

● Participants attend 2-4 TMS sessions (up to three 
treatment sessions, one control session; each on a 
different day)
○ Treatment: supplementary motor area (SMA) or 

primary motor cortex (M1), both responsible for 
motor actions and associated with spatial reasoning

○ Control: cranial vertex region, not associated with 
spatial reasoning 
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● 40 seconds of neurostimulation followed by 30 minutes of tasks on a regular computer
○ 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a total of 600 pulses



TMS for Programming: Brain Regions
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Primary Motor Cortex 
(M1)

Cranial Vertex

Supplementary 
Motor Area (SMA)



TMS for Programming: 
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)
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TMS for Programming: 
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)
○ Mental rotation of 3D objects
○ Code comprehension (e.g., tracing through code)

● Results published in ICSE’24 (with an ACM Distinguished Paper Award)
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TMS for Programming: 
Human Study Results

“Does TMS of the SMA influence spatial reasoning performance?”

83

● Stimulating the SMA affects the time taken to perform mental rotation 
tasks (15.3% increase, p ≤ 0.02, statistically significant)
○ Partial replication of results from Cona et al. 

Our partial replication of results from a prior study adds 
confidence in the correct application of TMS!



TMS for Programming: 
Human Study Results

“Do we use the same areas of our brains for spatial reasoning and programming?”

84

● No evidence of a direct causal relationship between programming 
outcomes and brain activity in SMA and M1 (!!!)
○ Disrupting brain activity for spatial reasoning does not affect response 

accuracy or time for programming when compared to the baseline
○ Results disagree with multiple previously-published correlations

Our previous understanding of the brain’s involvement in 
programming may not be correct!

≟



TMS for Programming: 
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time 

attributed to TMS, statistically significant
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TMS for Programming: 
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time 

attributed to TMS, statistically significant
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Factor Affecting Response Times Effect Size (Normalized)

“How hard is the question?” 1.00

“Participant expertise” 0.18

“TMS” 0.05

Neurostimulation can be used to alter computing outcomes, warranting 
further exploration of the technique to investigate causality!



TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for 
coding tasks (i.e., programming logic)?
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TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for 
coding tasks (i.e., programming logic)?

● No evidence of a causal relationship between activity in SMA / 
M1 and reasoning about programming
○ Our results disagree with multiple previously published 

correlations, challenging our understanding of the brain’s 
involvement in programming
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TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for 
coding tasks (i.e., programming logic)?

● No evidence of a causal relationship between activity in SMA / 
M1 and reasoning about programming
○ Our results disagree with multiple previously published 

correlations, challenging our understanding of the brain’s 
involvement in programming

● Neurostimulation can alter programming outcomes
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Putting It All Together…

100

● Humans and computers think in different ways

● We can use functional, physiological, and medical methods to better understand how 
humans reason about computational logic
○ Functional: “Can you find the bug?”
○ Physiological: “Where are you looking as you search for the bug?”
○ Medical: “What goes on in your brain as you search for the bug?”

● Knowing the cognitive basis of logical reasoning can help us enhance tool support for 
developers and explore more effective methods to teach CS

● De-identified datasets publicly available at: 
https://websites.umich.edu/~hammada/research/

https://websites.umich.edu/~hammada/research/

