M 3 . '\: . r"‘,.;‘ "'.!—’, ‘ ‘ '

UNIVERSITY OF S .y f
MICHIGAN = 17) <

Understanding understanding: How do we
reason about computational logic?

Hammad Ahmad

(he/him)
University of Michigan, Ann Arbor

“Understanding understanding”

Cognition: Mental processes involved in comprehension and
gaining knowledge

Attention A

Memory ‘ ‘ Perception

“Computational Logic”

Computers do not think like humans do!

ter Science

GCSE (9-1) Compu

(d) day = "Monday"
x = day.length

print (x)

“Computational Logic”

Computers do not think like humans do!

Future industry professionals and academics
need to be trained for computational logic GCSE (9-1) Computer Science
reasoning

(d) day = "Monday"
Logical reasoning in CS forms a core th
component of undergraduate CS curricula X EREAY -

print (x)

Introductory CS courses structured around \‘ x
cultivating creative thinking and problem 2(1 m D&

solving using logical reasoning

m

Defining “Logic”

Digital logic » o
(e.g., hardware designs; EECS 215, 270) Pl |

Defining “Logic”

Digital logic
(e.g., hardware designs; EECS 215, 270)

Mathematical logic
(e.g., proofs about algorithms; EECS 203, 376)

Defining “Logic”

Digital logic
(e.g., hardware designs; EECS 215, 270)

Mathematical logic
(e.g., proofs about algorithms; EECS 203, 376)

Programming logic -
(e.g., manipulating data structures; EECS 183, 281)
~

Why should we care about cognition?

A CS1 Spatial Skills Intervention and the Impact on Introductory
Programming Abilities

Ryan Bockmon Stephen Cooper William Koperski

Does spatial skills instruction improve STEM outcomes? The answer is ‘yes’

Sheryl Sorby™*, Norma Veurink®, Scott Streiner®

aYN V) PPN DTS

Development of a cognition-priming model describing learning
in aﬂm clacevranm

Cognitive Load Theory in the Context of Teaching Insights into numerical cognition: considering eye-fixations
and Leaming Computer Programmin g: A in number processing and arithmetic
Systematic Literature Review

Inin Honrinne Rarccanotta and Antanin Carlac da Erancican

Richa

J. Mock! - S. Huber! - E. Klein'*? - K. Moeller!~*

From anecdote to evidence: the relationship between

personality and need for cognition of developers Understanding software developers’ cognition in agile

requirements engineering

Daniel Russo! 2 . Andres R. Masegosa' - Klaas-Jan Stol? Jingdong Jia®*, Xiaoying Yang?, Rong Zhang®, Xi Liu?

Why should we care about how computers think?

Debugging at the hardware/software interface

_ Intel does its best to tamp down
impact of Spectre and Meltdown

How to write good software

(o) e electronics industry has reached a point at whic e
Ifasterd (vl\;e spgnd) 90% of our Tnecechronis ndustryhas eached apointatwhichthe ImPact of Spes
iIme debugging

dependencies between software and hardware have
become so significant that they must be designed and
debugged together. Efficient debug at the

If we spend the majority of our programming time and effort on hardware/software interface requires full understanding
debugging, we should focus our efforts on speeding up our of what is happening in the processor, as well as in the
debugging (rather than trying to write code faster). device registers, memory maps, and bus accesses that
connect the processor to the peripherals, not to mention
) GREG DETRE the internal state of these peripherals. This kind of debug
il Lk capability has become crucial for delivering products
successfully, at the right time, and at appropriate cost
points.

Ron Miller @ron_miller / 10:31 AMEST * January 26, 2018 E,I Comment

Amazon's one hour of downtime on Prime Day may have cost
it up to $100 million in lost sales

YOUTUBE - Published December 14
Sean Wolfe Jul1

T Ay s zm G00gle lost $1.7M in ad revenue during
YouTube outage, expert says

YouTube and other Google services, such as Gmail, suffered outage Monday morning

We want to better understand how programmers
reason about computers.

m

Desired Properties in Our Study

(1) Non-intrusive Methodology

instead of

Desired Properties in Our Study

(2) Objective Measures

gsel
)l\-.»l A)H\"\"‘. y
Disat

DisaqQree

- 1y
° 5110“9
ree
instead of - omewhat D152
e
gomewnat AQre
Line: 16 Col: 56 ee
_— v A S"ong\y A9
Test Results Custom Input Run Code Run Tests Submit m
;‘/Agfee Ge
Compiled successfully. All available test cases passed ko
@ Testcase1 & A sac bl €
Your Output (stdout)
O Testcase2 & 5 -1
0.0 0.0
@ Testcase3 &
Expected Output Download
& Testcase4
5 -1
0.0 0.0
O Testcase5 <

Desired Properties in Our Study

(3) Context-specific Models

Desired Properties in Our Study

(3) Context-specific Models

vs.

Thesis Statement

It is possible to use objective measures

Thesis Statement

It is possible to use objective measures to obtain mathematical
models of the cognitive processes underlying computational logic
reasoning tasks

Thesis Statement

It is possible to use objective measures to obtain mathematical
models of the cognitive processes underlying computational logic
reasoning tasks, and these models can highlight prospective
cognitive interventions for student training.

m

Three Research Components

Three Research Components

Using automated program repair for hardware as a debugging
Peg assistant for designers

Three Research Components

Using automated program repair for hardware as a debugging
¢ assistant for designers

. . . :
MR Using eye-tracking to understand cognition for computer science

N '_' formalisms

m

Three Research Components

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science

N '_' formalisms

Using neurostimulation to investigate the relationship between spatial
< reasoning and programming

m

Automated Program Repair for
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

m

Have you ever spent a long time finding
and fixing a small bug in a program?

Automated Program Repair (APR)

g | m—

L1

Faulty software '[</>(1 'ﬁ:-
program w/ bug(s) l - K OR
.~ L1\
Repaired No repairs
program found

st suite w/ at least
one failing test

Hardware Designs -

CH—<— out
Digital specifications for electronic) T
devices, computer systems, or integrated i e
circuits seoso 1 F%
stn Lo—— S _ —lR;ut_reg[sm
ck [e e 5 s
10[3:0] E L] KL REG.SVNE

Hardware Designs —el

cO0 —<— out

clk ——

Digital specifications for electronic
devices, computer systems, or integrated e

circuits ——
Typically written using hardware " :@J o O outso
description languages (HDLs) like Verilog

and VHDL

module counter (input clk,
input rstn,
output reg[3:0]
out) ;
always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;
end endmodule

IIi::!III!!IIIII

Hardware Designs ol

CH—<— out

Digital specifications for electronic) "
devices, computer systems, or integrated o m
circuits S F%
Typically written using hardware " ey o =
description languages (HDLs) like Verilog e
and VHDL

module counter (input clk,

input rstn,

Correspond to the “stage 0” of the gy g 30l
hardware design process always @ (posedge clk) begin

if (! rstn) out <= 0;
else out <= out + 1;
end endmodule

m

A Tale of Two Debugging Worlds

et3:0]
™ 24 wwald(oi0]
™ 4 _wready|0.0)

» Debug 2 ¥ = 0O w-Vvariables 12 | % Breakpoints

T1CPAchecker PredicateAnalysis - Kevin [Java Applice** S

& org.sosy_lab.cpachecker.cmdline.CPAMainatloca ® © ® > W M proieci2) @ My Mo Detin piofect2s prokctz

~a® Thread [main] (Suspended) B e = B < B projectz) - planet.cpp | N
= cPAMain.main(String[]) line: 98 =

¥ I peoject2 PID 22 Qa
wi fusr/lib/jvm/java-B-oracle/bin/java (Feb 28,2019, o .,
o wnary s4Ma = m‘.yq}mhh“;"f“"
3 Energy Imgact] !
[Zaro KB

 ——

1 Z3StringFormula [9) Z3Strjava J) Z3Filejavi @ nework

1 Set<SpecificationProperty> properties v resd? Guess: coma.-thread seril
4 trv 7 -
2 ® DevTools - di nich
. L Emmmotz Corsols Sources. Netaork Per: Meamory Security Auits

< debuggee)s X [N I |

comare

faronymeus)

st

printPrograms:

Goal: Bridge the gap between tool
: support for software and hardware

1 Console &
Achecker P|

vLocal
015 Ar
: {10

{} Une 48, Column 37

> Closure (containst (A

Cansole

e t» O

What software developers expect What hardware designers use

Software vs. Hardware

A key difference: serial execution vs. parallelism

mmm) animals = [“cat”, “dog”, “cat”] module counter (input clk,

mmm) cat counter = 0 input rstn,

) animal animals: output reg[3:0] out);
animal == “cat”: always Q@ (posedge clk) begin
cat_counter += 1 if (! rstn) out <= 0;

(cat_counter)

else out <= out + 1;
end endmodule

Serial Python code Parallel Verilog code

m

Software vs. Hardware

Another key difference: test suites vs. testbenches

test/test_basic_integers.c:14: test_some_integers()
test/test_basic_integers.c:15: test_some_integers()
test/test_basic_integers.c:21: test_more_integers()| FA
test/test_basic_integers.c:22: test_more_integers()| F2
test/test_basic_strings.c:16: test_some_strings()

test/test_basic_strings.c:17: test_some_strings()

test/test_basic_strings.c:26: test_more_strings() FAILED

Compiler version N-2017.12-SP2-1 Full64; Runtime version N-2017.12-SP2-1 Fullé64; Jan 11 11:37 2021

time, clk, reset, enable, count out, overflow out
o, o, o, o, X, X
5, 1, o, o, X, X
250, o, o, 1, 5, 1
255, 1, o, 1, 5, 1
256, 1, 0, 1, 6, 1
$finish called rrom file irst_counter 3 v, Iine 70.

— 258

Sfinish at simulation time

Software APR to Hardware?

Problem: Existing techniques from software APR cannot be directly
applied to hardware designs!

How do we repurpose software APR for hardware designs?

@ N

Introducing: CirFix Jo
c—
CirFix: A hardware-design focused automated repair algorithm Ioc:l?:a::ion

® First-of-its kind APR tool for hardware designs
e Novel fault localization approach suitable for hardware

designs \ /

NP @ N
Introducing: CirFix Jo @%

[——]

. Faul
CirFix: A hardware-design focused automated repair algorithm ocalization Uﬂ aten

® First-of-its kind APR tool for hardware designs (D
e Novel fault localization approach suitable for hardware

designs \ "a“da“j
e Novel approach to guide the search for repairs using the
existing hardware design process

® Results published in ASPLOS’22 and TSE’23

CirFix: Automatically Repairing Defects in Hardware Design

CirFix: Automated Hardware Repair and its Code
Real 'WO I | d Ap pl |Cat| ons Hammad Ahmad Yu Huang Westley Weimer
hammada@umich.edu yhhy@umich.edu weimerw@umich.edu
Priscila Santiesteban, Yu Huang, Westley Weimer, Hammad Ahmad University of Michigan, Ann Arbor University of Michigan, Ann Arbor University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA

m

CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

® No public benchmarks available for Verilog defects (largely due to IP constraints)

e Constructed a benchmark suite of 32 different hardware defects to evaluate CirFix
o 6 classroom-level designs and 5 larger, open-source designs

o 19 “easy” defects and 13 “hard” defects

® Benchmark suite publicly available for future researchers to evaluate hardware
repair approaches

m

CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

® Ran five resource-constrained, independent CirFix trials for each defect,
stopping when a repair was found

e CirFix produced high-quality (i.e., correct upon manual inspection) repairs for
16/32 (50%) defects

® Repair rate comparable to strong results from software-based APR
(e.g., GenProg

CirFix is effective at automatically repairing

defects in hardware designs!

CirFix: Human Study Design

8 // This always block gets executed whenever a/b/c/d/sel changes value

“H ow userI do developers find CirFiX?” :/b/gdWhen that happens, based on value in sel, output is assigned to either
10 always @ (a or b or c or d or sel) begin
11 case (sel)
e [RB-approved experimental protocol (HUMO00199335) amerm s
® 41 participants in the study (predominantly Michigan 25~ enigeee
students) i et

You are told that the highlighted line(s) could be responsible for the bug in this circuit
design.
If you are interested, you can access the full implementation of the circuit design here.

e Participants asked to identify and fix defects from the
CirFix benchmark, with or without debugging hints s soncc e Irumoga e e el et
o Debugging hint: highlighting lines of code implicated
by CirFix

® Participants also asked to rate the accuracy and helpfulness of presented hints
® Designer performance assessed by evaluating F-scores (F,) and time taken to
complete each debugging task

m

CirFix: Human Study Results

“How useful do developers find CirFix?”

e No statistically significant difference in time taken to localize faults with
debugging hints (p = 0.41, Student t-test)

e Trend for participant debugging accuracy better with debugging hints (F1 =0.67)

vs. no hints (F, = 0.29)
o Trend does not rise to statistical significance (p =0.12)

e Debuggip and accurate

ELRYle CirFix could be beneficial as a debugging gulclyy
o Help assistant in a classroom context!

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

e CirFix can automatically repair hardware designs, achieving a
repair rate comparable to that of software APR

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

e CirFix can automatically repair hardware designs, achieving a
repair rate comparable to that of software APR

® Programmers using CirFix as a debugging assistant
o Rate the tool as significantly helpful for classroom-level designs
o Show trends of improved debugging accuracy

m

Three Research Components

. . . :
MR Using eye-tracking to understand cognition for computer science

N '_' formalisms

Using neurostimulation to investigate the relationship between spatial
< reasoning and programming

m

48t Eye-Tracking for Computer Science
W Formalisms

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical
logic)?

m

Common Student Sentiment:

“I find iterative reasoning easier than recursive reasoning for
algorithmic problem solving.”

terative Approach

Recursive Approach

MAKE A PILE

OF BOXES1D
LoO K THRoLGH

GO TMROVLGH
EVERY | TEM
IN THE BoX

WHLE THE PILE ISNT
EMPTY

vs.

¢ You FIND {F You FAND
A BOX... | |AKEY, \
You ARE DoNE !

\F YOL FIND

A REYX,
Nou'RE DonE!

Formalism Comprehension

Students sometimes have a hard time with logical
algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses
focusing on formal reasoning (e.g., discrete math, theory,
algorithm analysis)

At Michigan: EECS 203, 376, MATH 416

Discrete
Mathematics

and Its

Applications

Theoretical

Computer Science

Introduction to Automata, Computability,
Complexity, Algorithmics, Randomization,
Communication, and Cryptography

a

2
f ‘ﬂ Springer

Formalism Comprehension

Formal reasoning is widely used to improve software quality and reliability!

HE 5
N @ intel. G
Microsoft
'
”
amazon,C0m® a ' and Mmany, many more...

m

Are students learning and retaining effective strategies
for reasoning about computer science formalisms?

“Formalism” Defined
Algorithm Towers of Hanoi: Toll(n, A, B, C) A | I
Input: n: number of disks. — :> é :> a
Input: A, B,C: pegs A through C. a ‘ . n =
A] C A [} [i

Output: The algorithm moves n disks from A to €' using B if necessary such that
only one disk can be moved at a time and a large disk cannot be put on top of a @

smaller disk.

1: if n =1 then Figure: The Towers of Hanoi problem. All disks on
2 move disk n from A to C . . '
: A need to be moved to peg C, usin B if
3: ToH(n—1,A,C, B) > Move n — 1 disks from A to B using C. Pog P ,g 9pog é
& Move dk d from Ate'@ necessary, such that only one disk can be moved at =
5: ToH(n — 1, B, A,C) > Move n — 1 disks from B to C using A. a time and no large disk may be put on top of a ‘
smaller disk.

Theorem. The Towers of Hanoi (ToH) algorithm correctly moves n disks
from pegs A to C using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Q. What mistake, if any, is present in the proof of this theorem?

. - . , : - (1) No mistake.
Proof. We prove this claim by induction on n, the number of disks.

Base Case (n = 0): Trivially true since no disks need to be moved. (2) The base case is not correctly set up, which causes the
Inductive Hypothesis: Assume that ToH(n, A, B, C) correctly moves n disks |induction to fail.

from pegs A to C using peg B such that our requirements hold. (3) In the inductive step, the second recursive call alone is not
Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly

moves 7t + 1 disks from pegs A to C using peg B. Note that the first recursive sufficient to move all disks except the largest disk directly from peg

call correctly moves n disks from peg A to B using peg C. The next move step B to C. We need to break this step down into sub-steps and use
moves the largcsl disk from A to C, while all o(lfer disks are on tower B. The peg A as a placeholder for disks.

second recursive call correctly moves all other disks from peg B to peg C on 2 Th T kil h b f
top of the largest. disk: (4) The proof should perform induction on the number of steps

= required to moved all disks from peg A to C, instead of performing
induction on the number of disks.

Enter: Eye-Tracking

e Cheap and non-invasive measure of problem
solving strategies

® Approximates dynamics of visual attention (e.g.,
where we focus, and for how long)

® Serves as a proxy for cognitive load (i.e., strain on
working memory) and task difficulty

m

How Does Eye-Tracking Work?

An eye-tracker consists of cameras and projectors

\Qj\

How Does Eye-Tracking Work?

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared

light on the eyes /,//‘\)\

How Does Eye-Tracking Work?

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared
light on the eyes

The cameras take high-resolution images of the
eyes and the pattern

How Does Eye-Tracking Work?

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared
light on the eyes

The cameras take high-resolution images of the
eyes and the pattern

Gaze point

Machine learning, image processing, and
mathematical algorithms are used to determine
the eyes’ position and “gaze point”

m

Formalism Comprehension:
Some Eye-Tracking Terminology

Algorithm Towers of Hanoi: Toll(n, A, B,C) d | | | 1 Areas Of Inte reSt
Input: n: number of disks. a | | > 2 > 2
I:zlult: :‘1 ;lfl.“(l,t:";o:s (Ahthmugh C. a ! . — A (AOIS)

A] A [] [§

Output: The algorithm moves n disks from A to C using B if necessary such that i
only one disk can be moved at a time and a large disk cannot be put on top of a @

smaller disk.

1: if n =1 then Figure: The Towers of Hanoi problem. All disks on
2: move disk n from A to C . . 1
A need to be moved to C, usin B if
3: ToH(n—1,A,C, B) > Move n — 1 disks from A to B using C. Peg pe.g 9 Peg é
£ Miove disk 5 from At @ necessary, such that only one disk can be moved at =
5: ToH(n — 1, B, A,C) > Move n — 1 disks from B to C using A. a time and no large disk may be put on top of a -
smaller disk.
Theorem. The Towers of Hanoi (ToH) algorithm correctly moves n disks Q. What mistake, if any, is present in the proof of this theorem?

from pegs A to C using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

A, . . . (1) No mistake.
Proof. We prove this claim by induction on n, the number of disks. " N
Base Case (n = 0): Trivially true since no disks need to be moved. (2) The base case is not correctly set up, which causes the

Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks induction to fail.
from pegs A to C using peg B such that our requirements hold. (3) In the inductive step, the second recursive call alone is not

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly fici Il disk hel isk di Iy fr
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive sufficient to move all disks except the largest disk directly from peg

call correctly moves n disks from peg A to B using peg C. The next move step B to C. We need to break this step down into sub-steps and use
moves the lm-gcsl disk from A to C, while all ollger disks are on tower B. The peg A as a placeholder for disks.

second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk. O

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.

Formalism Comprehension:
Some Eye-Tracking Terminology

Fixation

Algorithm Towers of Hanoi: Toll(n, A, B,C)
Input: n: number of disks.

Input: A, B,C: pegs A through C.
Output: The algorithm moves n disks from A to C using B if necessary such that
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

1: if n =1 then

move disk n from A to C
: ToH(n—1,A,C, B)

: Move disk n from A to C

: ToH(n — 1, B, A,C)

> Move n — 1 disks from A to B using C.

oo W

> Move n — 1 disks from B to C using A.

All=1A

—
B <
Figure: The Towers of Hanoi problem. All disks on @
peg A need to be moved to peg C, using peg B if i
necessary, such that only one disk can be moved at é
a time and no large disk may be put on top of a =
smaller disk.

| =] A

3

T . The Towers of Hanoi (ToH) algorithm correctly moves n disks
from to C using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Proof. We prove this claim by induction on n, the number of disks.

Base Case (n = 0): Trivially true since no disks need to be moved.

Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks
from pegs A to C using peg B such that our requirements hold.

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive
call correctly moves n disks from peg A to B using peg C. The next move step
moves the largest disk from A to C, while all other disks are on tower B. The
second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk. O

Q. What mistake, if any, is present in the proof of this theorem?

(1) No mistake.

(2) The base case is not correctly set up, which causes the
induction to fail.

(3) In the inductive step, the second recursive call alone is not
sufficient to move all disks except the largest disk directly from peg
B to C. We need to break this step down into sub-steps and use
peg A as a placeholder for disks.

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.

Formalism Comprehension:
Some Eye-Tracking Terminology

Attention
Switching

Algorithm Towers of Hanoi: Toll(n, A, B,C)
Input: n: number of disks.

Input: A, B,C: pegs A through C.
Output: The algorithm moves n disks from A to C using B if necessary such that
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

1: if n =1 then
move disk n from A to C

: ToH(n — 1, A,C, B)

> Move n — 1 disks from A to B using C.

: Move disk n from A to C
: ToH(n - 1, B, A,C)

oo W

> Move n — 1 disks from B to C

T

from

s of Hanoi (ToH) algorithm correctly moves n disks
0 C' using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Proof. We prove this claim by induction on n, the number of disks.
Base Case (n = 0): Trivially true since no disks need to be moved.
Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks

from pegs A to C using peg B such that our requirements hold.

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive
call correctly moves n disks from peg A to B using peg C. The next move step
moves the largest disk from A to C, while all other disks are on tower B. The
second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk.

All=1A

Figure: The Towers of Hanoi problem. All disks on
peg A need to be moved to peg C, using peg B if i
‘sary. such that only one disk can be moved at é
ime and no large disk may be put on top of a =
smaller disk.

| =]

3

Q. What mistake, if any, is present in the proof of this theorem?

(1) No mistake.

(2) The base case is not correctly set up, which causes the
induction to fail.

(3) In the inductive step, the second recursive call alone is not
sufficient to move all disks except the largest disk directly from peg
B to C. We need to break this step down into sub-steps and use
peg A as a placeholder for disks.

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.

Alg ithm Binary Search x=34, -1, 15, m=8 [x=34,i=9, j=15, m=12 10 |
ut: z: integer.) 4 i A
integer. > the index of z, or 0 if z is not foun
21 2
26 26 26
27 27 27
29 . 29 29
32 I 32 32 32
3 =) 33 DL Ly] 3
3 34 - = 34
56 56
=i 8 80
elsc 85 85 85
12: location := 0 91 < 91 91
13: return location - 03 — 93 93 93
Figure: A rui through binary search with x=34. The result of the binary search on the
sorted list is location=10.
m. Before cach iteration of the while b if zae an}, tl
i Q. What mistake, if any, is present in the proof of this theorem?
Proof. \ 1 by induction on the number ¢ through
ad L] L] . » he while I (1) No mistake.
How do students find mistakes in proofs? PR . O e oo SRt s s
then z . s
. Inducti iz ., then, by t > Thcm steps of logical reasoning.
fore, if z € {ai, ..., a;}, then z € {am+ } f 1 l l ed (3) The proof structure is correct but the proof should induce on n
order, if € {a;,...,a;}, then z € {a1 an}. In h f llow h iid
stead.
ifze{ }.thenze{a.u.,a} [m}

(4) The case for x < a,, does not correctly establish the claim in the

e |RB-approved experimental protocol (HUM00204278)
® 34 participants in the study (predominantly Michigan students)

e Participants shown a series of algorithmic proofs from a textbook, each with an
associated figure and possible mistake

® Participants asked to identify the presence of mistakes in each proof

e Eye-tracking used to assess comprehension strategy

® Results published in ICSE’23 How Do We R.ea}d Formal Claims? Eye-Tr.acking
and the Cognition of Proofs about Algorithms

Hammad Ahmad*, Zachary Karas', Kimberly Diaz!, Amir Kamil?,
Jean-Baptiste Jeannin¥ and Westley Weimer!
University of Michigan, Ann Arbor
*hammada@umich.edu, Tzackar@umich.edu, Ikkhalsa@umich.edu, §akamil@umich.edu,
1[je:annin@umich.edu, Il weimerw @umich.edu

m

Formalism Comprehension:
Human Study Results

“Is more preparation correlated with better efficacy at finding mistakes in proofs?”

e No statistically significant difference in response times and accuracies between
more and less prepared participants
o “More prepared”: Have taken more than 4 courses covering CS formalisms
and pass a pre-screening test (16/34 participants)
o No correlation between formalism course count and response accuracy
(Pearson’s r=0.036, p = 0.84)

Taking more classes prepares students to read the proof and answer
choices more thoroughly, but that may not be enough!

Formalism Comprehension:
Human Study Results

“Are students able to assess their performances for proof reading tasks?”

e No evidence of correlations between
o Response accuracy and self-reported expertise with formalisms (Kendall’s T
test, 7=0.21, p=0.18)
o Response accuracy and self-perceived task difficulty (T = 0.14, p = 0.35)
o Response accuracy and self-perceived proof readability (T =-0.14, p = 0.32)

Student self-reports of their experience or familiarity with formalism
comprehension tasks may not be reliable!

Formalism Comprehension:
Human Study Results

“What sets apart higher-performing participants from lower-performing ones?”

e Ability to spot mistakes in proofs for recursive algorithms (p = 0.006,
statistically significant)

e Ability to spot mistakes in inductive proofs (p = 0.01, statistically significant)

® |terative algorithms, direct proofs, and proofs by contradiction do not pose as
many challenges in a mistake-finding context

Students struggling with proof comprehension may benefit
from practicing inductive reasoning and recursion!

Formalism Comprehension:
Human Study Results

e Higher-performing participants display more attention switching behavior,

i.e., frequently go back and forth between presented information (p = 0.002,
statistically significant)

Algorithm Greeds Change-Making {c1,-..n ¢4} = {25,10,5,1} produces
Input: ze p .

Inp
Output:
chy

{c, ... ¢4} = {25,10,5,1} produces

’ -~ : Y iMteger—s 4 >
~4& 3 aluies of denominations of coins,where ¢; > ¢z > -+ > ¢;. TR () 15&
B ¥ : 3 - St n=92 5 A
‘ .\~ ; - L > d; is the number of coins of denominatiom -n-th L &7
d r
Z - = 1:
_ : A omination c; use e

=
S
—

oins produced for n=92 and n=3@ using the US coin
system. Note that fgr oins, a penny is worth 1 cent, a nickel is wort
5 cents, adime is worth 10 cents, and-a-quarter is worth 25 cents.

Figure:

need to

is the most
[tie fewest

consider going back and forth between the presented =&
information to let it assimilate!

Formalism Comprehension:
Wrapping it Up

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical

logic)?

Formalism Comprehension:
Wrapping it Up

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical

logic)?

=3 ® Incoming preparation and student self-reports are not accurate
an predictors of success with formalism comprehension

W,

m

Formalism Comprehension:
Wrapping it Up

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical

logic)?

=3 ® Incoming preparation and student self-reports are not accurate
an predictors of success with formalism comprehension

W,

e Higher-performing students
o Are more effective at inductive and recursive reasoning
o Display more attention-switching behaviors

m

Three Research Components

2 Using neurostimulation to investigate the relationship between spatial
< reasoning and programming

m

f‘. Neurostimulation and Programming

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

m

How is our brain activity for programming related that for
mentally rotating and manipulating objects?

Programming and Spatial Reasoning

Brain activity for spatial reasoning|correlates with that for programming tasks

Distilling Neural Representations of Data
Structure Manipulation using fMRI and fNIRS

Yu Huang!, Xinyu Liy

Ryan Krueger Yu Huang
University of Michigan University of Michigan
ryankrue@umich.edu yhhy@umich.edu
Tyler Santander Westley Weimer

Program Comprehension and
Code Complexity Metrics: An fMRI Study

Norman Peitek Sven Apel Chris Parnin
Leibniz Institute for Neurobiology Saarland University, Saarland Informatics Campus NC State University
Magdeburg, Germany Saarbriicken, Germany Raleigh, North Carolina, USA
André Brechmann Janet Siegmund

Leibniz Institute for Neurobiology Chemnitz University of Technology

Magdeburg, Germany Chemnitz, Germany

Neurological Divide: An fMRI Study of Prose and Code Writing

Xinyu Liu
Georgia Institute of Technology
xinyuliu@umich.edu

Kevin Leach
University of Michigan
kjleach@umich.edu

N ONO
OO
@

Understanding Understanding Source Code with
Functional Magnetic Resonance Imaging

Janet Siegmund",* Christian Kastner~, Sven Apel~, Chris Parnin?, Anja Bethmann?,
Thomas Leich?, Gunter Saake’, and André Brechmann®

Programming and Spatial Reasoning

Is brain activity for spatial reasoning causally related to that
for programming tasks?

Programming and Spatial Reasoning

Is brain activity for spatial reasoning causally related to that
for programming tasks?

Should we be training people to mentally rotate 3D objects to get
better at programming?

Enter: Transcranial Magnetic Stimulation

e Safe and non-invasive
® C(linically used as a treatment for

depression, smoking cessation, OCD, etc.
e Well-established research tool

Enter: Transcranial Magnetic Stimulation

e Safe and non-invasive

® C(linically used as a treatment for
depression, smoking cessation, OCD, etc.

e Well-established research tool

e Time-efficient way to investigate causal
relationships in brain activity (e.g.,
compared to longitudinal studies over the
course of weeks, months, or even years!)

m

How does TMS work?

Magnetic
fields

TMS pulses produce a magnetic field
around the TMS coil

TMS Coil

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region

"Sad

Magnetic
fields

TMS Coil

Electric
current

Skull

How does TMS work?

Magnetic
fields

TMS pulses produce a magnetic field
around the TMS coil

TMS Coil

Electric
current

The magnetic field induces a current in the

neurons of the brain region of interest Skull

The induced current excites or inhibits
brain activity in the region

By altering activity in certain brain regions, we can investigate
the causal involvement of the regions for certain tasks!

m

TMS for Programming:
Human Study Design

e |IRBMED-approved experimental protocol (HUM00216195)
® 16 participants in the study (Michigan students and industry
developers)

® Participant brain scans collected through functional magnetic
resonance imaging (fMRI)

m

TMS for Programming:
Human Study Design

e |IRBMED-approved experimental protocol (HUM00216195)
® 16 participants in the study (Michigan students and industry
developers)

® Participant brain scans collected through functional magnetic
resonance imaging (fMRI)

e Established anatomical landmark-based localization approaches
used to identify brain regions of interest

TMS for Programming:
Human Study Design

® Participants attend 2-4 TMS sessions (up to three

treatment sessions, one control session; each on a

different day)

o Treatment: supplementary motor area (SMA) or
primary motor cortex (M1), both responsible for
motor actions and associated with spatial reasoning

o Control: cranial vertex region, not associated with
spatial reasoning

® 40 seconds of neurostimulation followed by 30 minutes of tasks on a regular computer
o 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a total of 600 pulses

m

TMS for Programming: Brain Regions

Cranial Vertex

Primary Motor Cortex
(M1)

Supplementary
Motor Area (SMA)

TMS for Programming:
Human Study Design

e “Tasks”:
o Data structure manipulation (e.g., sorting arrays, rotating trees)

Given the top array, after performing the first bubble in bubble sort, which
candidate array will be the result?

ndices 01 2 3 4 5 6 7 8§ 9 10 U 12 13 1
nums |78 | 9 [53]21]11]63[98| 1 [82]3990]54 681513]

AN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 9[78[53]21]11]63|98] 1 [82]39]90|54|68|15|13]

BB 0 1 2 3 4 5 6 7 8 9 10 11 12213 14
19 |53|78[21]11]63[98] 1 [82]39|90]54 681513]

m

TMS for Programming:
Human Study Design

e “Tasks”:
o Data structure manipulation (e.g., sorting arrays, rotating trees)
o Mental rotation of 3D objects

Given the top array, after performing the first bubble in bubble sort, which
candidate array will be the result?
N o 12 3 4 s 6 7 8 9 1 m LB o

nums |78 | 9 [53]21]11]63[98| 1 [82]3990]54 681513]

A:
1 9[78[53]21]11]63|98] 1 [82]39]90|54|68|15|13] % %

B:

19 |53|78[21]11]63[98] 1 [82]39|90]54 681513] A B

TMS for Programming:
Human Study Design

e “Tasks”:
o Data structure manipulation (e.g., sorting arrays, rotating trees)
o Mental rotation of 3D objects
o Code comprehension (e.g., tracing through code)

Given the top array, after performing the first bubble in bubble sort, which Consider the snippet of code below:

candidate array will be the result? vector<int> myFunc (vector<int>& nums, int target) {
for (int 1 = 0; i < nums.size(); i++) {
o for (int j =1 + 1; j < nums.size(); J++) {
s 0 12 3 4 s 6 7 8 9 M B 131 iF (aums[i] + moms[3] == targer) {
nums |78 | 9 [53]21]11]63[98| 1 [82]3990]54 681513] zefuen {1 3):

}

}
A [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i
' return {-1, -1};
1 9[78[53]21]11]63|98] 1 [82]39]90|54|68|15|13] }
What does myFunc return on the input nums=(2,7,11,15] and
A B

BB 0 1 2 3 4 5 6 7 8 9 10 11 12213 14 target=9?
19 |53|78[21]11]63[98] 1 [82]39|90]54 681513]

m

A: [0,2] B: [0,1]

TMS for Programming:
Human Study Design

e “Tasks”:
o Data structure manipulation (e.g., sorting arrays, rotating trees)
o Mental rotation of 3D objects
o Code comprehension (e.g., tracing through code)

® Results published in ICSE’24 (with an ACM Distinguished Paper Award)

Causal Relationships and Programming Outcomes:
A Transcranial Magnetic Stimulation Experiment Oningusted
Hammad Ahmad Madeline Endres Kaia Newman
hammada@umich.edu endremad@umich.edu kaian@umich.edu
University of Michigan University of Michigan University of Michigan
Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA
Priscila Santiesteban Emma Shedden Westley Weimer
pasanti@umich.edu emshedde@umich.edu weimerw@umich.edu
University of Michigan University of Michigan University of Michigan
Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA

m

i
TMS for Programming: Bﬂ@
Human Study Results ;

< 4

“Does TMS of the SMA influence spatial reasoning performance?” ‘&_7
LK

e Stimulating the SMA affects the time taken to perform mental rotation
tasks (15.3% increase, p < 0.02, statistically significant)
o Partial replication of results from Cona et al.

Our partial replication of results from a prior study adds

confidence in the correct application of TMS!

&
TMS for Programming: é 2 @@@
Human Study Results S

“Do we use the same areas of our brains for spatial reasoning and programming?”

e No evidence of a direct causal relationship between programming
outcomes and brain activity in SMA and M1 ()
o Disrupting brain activity for spatial reasoning does not affect response
accuracy or time for programming when compared to the baseline
o Results disagree with multiple previously-published correlations

Our previous understanding of the brain’s involvement in
programming may not be correct!

TMS for Programming:
Human Study Results

e TMS can affect response times for programming tasks

O Multi-level regression analysis reveals a 2.2% variance in response time
attributed to TMS, statistically significant

TMS for Programming:
Human Study Results

e TMS can affect response times for programming tasks

O Multi-level regression analysis reveals a 2.2% variance in response time
attributed to TMS, statistically significant

Factor Affecting Response Times | Effect Size (Normalized)

“How hard is the question?” 1.00

TMS for Programming:
Human Study Results

e TMS can affect response times for programming tasks

O Multi-level regression analysis reveals a 2.2% variance in response time
attributed to TMS, statistically significant

Factor Affecting Response Times | Effect Size (Normalized)
“How hard is the question?” 1.00

“Participant expertise” 0.18

m

TMS for Programming:
Human Study Results

e TMS can affect response times for programming tasks

O Multi-level regression analysis reveals a 2.2% variance in response time
attributed to TMS, statistically significant

Factor Affecting Response Times | Effect Size (Normalized)

“How hard is the question?” 1.00
“Participant expertise” 0.18
“TMS” 0.05

m

TMS for Programming:
Human Study Results

e TMS can affect response times for programming tasks

O Multi-level regression analysis reveals a 2.2% variance in response time
attributed to TMS, statistically significant

Factor Affecting Response Times | Effect Size (Normalized)

Neurostimulation can be used to alter computing outcomes, warranting
further exploration of the technique to investigate causality!

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

e No evidence of a causal relationship between activity in SMA /
M1 and reasoning about programming

f O Qur results disagree with multiple previously published
D v correlations, challenging our understanding of the brain’s

involvement in programming

m

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

e No evidence of a causal relationship between activity in SMA /
M1 and reasoning about programming

f O Qur results disagree with multiple previously published
D v correlations, challenging our understanding of the brain’s

involvement in programming

e Neurostimulation can alter programming outcomes

m

Publications (supporting this thesis)

1. Causal Relationships and Programming Outcomes: A Transcranial Magnetic Stimulation Experiment. Hammad Ahmad, Madeline
Endres, Kaia Newman, Priscila Santiesteban, Emma Shedden, Westley Weimer. ICSE (2024). [ACM Distinguished Paper Award]

2. CirFix: Automated Hardware Repair and its Real-Word Applications. Priscila Santiesteban, Yu Huang, Westley Weimer, Hammad
Ahmad. TSE (2023).

3. How Do We Read Formal Claims? Eye-Tracking and the Cognition of Proofs about Algorithms. Hammad Ahmad, Zachary Karas,
Kimberly Diaz, Amir Kamil, Jean-Baptiste Jeannin, Westley Weimer. ICSE (2023).

4. LOGI: An Empirical Model of Heat-Induced Disk Drive Data Loss and its Implications for Data Recovery. Hammad Ahmad, Colton
Holoday, lan Bertram, Kevin Angstadt, Zohreh Sharafi, Westley Weimer. PROMISE (2022).

5. Sift: Using Refinement-Guided Automation to Verify Complex Distributed Systems. Haojun Ma, Hammad Ahmad, Aman Goel, Eli
Goldweber, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci. ATC (2022).

6. Digging into Semantics: Where do search-based software repair methods search? Hammad Ahmad, Padraic Cashin, Stephanie
Forrest, Westley Weimer. PPSN (2022).

/. CirFix: Automatically Repairing Defects in Hardware Design Code. Hammad Ahmad, Yu Huang, Westley Weimer. ASPLOS (2022).

8. Applying Automated Program Repair to Dataflow Programming Languages. Yu Huang, Hommad Ahmad, Stephanie Forrest, Westley
Weimer. Gl Workshop @ ICSE (2021).

9. A Program Logic to Verify Signal Temporal Logic Specifications of Hybrid Systems. Hommad Ahmad, Jean-Baptiste Jeannin. HSCC
(2021).

10. A Comparison of Semantic-Based Initialization Methods for Genetic Programming. Hammad Ahmad, Thomas Helmuth. Student
Workshop @ GECCO (2018).

m

Acknowledgements

My advisor: Westley Weimer

Acknowledgements

My co-advisor: Jean-Baptiste Jeannin

Acknowledgements

My committee members

Prof. Westley Weimer Lec. IV Amir Kamil Prof. Stephanie Forrest Asst. Prof. Taraz Lee

Acknowledgements

My collaborators and mentors over the years

Dr. Sara Sprenkle Dr. Kevin Angstadt Dr. Yu Huang Dr. Kimberly Diaz Dr. Manos Kapritsos Dr. Baris Kasikci
(W&L) (St. Lawrence) (Vanderbilt) (UMich) (UMich) (UWashington)

Aot

137

and others...

Dr. David Paoletti Prof. Marcus Darden Dr. Héctor Garcia-Ramirez Dr. James Brissenden
(Polytechnique Montréal) (UMich) (UMich) (UMich) (UMich)

m

Acknowledgements

\ = < L 5)X~- | -
v [R .
AV a*
- ala L Newman S0 § © 2 74N
- BE
-y 3
4] 4 -
i X ‘
N
S ¢ Kevin Angstadt (he/him/his) -1 &
2 &
i

Acknowledg

My friends and family

Putting It All Together...

e Humans and computers think in different ways

e \We can use functional, physiological, and medical methods to better understand how
humans reason about computational logic
o Functional: “Can you find the bug?”
o Physiological: “Where are you looking as you search for the bug?”
o Medical: “What goes on in your brain as you search for the bug?”

e Knowing the cognitive basis of logical reasoning can help us enhance tool support for
developers and explore more effective methods to teach CS

e De-identified datasets publicly available at:
https://websites.umich.edu/~hammada/research/

https://websites.umich.edu/~hammada/research/

