
Understanding understanding: How do we
reason about computational logic?

Hammad Ahmad
(he/him)

University of Michigan, Ann Arbor
1

“Understanding understanding”
Cognition: Mental processes involved in comprehension and
gaining knowledge

2

“Computational Logic”

Computers do not think like humans do!

3

“Computational Logic”

Logical reasoning in CS forms a core
component of undergraduate CS curricula

Introductory CS courses structured around
cultivating creative thinking and problem
solving using logical reasoning

4

Computers do not think like humans do!

Future industry professionals and academics
need to be trained for computational logic
reasoning

Defining “Logic”
Digital logic

(e.g., hardware designs; EECS 215, 270)

5

Defining “Logic”
Digital logic

(e.g., hardware designs; EECS 215, 270)

Mathematical logic
(e.g., proofs about algorithms; EECS 203, 376)

6

Defining “Logic”
Digital logic

(e.g., hardware designs; EECS 215, 270)

Mathematical logic
(e.g., proofs about algorithms; EECS 203, 376)

Programming logic
(e.g., manipulating data structures; EECS 183, 281)

7

Why should we care about cognition?

8

9

Why should we care about how computers think?

10

We want to better understand how programmers
reason about computers.

Desired Properties in Our Study
(1) Non-intrusive Methodology

instead of

11

Desired Properties in Our Study
(2) Objective Measures

12

instead of

Desired Properties in Our Study
(3) Context-specific Models

vs.

13

Desired Properties in Our Study
(3) Context-specific Models

vs. vs.

14

It is possible to use objective measures to obtain mathematical
models of the cognitive processes underlying computational logic

reasoning tasks, and these models can highlight prospective
cognitive interventions for student training.

15

Thesis Statement

It is possible to use objective measures to obtain mathematical
models of the cognitive processes underlying computational logic

reasoning tasks, and these models can highlight prospective
cognitive interventions for student training.

16

Thesis Statement

It is possible to use objective measures to obtain mathematical
models of the cognitive processes underlying computational logic

reasoning tasks, and these models can highlight prospective
cognitive interventions for student training.

17

Thesis Statement

18

Three Research Components

Using automated program repair for hardware as a debugging
assistant for designers

19

Three Research Components

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

20

Three Research Components

Three Research Components

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using neurostimulation to investigate the relationship between spatial
reasoning and programming

21

Automated Program Repair for
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

22

Have you ever spent a long time finding
and fixing a small bug in a program?

23

Automated Program Repair (APR)

Faulty software
program w/ bug(s)

Test suite w/ at least
one failing test

Repaired
program

Fault
localization

Patch

Validation

No repairs
found

OR

24

Hardware Designs
Digital specifications for electronic
devices, computer systems, or integrated
circuits

25

Hardware Designs
Digital specifications for electronic
devices, computer systems, or integrated
circuits

Typically written using hardware
description languages (HDLs) like Verilog
and VHDL

module counter (input clk,
 input rstn,
 output reg[3:0]
out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

26

Hardware Designs
Digital specifications for electronic
devices, computer systems, or integrated
circuits

Typically written using hardware
description languages (HDLs) like Verilog
and VHDL

Correspond to the “stage 0” of the
hardware design process

module counter (input clk,
 input rstn,
 output reg[3:0]
out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

27

A Tale of Two Debugging Worlds

What software developers expect

28

What hardware designers use

Goal: Bridge the gap between tool
support for software and hardware

Software vs. Hardware

A key difference: serial execution vs. parallelism

29

module counter (input clk,
 input rstn,
 output reg[3:0] out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

animals = [“cat”, “dog”, “cat”]
cat_counter = 0
for animal in animals:

if animal == “cat”:
cat_counter += 1

print(cat_counter)

Serial Python code Parallel Verilog code

Software vs. Hardware
Another key difference: test suites vs. testbenches

30

Compiler version N-2017.12-SP2-1_Full64; Runtime version N-2017.12-SP2-1_Full64; Jan 11 11:37 2021
 time, clk, reset, enable, count_out, overflow_out
 0, 0, 0, 0, x, x
 5, 1, 0, 0, x, x
 ...
 250, 0, 0, 1, 5, 1
 255, 1, 0, 1, 5, 1
 256, 1, 0, 1, 6, 1
$finish called from file "first_counter_tb_t3.v", line 70.
$finish at simulation time 258

Software APR to Hardware?

Problem: Existing techniques from software APR cannot be directly
applied to hardware designs!

How do we repurpose software APR for hardware designs?

31

Introducing: CirFix

CirFix: A hardware-design focused automated repair algorithm

● First-of-its kind APR tool for hardware designs
● Novel fault localization approach suitable for hardware

designs

32

Fault
localization

CirFix: A hardware-design focused automated repair algorithm

● First-of-its kind APR tool for hardware designs
● Novel fault localization approach suitable for hardware

designs
● Novel approach to guide the search for repairs using the

existing hardware design process

33

Fault
localization

Patch

Validation

● Results published in ASPLOS’22 and TSE’23

Introducing: CirFix

CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

● No public benchmarks available for Verilog defects (largely due to IP constraints)

● Constructed a benchmark suite of 32 different hardware defects to evaluate CirFix
○ 6 classroom-level designs and 5 larger, open-source designs
○ 19 “easy” defects and 13 “hard” defects

● Benchmark suite publicly available for future researchers to evaluate hardware
repair approaches

34

CirFix: Empirical Evaluation

“How many hardware defects can CirFix actually repair?”

● Ran five resource-constrained, independent CirFix trials for each defect,
stopping when a repair was found

● CirFix produced high-quality (i.e., correct upon manual inspection) repairs for
16/32 (50%) defects

● Repair rate comparable to strong results from software-based APR
(e.g., GenProg at 52.5%, Angelix at 34.1%)

35

CirFix is effective at automatically repairing
defects in hardware designs!

CirFix: Human Study Design

“How useful do developers find CirFix?”

● IRB-approved experimental protocol (HUM00199335)
● 41 participants in the study (predominantly Michigan

students)

● Participants asked to identify and fix defects from the
CirFix benchmark, with or without debugging hints
○ Debugging hint: highlighting lines of code implicated

by CirFix

36

● Participants also asked to rate the accuracy and helpfulness of presented hints
● Designer performance assessed by evaluating F-scores (F

1
) and time taken to

complete each debugging task

CirFix: Human Study Results

“How useful do developers find CirFix?”

● No statistically significant difference in time taken to localize faults with
debugging hints (p = 0.41, Student t-test)

● Trend for participant debugging accuracy better with debugging hints (F
1
 = 0.67)

vs. no hints (F
1
 = 0.29)

○ Trend does not rise to statistical significance (p = 0.12)

● Debugging hints on classroom-level designs rated as more helpful and accurate
than those on larger open-source designs (p < 0.01, statistically significant)
○ Helps beginners and experts alike

37

CirFix could be beneficial as a debugging
assistant in a classroom context!

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

38

CirFix: Wrapping it Up

● CirFix can automatically repair hardware designs, achieving a
repair rate comparable to that of software APR

39

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

CirFix: Wrapping it Up

● CirFix can automatically repair hardware designs, achieving a
repair rate comparable to that of software APR

● Programmers using CirFix as a debugging assistant
○ Rate the tool as significantly helpful for classroom-level designs
○ Show trends of improved debugging accuracy

40

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using neurostimulation to investigate the relationship between spatial
reasoning and programming

41

Three Research Components

Eye-Tracking for Computer Science
Formalisms

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical
logic)?

42

Common Student Sentiment:
“I find iterative reasoning easier than recursive reasoning for
algorithmic problem solving.”

43

vs.

Formalism Comprehension

Students sometimes have a hard time with logical
algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses
focusing on formal reasoning (e.g., discrete math, theory,
algorithm analysis)

At Michigan: EECS 203, 376, MATH 416

44

Formalism Comprehension

Formal reasoning is widely used to improve software quality and reliability!

45

and many, many more…

46

Are students learning and retaining effective strategies
for reasoning about computer science formalisms?

“Formalism” Defined

47

Enter: Eye-Tracking

● Cheap and non-invasive measure of problem
solving strategies

● Approximates dynamics of visual attention (e.g.,
where we focus, and for how long)

● Serves as a proxy for cognitive load (i.e., strain on
working memory) and task difficulty

48

How Does Eye-Tracking Work?

49

An eye-tracker consists of cameras and projectors

50

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared
light on the eyes

How Does Eye-Tracking Work?

51

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared
light on the eyes

The cameras take high-resolution images of the
eyes and the pattern

How Does Eye-Tracking Work?

52

An eye-tracker consists of cameras and projectors

The projectors create a pattern of near-infrared
light on the eyes

The cameras take high-resolution images of the
eyes and the pattern

Machine learning, image processing, and
mathematical algorithms are used to determine
the eyes’ position and “gaze point”

How Does Eye-Tracking Work?

Formalism Comprehension:
Some Eye-Tracking Terminology

53

Areas of Interest
(AOIs)

Formalism Comprehension:
Some Eye-Tracking Terminology

54

Fixation

Formalism Comprehension:
Some Eye-Tracking Terminology

55

Attention
Switching

Formalism Comprehension:
Human Study Design

56

● IRB-approved experimental protocol (HUM00204278)
● 34 participants in the study (predominantly Michigan students)

● Participants shown a series of algorithmic proofs from a textbook, each with an
associated figure and possible mistake

● Participants asked to identify the presence of mistakes in each proof
● Eye-tracking used to assess comprehension strategy

● Results published in ICSE’23

“How do students find mistakes in proofs?”

“Is more preparation correlated with better efficacy at finding mistakes in proofs?”

● No statistically significant difference in response times and accuracies between
more and less prepared participants
○ “More prepared”: Have taken more than 4 courses covering CS formalisms

and pass a pre-screening test (16/34 participants)
○ No correlation between formalism course count and response accuracy

(Pearson’s r = 0.036, p = 0.84)

● More prepared participants fixate longer on the proof text, correct answer, and
distractor choices (p < 0.03, statistically significant), but achieve similar results

57

Formalism Comprehension:
Human Study Results

Taking more classes prepares students to read the proof and answer
choices more thoroughly, but that may not be enough!

“Are students able to assess their performances for proof reading tasks?”

● No evidence of correlations between
○ Response accuracy and self-reported expertise with formalisms (Kendall’s τ

test, τ = 0.21, p = 0.18)
○ Response accuracy and self-perceived task difficulty (τ = 0.14, p = 0.35)
○ Response accuracy and self-perceived proof readability (τ = -0.14, p = 0.32)

58

Formalism Comprehension:
Human Study Results

Student self-reports of their experience or familiarity with formalism
comprehension tasks may not be reliable!

“What sets apart higher-performing participants from lower-performing ones?”

● Ability to spot mistakes in proofs for recursive algorithms (p = 0.006,
statistically significant)

● Ability to spot mistakes in inductive proofs (p = 0.01, statistically significant)

● Iterative algorithms, direct proofs, and proofs by contradiction do not pose as
many challenges in a mistake-finding context

59

Formalism Comprehension:
Human Study Results

Students struggling with proof comprehension may benefit
from practicing inductive reasoning and recursion!

● Higher-performing participants display more attention switching behavior,
i.e., frequently go back and forth between presented information (p = 0.002,
statistically significant)

60

Formalism Comprehension:
Human Study Results

Students working on proof comprehension tasks should
consider going back and forth between the presented

information to let it assimilate!

Formalism Comprehension:
Wrapping it Up

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical
logic)?

61

Formalism Comprehension:
Wrapping it Up

● Incoming preparation and student self-reports are not accurate
predictors of success with formalism comprehension

62

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical
logic)?

Formalism Comprehension:
Wrapping it Up

● Incoming preparation and student self-reports are not accurate
predictors of success with formalism comprehension

● Higher-performing students
○ Are more effective at inductive and recursive reasoning
○ Display more attention-switching behaviors

63

Can we use eye-tracking to investigate how students read and
understand computer science formalisms (i.e., mathematical
logic)?

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using neurostimulation to investigate the relationship between spatial
reasoning and programming

64

Three Research Components

Neurostimulation and Programming

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

65

How is our brain activity for programming related that for
mentally rotating and manipulating objects?

66

≟

Brain activity for spatial reasoning correlates with that for programming tasks

Programming and Spatial Reasoning

67

≟

68

Is brain activity for spatial reasoning causally related to that
for programming tasks?

Programming and Spatial Reasoning

69

Is brain activity for spatial reasoning causally related to that
for programming tasks?

Should we be training people to mentally rotate 3D objects to get
better at programming?

Programming and Spatial Reasoning

Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for

depression, smoking cessation, OCD, etc.
● Well-established research tool

70

Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for

depression, smoking cessation, OCD, etc.
● Well-established research tool

● Time-efficient way to investigate causal
relationships in brain activity (e.g.,
compared to longitudinal studies over the
course of weeks, months, or even years!)

71

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

72

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region

73

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region

74

By altering activity in certain brain regions, we can investigate
the causal involvement of the regions for certain tasks!

TMS for Programming:
Human Study Design

● IRBMED-approved experimental protocol (HUM00216195)
● 16 participants in the study (Michigan students and industry

developers)

● Participant brain scans collected through functional magnetic
resonance imaging (fMRI)

75

TMS for Programming:
Human Study Design

● IRBMED-approved experimental protocol (HUM00216195)
● 16 participants in the study (Michigan students and industry

developers)

● Participant brain scans collected through functional magnetic
resonance imaging (fMRI)

● Established anatomical landmark-based localization approaches
used to identify brain regions of interest

76

TMS for Programming:
Human Study Design

● Participants attend 2-4 TMS sessions (up to three
treatment sessions, one control session; each on a
different day)
○ Treatment: supplementary motor area (SMA) or

primary motor cortex (M1), both responsible for
motor actions and associated with spatial reasoning

○ Control: cranial vertex region, not associated with
spatial reasoning

77

● 40 seconds of neurostimulation followed by 30 minutes of tasks on a regular computer
○ 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a total of 600 pulses

TMS for Programming: Brain Regions

78

Primary Motor Cortex
(M1)

Cranial Vertex

Supplementary
Motor Area (SMA)

TMS for Programming:
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)

79

TMS for Programming:
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)
○ Mental rotation of 3D objects

80

TMS for Programming:
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)
○ Mental rotation of 3D objects
○ Code comprehension (e.g., tracing through code)

81

TMS for Programming:
Human Study Design

● “Tasks”:
○ Data structure manipulation (e.g., sorting arrays, rotating trees)
○ Mental rotation of 3D objects
○ Code comprehension (e.g., tracing through code)

● Results published in ICSE’24 (with an ACM Distinguished Paper Award)

82

TMS for Programming:
Human Study Results

“Does TMS of the SMA influence spatial reasoning performance?”

83

● Stimulating the SMA affects the time taken to perform mental rotation
tasks (15.3% increase, p ≤ 0.02, statistically significant)
○ Partial replication of results from Cona et al.

Our partial replication of results from a prior study adds
confidence in the correct application of TMS!

TMS for Programming:
Human Study Results

“Do we use the same areas of our brains for spatial reasoning and programming?”

84

● No evidence of a direct causal relationship between programming
outcomes and brain activity in SMA and M1 (!!!)
○ Disrupting brain activity for spatial reasoning does not affect response

accuracy or time for programming when compared to the baseline
○ Results disagree with multiple previously-published correlations

Our previous understanding of the brain’s involvement in
programming may not be correct!

≟

TMS for Programming:
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time

attributed to TMS, statistically significant

85

TMS for Programming:
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time

attributed to TMS, statistically significant

86

Factor Affecting Response Times Effect Size (Normalized)

“How hard is the question?” 1.00

TMS for Programming:
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time

attributed to TMS, statistically significant

87

Factor Affecting Response Times Effect Size (Normalized)

“How hard is the question?” 1.00

“Participant expertise” 0.18

TMS for Programming:
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time

attributed to TMS, statistically significant

88

Factor Affecting Response Times Effect Size (Normalized)

“How hard is the question?” 1.00

“Participant expertise” 0.18

“TMS” 0.05

TMS for Programming:
Human Study Results

● TMS can affect response times for programming tasks
○ Multi-level regression analysis reveals a 2.2% variance in response time

attributed to TMS, statistically significant

89

Factor Affecting Response Times Effect Size (Normalized)

“How hard is the question?” 1.00

“Participant expertise” 0.18

“TMS” 0.05

Neurostimulation can be used to alter computing outcomes, warranting
further exploration of the technique to investigate causality!

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

90

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

● No evidence of a causal relationship between activity in SMA /
M1 and reasoning about programming
○ Our results disagree with multiple previously published

correlations, challenging our understanding of the brain’s
involvement in programming

91

TMS for Programming: Wrapping it Up

Can we use neurostimulation to investigate brain activity for
coding tasks (i.e., programming logic)?

● No evidence of a causal relationship between activity in SMA /
M1 and reasoning about programming
○ Our results disagree with multiple previously published

correlations, challenging our understanding of the brain’s
involvement in programming

● Neurostimulation can alter programming outcomes

92

Publications (supporting this thesis)
1. Causal Relationships and Programming Outcomes: A Transcranial Magnetic Stimulation Experiment. Hammad Ahmad, Madeline

Endres, Kaia Newman, Priscila Santiesteban, Emma Shedden, Westley Weimer. ICSE (2024). [ACM Distinguished Paper Award]

2. CirFix: Automated Hardware Repair and its Real-Word Applications. Priscila Santiesteban, Yu Huang, Westley Weimer, Hammad
Ahmad. TSE (2023).

3. How Do We Read Formal Claims? Eye-Tracking and the Cognition of Proofs about Algorithms. Hammad Ahmad, Zachary Karas,
Kimberly Diaz, Amir Kamil, Jean-Baptiste Jeannin, Westley Weimer. ICSE (2023).

4. LOGI: An Empirical Model of Heat-Induced Disk Drive Data Loss and its Implications for Data Recovery. Hammad Ahmad, Colton
Holoday, Ian Bertram, Kevin Angstadt, Zohreh Sharafi, Westley Weimer. PROMISE (2022).

5. Sift: Using Refinement-Guided Automation to Verify Complex Distributed Systems. Haojun Ma, Hammad Ahmad, Aman Goel, Eli
Goldweber, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci. ATC (2022).

6. Digging into Semantics: Where do search-based software repair methods search? Hammad Ahmad, Padraic Cashin, Stephanie
Forrest, Westley Weimer. PPSN (2022).

7. CirFix: Automatically Repairing Defects in Hardware Design Code. Hammad Ahmad, Yu Huang, Westley Weimer. ASPLOS (2022).

8. Applying Automated Program Repair to Dataflow Programming Languages. Yu Huang, Hammad Ahmad, Stephanie Forrest, Westley
Weimer. GI Workshop @ ICSE (2021).

9. A Program Logic to Verify Signal Temporal Logic Specifications of Hybrid Systems. Hammad Ahmad, Jean-Baptiste Jeannin. HSCC
(2021).

10. A Comparison of Semantic-Based Initialization Methods for Genetic Programming. Hammad Ahmad, Thomas Helmuth. Student
Workshop @ GECCO (2018).

93

94

Acknowledgements

My advisor: Westley Weimer

95

Acknowledgements

My co-advisor: Jean-Baptiste Jeannin

96

Acknowledgements

My committee members

Prof. Westley Weimer Prof. Stephanie Forrest Asst. Prof. Taraz LeeLec. IV Amir Kamil

97

Acknowledgements
My collaborators and mentors over the years

Dr. Sara Sprenkle
(W&L)

Dr. Kevin Angstadt
(St. Lawrence)

Dr. Yu Huang
(Vanderbilt)

Dr. Kimberly Diaz
(UMich)

Dr. Manos Kapritsos
(UMich)

Dr. Baris Kasikci
(UWashington)

Dr. Zohreh Sharafi
(Polytechnique Montréal)

Dr. David Paoletti
(UMich)

Prof. Marcus Darden
(UMich)

Dr. Héctor Garcia-Ramirez
(UMich)

and others…

Dr. James Brissenden
(UMich)

98

Acknowledgements
WRG

99

Acknowledgements
My friends and family

Putting It All Together…

100

● Humans and computers think in different ways

● We can use functional, physiological, and medical methods to better understand how
humans reason about computational logic
○ Functional: “Can you find the bug?”
○ Physiological: “Where are you looking as you search for the bug?”
○ Medical: “What goes on in your brain as you search for the bug?”

● Knowing the cognitive basis of logical reasoning can help us enhance tool support for
developers and explore more effective methods to teach CS

● De-identified datasets publicly available at:
https://websites.umich.edu/~hammada/research/

https://websites.umich.edu/~hammada/research/

