Three Lenses for Improving Programmer Productivity

From Anecdote to Evidence

Madeline Endres, PhD Defense, University of Michigan M

quotting
Fist pernanent whie setilors
lilan vy S
ebrary" 7" LR 07 heoperse,

Ships \canal 10 lake complted uy 4 pisg
bt Jeading wheat part, “1539 - t36q
second “only o Odessn Fussis
bulking incustry flourshed. 1411562
el bl

Why study human-focused programming productivity?

The Range of Individual Differences in
Programming Performance
Sackman (et al.), 1968

Slowest | Fastest

Performance Measure Coder Coder Ratio

Code Hours: Algebra Problem 111 7
Code Hours: Maze Problem 50 2
Debug Hours: Algebra Problem 170 6
Debug Hours: Maze Problem 26 1

Why study human-focused programming productivity?

Novice Software Developers, All Over Again

The Range of Individual Differences in | _Andrew Begel Beth Simon

Prog ramming Performance A Tale of Two Cities: Software Developers Working from
Sackman (et al.), 1968

Home during the COVID-19 Pandemic

DENAE FORD, Microsoft Research

Socioeconomic Status and Computer Science Achievement
Spatial Ability as a Mediating Variable in a Novel Model of Understanding

Slowest | Fastest

Performance Measure
Coder Coder

Miranda C. Parker Amber Solomon Brianna Pritchett
Code Hours: Algebra Problem 111 7 A Large-Scale Survey on the Usability of Al Programming
Assistants: Successes and Challenges
COde HOUI'S Maze PrObIem 50 2 Jenny T. Liang Chenyang Yang Brad A. Myers
Debug Hours: Algebra Problem 170 6| 281 What Predicts Software Developers
Productivity?
Debug Hours: Maze Problem 26 1 - Emerson Murphy-Hil ?®, Ciera Jaspan®, Caitlin Sadowski, David Shepherd®, Michael Phillips @,
Collin Winter, Andrea Knight, Edward Smith, and Matthew Jorde

Developing Efficient
and Usable
Programming Support

> &

Can we support
non-traditional novices in
writing more correct
code faster?

Designing Effective
Developer Training

Can we use cognitive
insights to inform training and
improve programming
outcomes?

Understanding External
Productivity Factors

65

How does psychoactive
substance use impact
software productivity?

Improving Programming Productivity: My Human-Focused Approach

Desired Research Attribute | Why I'm Excited (and you could be too!)

Provide Theoretically- Bridging the gap between novel theoretical
Grounded and Actionable ideas to supporting programmers in practice
Insights leads to higher impact

Improving Programming Productivity: My Human-Focused Approach

Desired Research Attribute | Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Include Empirical or Objective
Measures of Programmers

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Improving Programming Productivity: My Human-Focused Approach

Desired Research Attribute | Why I'm Excited (and you could be too!)

Provide Theoretically-
Grounded and Actionable
Insights

Include Empirical or Objective
Measures of Programmers

Minimize Scientific Bias to
Support Generalizability

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Controlled experimental design can capture a
signal, even for complex human behavior

Improving Programming Productivity: My Human-Focused Approach

Desired Research Attribute | Why I'm Excited (and you could be too!)

Provide Theoretically- Bridging the gap between novel theoretical
Grounded and Actionable ideas to supporting programmers in practice
Insights leads to higher impact

Captures aspects of programming beyond
self-reporting alone, including unconscious
behaviors and habits

Include Empirical or Objective
Measures of Programmers

Minimize Scientific Bias to Controlled experimental design can capture a
Support Generalizability signal, even for complex human behavior

| prefer approaches that not only help
programmers in general, but also help those
who need the most support

Support Diverse Developer
Groups

9

INFIX and SEQ2PARSE:
Developing Efficient and Usable Tools

Supporting Non-traditional
Programming Novices via a two
novel forms of bug-fixing support

The online Python Tutor interpreter How dO.C(.)decademy's
currently has 60,000 users per month 45 million users
learn to code?
FULL-TIME ONLINE
COURSES

Many People Want to
Learn to Code o)

only

Without traditional classroom 1/ 3

full-time

course

support

i,

1/2

have never
taken a

()
W'lr NEWS - JOBS EVENTS- RESOURCES~ ABOUT- [0 O O O

Coding bootcamps see huge enrollment increase

university
course

»)
35%

said online courses
were their primary
method for learning

1

One Such Platform: Python Tutor

Write code in Python 3.11 [newest version, latest features

1 def listSum(numbers):

if not numbers:
return 0

else:
(f, rest) = numbers
return f + listSum(rest)

Nouhs WN

8 myList = (1, (2, (3, None)))
9 total = listSum(myList)

Visualize Execution Get Al Help

Python Tutor is a free online interpreter. It helps
novices visualize arbitrary code execution.

Users are primarily Novice Programmers

Started in 2010, it has had over 150 million
users from 180 countries

12

Parse Errors

e Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

u = 42
X = 3.14

print(x * math.e / 2

SyntaxError: missing
parentheses in call to print

Input-Related Bugs

e We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input
u = 42

x = float(input()) <Z 26,2

print(x * math.e / 2)

ValueError: could not convert
string to float: '26,2'

13

Parse Errors

e Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

Proposed Approach:
Neurosymbolic technique,
Seqg2Parse

Published in OOPSLA, 2022

Input-Related Bugs

e We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input

AD

Proposed Approach:
Template-repair approach,
InFix

\
E Published in ASE, 2019

14

Parse Errors

e Syntax errors are, by far, the most
common Python error type
experienced by novice
programmers (77%)

Proposed Approach:
Neurosymbolic technique,

Seqg2Parse

Published in OOPSLA, 2022

Input-Related Bugs

e We found that 6% of student errors
are resolved by fixing the program
input, not the source code

Example Code and Input

L — A0

Proposed Approach:
Template-repair approach,
InFix

\
E Published in ASE, 2019

15

What do Non-Traditional Novices Struggle with? Parse Errors

For Non-Traditional Novices, Parse Errors (Syntax Errors)
are both common and challenging

o .
Most Common Python Errors Faced By Novices 37% of Parse Errors take over two minutes

to resolve
SyntaxError
TypeError More complex fixes take even longer:
AttributeError 150
£
IndexError \;/
2100
ValueError £
A
Other Errors E 50
0% 20% 40% 60% 80% -
0
Percent of Total Errors 12 3 4 5 6 7 8 9 10+

Token Changes (#)
16

Fixing Parse Errors: How can we support Novices?

Goal: We want support for fixing parse errors faced by
non-traditional novices that is both:

e [ffective: can provide helpful repairs close to the
user's intent in the majority of cases

and

e [fficient. Fast enough to be computed in real time

17

Fixing Parse Errors: How can we support Novices?

Goal: We want support for fixing parse errors faced by
non-traditional novices that is both:

e [ffective: can provide helpful repairs close to the
user's intent in the majority of cases

and

e [fficient. Fast enough to be computed in real time

Symbolic Approach?

Al

Neural Approach?

18

Parsing Overview

Al

Grammar G

bl

Stmts end_marker

Stmt \n | Stmt \n Stmts
FuncDef | ExprStmt
RetStmt | PassStmt |

def name Params Block
\n indent Stmts dedent

Program P
def foo(a): S
return a + 42 Stmts
Stmt
def bar(a): FuncDef
b = foo(a) + 17 Block
return b +
FuncDef
name Params : Block
/I\ NN
name) \n indent Stmts dedent
e
Stmt \n |[Stmts!
| / N\
ExprStmt Stmt \n

19

Finding Parse Errors: Fault Localization

Program P

def foo(a):

return a + 42

def bar(a):
b =
return

foo(a

+

Al

Grammar G

bl

Stmts end_marker

Stmt \n | Stmt \n Stmts
FuncDef | ExprStmt
RetStmt | PassStmt |

def name Params Block
\n indent Stmts dedent

S
Stmts
Stmt
FuncDef
17 \ / Block
FuncDef
name Params : Block

1N AN

name

/

Stmt

ExprStmt

\n

) \n indent Stmts dedent

Stmts!

/7 \

Stmt \n

20

Fixing Parse Errors: Error Correcting Earley Parsers

Program P

def foo(a):
return a + 42

Al

Grammar G’

def bar(a)-
00 (a +
return
ArExpr
— | ~—

ArExpr BinOp Literal
| | '

Literal + E_number
| T
name €

S — Stmts end_marker
Stmts — Stmt \n | Stmt \n Stmts
Stmt — FuncDef | ExprStmt
| RetStmt | PassStmt | .
FuncDef — def name Params Block
Block — \n indent Stmts dedent
New_S — S | S Insert
RetStmt — | E_return | E_return Args
E_return — return | € | Replace
FuncDef
////j;/| \<?\\\\\\ | Insert return
name Params E_number — number | € | Replace
// I\, ///7/ | Insert number
name) \n indent :
a
Stmt \n |[Stmts!
| / N\
ExprStmt Stmt \n 21

Fixing Parse Errors: Error Correcting Earley Parsers

Program P

def foo(a):

return a + 42

def bar(a):

Al

Grammar G’

Too many rules!

ArExpr
— | ~—

ArExpr BinOp Literal
| l '
Literal + E_number
| T

name €

def

S — Stmts end_marker
Stmts — Stmt \n | Stmt \n Stmts
Stmt — FuncDef | ExprStmt
| RetStmt | PassStmt | .
FuncDef — def name Params Block
Block — \n indent Stmts dedent
N New_S — S | S Insert
RetStmt — | E_return | E_return Args
E_return — return | € | Replace
FuncDef
// | \\ | Insert return
name Params 1o, E_number — number | € | Replace
/ I\, // | Insert number
name) \n indent :
a
Stmt \n |[Stmts!
| / N\
ExprStmt Stmt \n 22

Fixing Parse Errors: Neural Approaches

Pros:
e Sequence classifiers can be good at predicting edits or
repairs similar to human behavior

e Once trained, neural approaches can be efficient

Cons:

e Generally, no guarantees that the response will correct
(e.g., actually parse), let alone be a minimal repair

e Neural approaches can be confused by program
context not directly related to the parse error

def foo(a):
return a + 42

def bar(a):

b = foo(a) + 17

return@

23

SEQ2PARSE: Key Insight

e EC-Parsers guarantee a correct fix, but are slow because they consider too many
production rules, the vast majority of which are not needed to fix any given error.

e In contrast, Neural approaches are fast and leverage user patterns, but can be
inaccurate or untrustworthy if used alone

We propose to get the best of both worlds and efficiently and accurately suggest
repairs in a neurosymbolic fashion:

1. Train sequence classifiers to predict the relevant EC-rules for a given program,
instead of the next token or the full fix

2. Use the predicted rules to synthesize a Parse Error repair via EC-Parsing

SEQ2PARSE: Efficient Fixes for Novice Parse Errors

Y

Program Error-Correcting Fixed

With Parse

Error Earley Parser Program

25

SEQ2PARSE: Efficient Fixes for Novice Parse Errors

Y

Error-Correcting Fixed
Earley Parser Program

Error Rule
Predictor
(Sequence

Program

With Parse
Error

Python Tutor Dataset

Parse
Error
Programs

Fixed
Programs

SEQ2PARSE: Efficient Fixes for Novice Parse Errors

Program

With Parse

Error

Y

Error-Correcting Fixed
Earley Parser Program

Error Rule
Predictor
(Sequence

How do we learn
relevant error rules?

Python Tutor Dataset

Parse
Error

Fixed
Programs

Programs

Additional Considerations for Learning EC-Production Rules

def foo(a):
lll-parsed Program Representation for Learning: return a + 42

e Problem: Predicting relevant production rules using full buggy programs | “; 252

causes the model to be confused by irrelevant program context return b +
e QOur Solution: Instead of standard token strings, develop semantics for

Abstracted Token Sequences that concentrate information relevantto a [stmt \n

given parse error and remove confusing context

def name Params: \n
indent Stmt \n
return Expr BinOp \n
dedent end_marker

Mitigating Representational Ambiguity:

e Problem: While needed, this abstraction adds ambiguity into what parse tree should result from
any given abstracted token sequence

e Qur Solution: Use fixed Python Tutor programs to learn a Probabilistic Context Free Grammar

and resolve parsing ambiguities S — Stmts end_marker (p =100.0%)
Stmts — Stmt \n (p=38.77%) | Stmt \n Stmts (p=061.23%)
>_Q Stmt — Exprstmt [(p=62.64%) || RetStmt| (p=7.59%) || ...
RetStmt — return (p=1.61%) | return Args (p=98.39%) 28

SEQ2PARSE: Python Implementation

Dataset: Over One Million Buggy/Fixed Program Pairs from Python Tutor

O
O

Average abstracted token sequence is 43 tokens long
15,000 random programs used for evaluation, the rest for model training

Error Rule Prediction Model Structure:
Transformer classifier with six blocks, each with a fully-connected hidden layer of 256

O

O

neurons and 12 attention heads, connected to a DNN-based classifier with two
fully-connected hidden layers.

Trained using an Adam optimizer, a variant of stochastic gradient descent for 50 epochs.

Model Output: Top 20 most likely error production rules for a given Buggy
Program

O

These rules are then fed into the Error Correcting Earley Parser

>_®,

29

Seg2Parse: Does it work? Yes! >_&

SEQ2PARSE can fix most
parse errors for
non-traditional novices,

in real time

and with the same, or
better, quality to the
novices themselves!

v
v

v

Repair Rate: SEQ2PARSE can parse and repair |
up to 94.25% of programs with syntax errors.

Efficiency: SEQ2PARSE can parse and repair the
vast majority of the test set in under 20
seconds in a median time of 2.1 seconds

Quality: SEQ2PARSE generates the exact fix as
the historical user up to 35% of the time! Of the
remainder, SEQ2PARSE repairs are equivalent to
or more useful than historical repairs 52% and
15% of the time, respectively.

30

Seq2Parse: Does it work? Yes! >_@)

We assess repair quality via a study with 39 programmers

Captured 527 subjective quality ratings for a corpus of 50 SEQ2PARSE / historical fix pairs
Compared the two pairs using standard statistical tests

Buggy Python Program Debugging Hint: Possible Fix
shift = 9, 2, 4 738659 shift = 9, 2, 4 706,89
for i in shift for i in shift:
for item in i for item in i
print(i[1l print(i[1

Python Error Message

File "program.py", line 4
print(i[1])

~

IndentationError: expected an indented block after 'for'
statement on line 3

Questions To Answer:

1. Between 1 (not helpful) and 5 (very helpful), how helpful is the Python Error Message for debugging the program? ‘

2. Between 1 (not helpful) and 5 (very helpful), how helpful is the provided Possible Fix for debugging the program? \ \

31
i

Seg2Parse: Does it work? Yes! >_&

SEQ2PARSE can fix most
parse errors for
non-traditional novices,

in real time

and with the same, or
better, quality to the
novices themselves!

v
v

v

Repair Rate: SEQ2PARSE can parse and repair |
up to 94.25% of programs with syntax errors.

Efficiency: SEQ2PARSE can parse and repair the
vast majority of the test set in under 20
seconds in a median time of 2.1 seconds

Quality: SEQ2PARSE generates the exact fix as
the historical user up to 35% of the time! Of the

remainder, SEQ2PARSE repairs are equivalent to
or more useful than historical repairs 52% and
15% of the time, respectively.

32

Lens 1 — Summary: Developing Better Bug Fixing Support

We identified parse errors and input-related bugs as a
significant barrier for non-traditional novices in practice

We propose SEQ2PARSE, a neurosymbolic approach to fixing
parse errors, and InFix, a template-based approach for fixing
input-related bugs

Our preliminary results show that both tools produce repairs
that are accurate, efficient, and of high quality, as judged by

humans.

HIllI

o,

> ®

33

Can we support
non-traditional novices in
writing more correct
code faster?

Designing Effective
Developer Training

Can we use cognitive
insights to inform training and
improve programming
outcomes?

Understanding External
Productivity Factors

65

How does psychoactive
substance use impact
software productivity?

34

G

TO READ OR TO ROTATE?

An example of how cognitive insights can
inform effective programming interventions

ESEC/FSE, 2021,
ICSE 2021

.
) S

5]

Novice programmers often struggle,
especially those students with weaker preparatory
education

This struggle may result from insufficient preparation
in cognitive skills necessary for programming

36

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

37

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

A writing-intensive course improves biology undergraduates’ perception
and confidence of their abilities to read scientific literature and
communicate science

Sara E. Brownell,! Jordan V. Price,” and Lawrence Steinman?>

38

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

A writing-intensive course improves biology undergraduates’ perception
and confidence of their abilities to read scientific literature and

communicate science

Sara E. Brownell,! Jordan V. Price,” and Lawrd

THE EFFECTS OF ORIGAMI LESSONS ON STUDENTS” SPATIAL
VISUALIZATION SKILLS AND ACHIEVEMENT LEVELS IN A
SEVENTH-GRADE MATHEMATICS CLASSROOM

A Qualitative Inquiry into the Effects of Visualization
| on High School Chemistry Students’ Learning
PP, Process of Molecular Structure

Susan Deratzou

39

How can we help students?

Cognitive interventions (the supplemental training of a necessary cognitive skill)

can help underprepared students succeed in many fields

A writing-intensive course improves biology undergraduates’ perception
and confidence of their abilities to read scientific literature and

communicate science

Sara E. Brownell,! Jordan V. Price,” and Lawrd

THE EFFECTS OF ORIGAMI LESSONS ON STUDENTS” SPATIAL
VISUALIZATION SKILLS AND ACHIEVEMENT LEVELS IN A
SEVENTH-GRADE MATHEMATICS CLASSROOM

A Qualitative Inquiry into the Effects of Visualization
on High School Chemistry Students’ Learning

S w -

Qfm\ Does spatial skills instruction improve STEM outcomes? The answer is ‘yes’

Sheryl Sorby™*, Norma Veurink®, Scott Streiner®

Cognitive interventions may also help improve

programming ability for novices...

41

Cognitive interventions may also help improve

programming ability for novices...

... but what cognitive skills should we target?

4

Neuroimaging and Software Engineering

e Understanding the cognitive basis of software engineering is important
e Neuroimaging allows us to objectively measure this cognitive basis by directly
observing brain activation patterns while programming! (as opposed to
self-reported data)
e Potential impact areas of neuroimaging include pedagogy,
technology transfer, expertise, adult retraining -
/
/
gf‘
€-¢9
m

43

)
€

What do we know up to 20237 |

e Neuroimaging uses contrast-based experiments to compare programming
activities to other cognitive tasks

Neuroimaging Is programming like | Is programming like
Experiment Reading? Spatial Reasoning?
Siegmund et al., (2014) v

Siegmund et al., (2017) v

Floyd et al., (2017) v

Huang et al., (2019) v

44

What do we know up to 20237

—

B
o

S

e Neuroimaging uses contrast-based experiments to compare programming

activities to other cognitive tasks

Neuroimaging Is programming like | Is programming like
Experiment Reading? Spatial Reasoning?
Siegmund et al., (2014) v

Siegmund et al., (2017) v

Floyd et al., (2017) v

Huang et al., (2019) v

Found
connection
with
expertise

45

s
¥
o)

—

What do we know up to 20237 &Eglﬂ\

e Neuroimaging uses contrast-based experiments to compare programming activities to other
cognitive tasks

Neuroimaging Is programming like | Is programming like | What about with
Experiment Reading? Spatial Reasoning? | novices?
Siegmund et al., (2014) v ?
Siegmund et al., (2017) v ?
Floyd et al., (2017) v ?
Huang et al., (2019) v ?

46

Lens 2 Study Overview

Phase 1. Neuroimaging

e We first build a model of novice programmer cognition using the first
neuroimaging study of true novice programmers during code comprehension

Published in ICSE, 2021
Phase 2: Transfer Training

e We then investigate the the usefulness of transfer training in computing
comparing the impact of two cognitive interventions on novice programming

performance in a controlled, longitudinal study
Published in FSE, 2021

47

Phase 1: Neuroimaging Method 22

e We use Functional Near Infrared Spectroscopy (fNIRS) to capture the brain

activation patterns of novice programmers (no prior programming experience)
o fNIRS uses light to measure the oxygen levels in different parts
of the brain
o Supports studying the brain while doing natural programming tasks

e We compare programming-associated activations to two
well-understood cognitive tasks commonly used in |
neuroimaging studies of expert developers: spatial visualization and reading

48

Experimental Timeline: A Semester of CST1 B85
‘&&&M
Week 1: Start
of the CS1 Week 4-5.5:
(EECS 183) Brain scans
semester
Week 3: Week 16:
Participant End of
recruitment semester
from CS1

49

Experimental Timeline: A Semester of CS1

Week 1: Start Week 4-5.5:

of the CS1 .

(EECS 183) Brain scans

semester
Week 3: Week 16:
Participant End of
recruitment semester
from CS1

50

Neuroimaging Stimuli

We compare brain activation during three tasks:

—
€-#9
2zl

O 0O
([[am]

51

Neuroimaging Stimuli

We compare brain activation during three tasks:

o
Q

_“‘@1—‘['\ e CS1-Level Programming

Please type the corresponding letter which best represents the return value of the function call below:

bool func(bool x, bool y) {
return (x && y) || (x & ly);
}

func(true, false)

true ‘false

A B

52

Please type the corresponding letter which best represents the return value of the function call below:

Neuroimaging Stimuli bool func(bool x, bool y) {

return (x && y) || (x & ly);
}

We compare brain activation during three tasks: FuncRiae RS

7
- ® CSil-Level Programming true false.
»&&5[[' e Mental Rotation : B

Please type the corresponding letter of the bottom objects to give your answer.

N

We compare brain activation during three tasks:

—~
q?Hq§Q)

O 0O
([[am]

euroimaging Stimuli

e CS1-Level Programming
e Mental Rotation
e Prose Fill in the Blank

Please type the corresponding letter which best represents the return value of the function call below:

bool func(bool x, bool y) {
return (x && y) || (x & ly);
}

func(true, false)

\trﬁ false

A

Please type the corresponding letter of the bottom objects to give your answer.

Please type the corresponding letter of the word which best fills in BLANK in the sentence below:

The author presents the life of Zane Grey with BLANK

unusual in a biographer: he is not even convinced that
Grey was a good writer.

‘an eloquence

A

a detachment

B

54

fNIRS Scan Data Collection and Analysis

e Each scan session lasts two hours in a darkened room
o 90 stimuli, 30 of each type (programming, mental rotation, reading)

e 36 participants, 31 valid (24 female, 7 male)
o Recruited from EECS 183, here at Michigan!

e Data Analysis
o Compare activation by task by brain area
using best practices from psychology
Significance threshold: p < 0.01.
We used False Discovery Rate to correct
for multiple comparisons: g < 0.05

55

A Mathematical Model of Novice Cognition: €-¢0
Primary Research Questions &&&m

e Comparative Activation: How does novice program comprehension
compare to prose comprehension and spatial reasoning at the
cognitive level?

o How do novices' brain activation patterns compare to those of

expert developers?
@y

56

Pz
Phase 1 Results: Comparative Brain Activation @_”‘gf[l)]\

o
o

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

57

Pz
Phase 1 Results: Comparative Brain Activation @_”‘@[l)]\

o
o

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

Coding > Reading

Phase 1 Results: Comparative Brain Activation

e Question: Do novices use spatial and/or language areas while programming?

e Result;: While areas associated with both are activated, we find more substantial

differences between Coding and Reading than between Coding and Mental Rotation

Coding > Reading Coding > Mental Rotation

Phase 1 Results: Comparative Brain Activation _Vh]\

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

Coding > Reading Coding > Mental Rotation

Phase 1 Results: Comparative Brain Activation Sk /|

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Mental Rotation

Coding > Reading Coding > Mental Rotation

Pz
Phase 1 Results: Comparative Brain Activation @_”‘gf[l)]\

o
o

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Rotation

62

€-¢

O
000
oool_l_l

Phase 1 Results: Comparative Brain Activation

e Question: Do novices use spatial and/or language areas while programming?

e Result: While areas associated with both are activated, we find more substantial
differences between Coding and Reading than between Coding and Rotation

e We also find that for novices coding engages more working memory and is more
cognitively challenging than does either mental rotation or prose reading

So for novices, we see more differences with reading that
spatial ability. Now what?

63

Phase 1 Results: Comparing to Experts W)

e Question: How does this finding compare to previous studies with experts?

e Floyd et al. found that coding and prose tasks are more similar in terms of neural
activity for senior undergraduate than for mid-level undergraduates

e Our results: the pattern may continue to novices. For less experienced
programmers, programming and reading show little cognitive similarity

e Implications for developer training and pedagogy:
o Perhaps spatial skills enable general problem solving for novices, but domain-specific
programming strategies use more reading-associated cognitive processes
o Directly training reading-based domain-specific strategies may help novices become experts faster

64

s
B
o

—

Phase 1 Summary

Do
Do |
Do
==

For novices, spatial reasoning is less distinct to
programming than reading at a cognitive level.

This is in contrast to results with expert developers,

and has implications for future programming training
or interventions.

65

Phase 2: Transfer Training
A Tale of Two Cognitive Interventions

Standardized and Validated Spatial Our Novel CS-focused Technical
. Reasoning Training Reading Training
§-¢
ol
==V

66

Intervention 1. Spatial Reasoning Training

e Spatial Reasoning is the ability to mentally manipulate
2D and 3D shapes

e We use a validated pre-made Spatial Reasoning Training Curriculum
developed for engineering students
o Developed by Sorby et al. (2000)

e Includes sketching practice of shape
rotation projection, and folding

67

Intervention 2: Technical Reading Training

e We developed an intervention to teach strategies
for efficiently understanding scientific writing

e Strategies focused on using structural cues to scan academic
papers to retrieve and understand key points

O Inspired by eye tracking findings: experienced programmers tend to read
code non-linearly, focusing on high level features.

Do
Do
Do

68

Novices Reading Code

import json
import os

mport fixTheories.factory as theory_factory

class InFix:

def __init__(self, inFix_config, inFix_log):
self.config = inFix_config

self.log = inFix_log

def find_fixes(self, filt=None):

This function finds all the fixes required by the initializing configuration
Filter is an optional filter that says which sessions to consider

ce if the
to_return = []

tial file i

if self.config.partial_file is not None
with open(self.config.partial_file,
f = iter(f)

to_return = []

)
line in f:

line.startswith('NEXT'
general_config = json.loads(next(f))
experiment_results = json.loads(next(f))

if len(experiment_results) == 0:

print("This experiment was not actually completed")
continue

to_return.append((general_config, experiment_results))

Make dictionar

22z = set()

for config, result in to_return:
222.add(configl"UniqueId"])

theories = self.config.get_theories ()

global_theory_config = [self.config.get_specific_theory_info(x) for x in theories]

global_theory_factory = [theory_factory.get_theory_solver(i, global_theory_configle], self.log)

theory_results = [[] % len(theories)]

No p through all

base_path

counter

ak = @

he files in path

= self.config.get_session_path(
3

for folder in os.listdir(base_path):
ak += 1
print("Number:
print(folder)

{}".format(ak))

Check

if folder in zzz:

2015

Busjahn, et al.,

Experts Reading Code

import json
import os
mport fixTheories.factory as theory_factory

class InFix:

init__(self, inFix_config, inFix_log):

self.config = inFix_config
self.log = inFix_log

ef find_fixes(self, filt=None):

This function finds all the fixes required by the initializing configuration
Filter is an optional filter that says which sessions to consider

to_return = []

Load the partial file if ther

self.config.partial_file is not Non

ith open(self.config.partial_file,
f = iter(f)
to_return = []
or line in f:
try:

L) Nasit:

if line.startswith('NEXT'):

general_config = json.loads (next(f))

experiment_results = json.loads(next(f))

if len(experiment_results) == 0:
print("This experiment was not actually completed")
continue
to_return.append((general_config, experiment_results))
StopIteration:

pass

dictionar
= set()

config, result in to_return:

z2zz.add(config["UniqueId"])
theories = self.config.get_theories()
global_theory_config = [self.config.get_specific_theory_info(x) fo
global_theory_factory =

T x in theories]
theory_results = [[]

[theory_factory.get_theory_solver(i, global_theory_configl@], self.log)
% len(theories)]

base_path = self.config.ge
counter = 1

ak = @

for

ession_path(

folder in os.listdir(base_path):
ak += 1
print("Number: {}"
print(folder)

.format(ak))

older has alr

f folder in zzz:

Novices Reading Code

import json
import os

mport fixTheories.factory as theory_factory

class InFix:

def __init__(self, inFix_config, inFix_log):
self.config = inFix_config

self.log = inFix_log

def find_fixes(self, filt=None):

This function finds all the fixes required by the initializing configuration
Filter is an optional filter that says which sessions to consider

ce if the
to_return = []

tial file i

if self.config.partial_file is not None
with open(self.config.partial_file,
f = iter(f)

to_return = []

)
line in f:

line.startswith('NEXT'
general_config = json.loads(next(f))
experiment_results = json.loads(next(f))

if len(experiment_results) == 0:

print("This experiment was not actually completed")
continue

to_return.append((general_config, experiment_results))

Make dictionar

22z = set()

for config, result in to_return:
222.add(configl"UniqueId"])

theories = self.config.get_theories ()

global_theory_config = [self.config.get_specific_theory_info(x) for x in theories]

global_theory_factory = [theory_factory.get_theory_solver(i, global_theory_configle], self.log)

theory_results = [[] % len(theories)]

No p through all

base_path

counter

ak = @

he files in path

= self.config.get_session_path(
3

for folder in os.listdir(base_path):
ak += 1
print("Number:
print(folder)

{}".format(ak))

Check

if folder in zzz:

2015

Busjahn, et al.,

Experts Reading Code

import json
import os
mport fixTheories.factory as theory_factory

class InFix:

init__(self, inFix_config, inFix_log):

self.config = inFix_config
self.log = inFix_log

ef find_fixes(self, filt=None):

This function finds all the fixes required by the initializing configuration
Filter is an optional filter that says which sessions to consider

to_return = []

Load the partial file if ther

self.config.partial_file is not Non

ith open(self.config.partial_file,
f = iter(f)
to_return = []
or line in f:
try:

L) Nasit:

if line.startswith('NEXT'):

general_config = json.loads (next(f))

experiment_results = json.loads(next(f))

if len(experiment_results) == 0:
print("This experiment was not actually completed")
continue
to_return.append((general_config, experiment_results))
StopIteration:

pass

dictionar
= set()

config, result in to_return:

z2zz.add(config["UniqueId"])
theories = self.config.get_theories()
global_theory_config = [self.config.get_specific_theory_info(x) fo
global_theory_factory =

T x in theories]
theory_results = [[]

[theory_factory.get_theory_solver(i, global_theory_configl@], self.log)
% len(theories)]

base_path = self.config.ge
counter = 1

ak = @

for

ession_path(

folder in os.listdir(base_path):
ak += 1
print("Number: {}"
print(folder)

.format(ak))

older has alr

f folder in zzz:

Semester CS1 Course With Final Exam

72

)) *j';; *:;i: .’..;'. :.

Transfer Training Results: Which Group Did Better?

Spatial Reasoning Technical Reading
Training Training

G SE

76

Transfer Training Results: Which Group Did Better?

Spatial Reasoning
Training

Technical Reading
Training

SE

77

Transfer Training Results: Which Group Did Better?

0.8

0.2 1

0.01

Reading @

Spatial

Preltest

Time

Postl—test

Technical Reading
Training

SE

78

Now that we know that our Reading Training

transferred to CS1, what programming skill did it help?

79

Now that we know that our Reading Training

transferred to CS1, what programming skill did it help?

Our final programming assessment (the SCS1) had three types

of questions: code completion, definitional, and code tracing

@ @‘/0

o O
Q [am] 80

How did the Reading Training Help?

Code Completion Questions

Preltest

Time

Post'—test

7.5

0.0

Reading @ Spatial ®

Definitional Questions

Preltest Post'—test
Time

Tracing Questions

Pre:test Post'—test
Time

81

How did the Reading Training Help?

Code Completion Questions

Preitest

Time

Post'—test

7.51

0.0

Reading @ Spatial ®

Definitional Questions

Tracing Questions

Pre;test
Time

Post'—test

Preitest Post'—test
Time

p =0.03

Transfer Training Results: Summary €@ &0

We compared the effects of Spatial Reasoning Training and our novel
CS-focused Technical Reading Training on CS1 students.

& P

We found that our Technical Reading Training helped programming
ability more, especially helping novices trace through code

83

Transfer Training Results: Summary €@ &0

We compared the effects of Spatial Reasoning Training and our novel
CS-focused Technical Reading Training on CS1 students.

& P

We found that our Technical Reading Training helped programming
ability more, especially helping novices trace through code

Can we support
non-traditional novices in
writing more correct
code faster?

Can we use cognitive
insights to inform training and
improve programming
outcomes?

Understanding External
Productivity Factors

How does psychoactive
substance use impact
software productivity?

85

Psychoactive Substances
and Programming?

PROGRAMMING
SKILL

—_— oz
o 02 .M .0h OF W0 Jyz M 6 U8B P 7 Y 26

9 BLOOD ALCOHOL CONCENTRATION (%)
A case study on how understudied
o CALLED THE BALLMER PEAK, IT HOWEVER, \T5 A DELICATE EFFECT ...HAS THAT
external factors can impact software e | | e el crrnl Eic s S
IN THE LATE 805. THE CAUSE YOU CAN'L JUST GIVE A TEAM OF REMEMGER \
/I 15 UNKNOWN, BUT SOMEHOW A GAC. CODERS A YEAR'S SUPPLY OF WHISKEY
p ro dUCtI VI ty BETWEEN O429% AND 0138x CONFERS AND TELL THEM TO GET CRACKING, WIND/OUS P’(E?

SUPERHUMAN PROGRAMMING ABILITY.

"N

I KNEW IT!

ICSE 2022, 2024

86

Credit: XKCD Comic, https://xkcd.com/323/

CULTURE OF PSYCHOACTIVE SUBSTANCE USE AND

SOFTWARE

Coder’s High

Based upon my experiences and observations:
Programming is just like drugs, except the dealer pays you.

o caffeine

e nicotine BY DAVID AUERBACH JUNE 17,2014 « 12:02 PM

* alcohol “Taking LSD was a profound experience, S

o ritalin one of the most important things in my life” 579

* modafinil - Steve Jobs (e '
=

I've never met a developer that didn't use one of the aforementioned drugs during work.l

LONG READS 24.88.2816 88:28 AM
oge . . 37
Under pressure, Silicon Valley workers turn to LSD microdosing

We have a strict drug and alcohol policy. Employees are
not permitted to use, possess, sell, transfer, manufacture,
. distribute, or be under the influence of illegal drugs on
Howeve r, th IS Cisco-owned or leased property, during working hours,

Cu |'tu rem ay while on company business, or while using company
conflict with .

some Although certain jurisdictions may allow the prescription or 29% of software
O rg an | Zatio Na | other use of marijuana, this policy also applies to marijuana, developers have taken a

which remains illegal under U.S. Federal law. Employees are
not permitted to use, possess, sell, transfer, manufacture,
distribute or be under the influence of these drugs while on
Cisco owned or leased property, during working hours, while

drug test for a
programming-

structures —

al, 2022)

related job. (Endres et

on company business. or while ysing companyv. property.In
Take ———

TECHBY VICE

The FBI Says It Can't Find Hackers to Hire
policies as an Because They All Smoke Pot

example: The FBI is struggling to find good hackers because of marijuana
rules

By MARY SCHUMACHER
THE FRESH TOAST | APR 23, 2018 AT 11:52 AM 4 6 e

88

Despite this conflict, little empirical research has
been conducted on psychoactive substance use in software development

We want to know if, when, or why developers use substances while
programming: tech companies cannot effectively evaluate existing
anti-drug policies

And we want to build a mathematical model of how such substances
actually impact programmers

We present results from the:

First large-scale empirical study of psychoactive substance use in software
engineering

(800+ programmers, 450 full-time devs)

First controlled observational study of cannabis and programming
(70+ programmers, pre-registered hypotheses)

89

Psychoactive Substances Exploratory Survey: Summary

803 survey responses:
o 440 from GitHub Emails
o 339 from University of Michigan
o 24 from Social Media

o 56% Have full-time programming
jobs, 36% are students

Madeline Endres
Hello! Do you program or are you in a programming-related field? If so,

to Madeline ~

Nice try FBI)

90

Psychoactive Substances Exploratory Survey: Summary

803 survey responses:

©)

@)

©)

©)

440 from GitHub Emails
339 from University of Michigan
24 from Social Media

56% Have full-time programming
jobs, 36% are students

Madeline Endres
Hello! Do you program or are you in a programming-related field? If so,

to Madeline ~

Nice try FBI)

Usage While Programming

in Last Year

Alcohol
Cannabis
Tobacco
Amphetamines

Hallucinogens

24.53%

91

Psychoactive Substances Exploratory Survey: Summary

803 survey responses:
o 440 from GitHub Emails
o 339 from University of Michigan
o 24 from Social Media

o 56% Have full-time programming
jobs, 36% are students

Madeline Endres
Hello! Do you program or are you in a programming-related field? If so,

to Madeline ~

Nice try FBI :)

Usage While Programming
in Last Year

Alcohol

Cannabis

T
— o

Tobacco
Amphetamines

Hallucinogens

33% use for work-related tasks

1% use at a frequency likely to
be caught by a drug test

92

A Controlled Observational Study: Cannabis

e Goal: To build a mathematical model of how cannabis use impacts programming.
o We want our model to be rigorous enough to be used by individual developers

and policy makers alike in making more informed cannabis and programming
decisions.

o We pre-registered our hypotheses to facilitate future replication.

93

A Controlled Observational Study: Cannabis

e Goal: To build a mathematical model of how cannabis use impacts programming.
o We want our model to be rigorous enough to be used by individual developers

and policy makers alike in making more informed cannabis and programming
decisions.

o We pre-registered our hypotheses to facilitate future replication.

e Design Considerations:

o Achieving sufficient statistical power to answer our pre-registered research
questions

o Balancing ecological validity with experimental control
o Maximizing participant privacy and safety

94

https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3
https://docs.google.com/presentation/d/1R2sTQaTJqeIyFjlfFpN7UpweGDkQcmCa9O2YHS4RUyM/edit#slide=id.g29b670884ff_31_3

Programming
While High

' [
t

iy,
fatEp Ty
M#‘% e

Programming
While Sober

Remote Programming
Session 1

= @ easylpy U X

stimuli > problemsetA > & easyl.py
1 class Solution:

2 """ You are given a string ‘s’ consisting of lowercase English letters. A duplicate
3 removal consists of choosing two adjacent and equal letters and removing them. We
4 repeatedly make duplicate removals on ‘s’ until we no longer can. Return the final
5 string after all such duplicate removals have been made. It can be proven that the
ﬁl> 6 answer is unique. Full stimulus has IO Examples and input constraints here """
7
[m] 8 def removeDuplicates(self, s: str) —> str:
B:I 9 return "" # Participant implementation goes here
10
11 class Test(object):
12 def test_removeDuplicates(self):
13 print("
14 solution = Solution()
@ 15 answerl = solution.removeDuplicates("abbaca")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS e COMMENTS ’ bash +
{% [2023/07/29-02:03:18] » /workspaces/CodeSpaceTest (main x) $ []
o main* O ®O0AO0 WO Ln21,Col 5 Spaces:4 UTF-8 CRLF Python

96

¢3¢

\24D

Programming
While High

Mf%'

A Nﬂ'
’i‘ M‘

Programming
While Sober

Remote Programming
Session 1

Remote Programming
Session 2

97

§55
. Remote Programming Remote Programming

Session 1 Session 2

. '."
Programming] %
While High \

fe

t

'j" ﬂ*"o
hy ?jr
Programming Bl
While Sober it

Y ©

B %

Results: Pre-registered Hypotheses

RQ1: How does cannabis intoxication while programming impact program correctness?

e Hypothesis: Programs will be less correct when written by cannabis-intoxicated
programmers.

RQ2: How does cannabis intoxication while programming impact programming speed?

e Hypothesis: Cannabis-intoxicated programmers will take longer to write programs.

).

99

Results: Pre-registered Hypotheses

RQ1: How does cannabis intoxication while programming impact program correctness?

e Hypothesis: Programs will be less correct when written by cannabis-intoxicated

programmers.
e Finding: Cannabis use decreases program correctness (0.0005 <p <0.05, 0.28<d

0.44, 10-14% fewer passed tests). In particular, cannabis impairs the ability to write and
trace through programs.

RQ2: How does cannabis intoxication while programming impact programming speed?

e Hypothesis: Cannabis-intoxicated programmers will take longer to write programs.

e Finding: Cannabis use impairs programming speed (p < 0.04, d = 0.3, 10-14% slower).

This decrease in speed is associated with typing slower, deleting more characters,
and more time spent not typing.

100

High vs. Sober: How does Cannabis Impair Programming?

1-D Array Problem (Sober)

Programming 120 7
) %
While Sober 1001 2
g 801 g
S 604 %
Normal g %
/L g 40 % 7
Keystrokes ¥ g %%
ol 21, 7
ol Yt 2. 5%%% M
Delet 0 5 10 15
elete Time(min)
Keystrokes

. Finished with
Correct Solution

101

High vs. Sober: How does Cannabis Impair Programming?

1-D Array Problem (Sober)

Programming 120 .
; %
While Sober 100 A 2
v 80 - g
% 60 ?
= 1 %
77 Normal 2 ol % .
Keystrokes > & 2%.%
% 4 2%3%%
201 %7 % 9%9%5,
ol Z%untt 7.%%2%%M
Del t 0 5 10 15
elete Time(min)
Keystrokes
y -~ 1-D Array Problem (High)
. . . 100 A
. Finished with .
Correct Solution < 807
S 60
g w0 / ! y
Programming ol 34} g?% % 7
While High NIRRT Y
0 5 10 15

102

Lens 3 - Summary: Psychoactive Substances and Programming

e By surveying 800 programmers, we found that
psychoactive substance use is common in software

e Despite anecdotes to the contrary, we only observed
evidence of cannabis impairing productivity

e This work demonstrates the usefulness of objective
measures and careful controlled experimental design to
come to evidence-based conclusions on anecdotal
software productivity factors

103

Professional Programmers

ICSE 2023 R R
§9¢ §9¢
ICSE 2022 aAK: ICSE 2024a N
0P 0P
FSE 2024
FSE 2023
PLDI 2020
More Theoretical (SE-SEET 2055 More Empirical
ICSE 2024b
OOPSLA 2022 >_Q SIGCSE 2021
S S
O%_9 O%-9
SIGCSE 2020 ICSE 2021 {hJW_ FSE 2021 { Vo —
ASE 2019 >_@ &4 A&

Programming Novices 104

1. FSE, 2024 Can LLMs Transform Natural Language Intent into Formal Methods Postconditions?
Endres, M., Fakhoury, S., Chakraborty, S., Lahiri, S.

2. ICSE, 2024a Causal Relationships and Programming Outcomes: A Transcranial Magnetic Stimulation Experiment, [Q'E
Ahmad, H., Endres, M., Newman, K., Santiesteban, P., Shedden, E., Weimer, W. (Distinguished Paper) ‘38‘5‘3
3. ICSE, 2024b High Expectations: An Observational Study of Programming and Cannabis Intoxication, ’
He, W.,, Parikh, M., Weimer, W., Endres, M. .
4, FSE, 2023 A Four-Year Study of Student Contributions to OSS with a Lightweight Intervention, 859 [Qli’;zl
Fang, Z., Endres, M., Zimmermann, T., Ford, D., Weimer, W,, Leach., K., Huang, Y (Distinguished Paper) . M&&&
5. ICSE, 2023 From Organizations to Individuals: Psychoactive Substance Use By Professional Programmers, §9
Newman, K., Endres, M., Weimer, W., Johnson, B. D
6. OOPSLA, 2022 Seq2Parse: Neurosymbolic Parse Error Repair,
Sakkas, G., Endres, M., Guo, P., Weimer, W,, Jhala, R. >—®~
7. ICSE, 2022 Hashing It Out: A Survey of Programmers’ Cannabis Usage, Perception, and Motivation, 6§
Endres, M., Boehnke, K., Weimer, W.)
8. ICSE-SEET, 2022 Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers, =1 S
Li, A., Endres, M., Weimer, >_ @] [[IJ\?’ ~
9. FSE, 2021 To Read or To Rotate? Comparing the Effects of Technical Reading Training and Spatial Skills Training... o\j :o
Endres, M., Fansher, M., Shah, P., Weimer, W. [m\{ oo
10. ICSE, 2021 Relating Reading, Visualization, and Coding for New Programmers: A Neuroimaging Study o\: :o
Endres, M., Karas, Z., Hu, Z., Kovelman, |., Weimer, W [-\;&&
1. SIGCSE, 2021 An Analysis of Iterative and Recursive Problem Performance, =] Soe
Endres, M., Weimer, W., Kamil, A. >_® m&&
12. PLDI, 2020 Type Error Feedback via Analytic Program Repair
Sakkas, G., Endres, M.,Cosman, B..Weimer, W.,Jhala, R. >_Q
13. SIGCSE, 2020 Pablo: Helping Novices Debug Python Code Through Data-Driven Fault Localization
Cosman, B,, Endres, M., Sakkas, G., Medvinsky, L., Yao-Yuan,Y.,Jhala, R.,Chaudhuri, K., Weimer, W. >_Q
14. ASE, 2019 InFix: Automatically Repairing Novice Program Inputs 105

Bl

Endres, M., Cosman, B., Sakkas, G., Jhala, R., Weimer, W.
i

https://arxiv.org/search/cs?searchtype=author&query=Fakhoury,+S

Student Advisees

Yiannos Demetriou Wenxin He Annie Li Kaia Newman Manasvi Parikh
BS CS, 2023 MS CS, 2024 BS CS, 2022 BS CS, 2023 BS CS, 2023

Interdisciplinary Collaborators

R

. ; Priti Shah
Madison Fansher ngj:k()Fr;r;I:])t:u Cognitive Psychology Kevin Bohenke loulia Kovelman
Cognitive Psychology P Anesthesiology and Developmental

Psychology Chronic Pain Psychology 106

Ph.D. Timeline

l Research
Publication Delay
. Other

Ph.D. Coursework

INFix [ASE, 2019]

Seg2Parse [OOPSLA,
2022]

a1eq asuajaq

fNIRS study [ICSE, 2021]

Transfer Training [FSE,
2021]

Cannabis Survey [ICSE,
2022]

Study [ICSE, 2024]

MSR Internship

107

6L0¢c
0coc
yderd
zeoc
€coc
¥c0c

Developing Efficient

Designing Effective Understanding External
and Usable . .
, Developer Training Productivity Factors
Programming Support
(
([N N J [OM%@ . Q
o)\ O OO
CCACD
Supporting non-traditional Use cognitive insights to Exploring how substance
novices in writing more inform training and improve use impacts software
correct code faster programming outcomes productivity

A Human-Focused Approach to

Improving Programmer Productivity
Madeline Endres, PhD Candidate, University of Michigan

108

109

Bonus Slides

10

Data Analysis Pipeline

e Step 1: Preprocessing
o Raw fNIRs Data (light intensity levels) » optical density data (how much is being
absorbed?)
o Optical density data = HbO/HbR signal (oxygenated vs deoxygenated blood)
e Step 2: Individual Modeling
o We model the hemodynamic response for each subject individually using a GLM
o Quality control checks are used to filter noisy data (e.g., signal to noise ratio,
anticorrelation of HbO and HbR, visual activation spot checking)
e Step 3: Group Modeling
o Used a linear mixed effects models, contrasting Task > Baseline activations
o We applied a false-discovery rate (FDR) correction (g < 0.05) to account for multiple
comparisons

11

Results: Baseline Activation

Reading > Rest Mental Rotation > Rest

12

Results: Baseline Activation

Reading > Rest

Coding > Rest

Mental Rotation > Rest

13

Supporting Publications

1.

10.
1.
12.

13.

ICSE, 2024

ICSE, 2024

FSE, 2023

ICSE, 2023

OOPSLA, 2022
ICSE, 2022

ICSE-SEET, 2022
FSE, 2021

ICSE, 2021
SIGCSE, 2021
PLDI, 2020

SIGCSE, 2020

ASE, 2019

Causal Relationships and Programming Outcomes: A Transcranial Magnetic Stimulation Experiment,
Ahmad, H., Endres, M., Newman, K., Santiesteban, P., Shedden, E., Weimer, W.
High Expectations: An Observational Study of Programming and Cannabis Intoxication,
He, W., Parikh, M., Weimer, W., Endres, M. 55§
A Four-Year Study of Student Contributions to OSS with a Lightweight Intervention,
Fang, Z., Endres, M., Zimmermann, T., Ford, D., Weimer, W., Leach., K., Huang, Y
From Organizations to Individuals: Psychoactive Substance Use By Professional Programmers,
Newman, K., Endres, M., Weimer, W., Johnson, B.
Seq2Parse: Neurosymbolic Parse Error Repair, Sakkas, G., Endres, M., Guo, P., Weimer, W,, Jhala, R.
Hashing It Out: A Survey of Programmers’ Cannabis Usage, Perception, and Motivation,
Endres, M., Boehnke, K., Weimer, W.

'
>

>-&]

Debugging with Stack Overflow: Web Search Behavior in Novice and Expert Programmers,

Li, A.. Endres, M., Weimer,
To Read or To Rotate? Comparing the Effects of Technical Reading Training and Spatial Skills Training...
Endres, M., Fansher, M., Shah, P., Weimer, W.
Relating Reading, Visualization, and Coding for New Programmers: A Neuroimaging Study

Endres, M., Karas, Z., Hu, Z., Kovelman, I., Weimer, W

An Analysis of lterative and Recursive Problem Performance, Endres, M., Weimer, W., Kamil, A. &
Type Error Feedback via Analytic Program Repair Sakkas, G.,Endres, M.,Cosman, B.,Weimer, W.,Jhala, R.
Pablo: Helping Novices Debug Python Code Through Data-Driven Fault Localization
Cosman, B., Endres, M., Sakkas, G., Medvinsky, L., Yao-Yuan,Y.,Jhala, R.,Chaudhuri, K. Weimer, W.
InFix: Automatically Repairing Novice Program Inputs
Endres, M., Cosman, B., Sakkas, G., Jhala, R., Weimer, W.

e

—
—

IS
o | s
\J

Do
—~ Do
Do

—
—

Bl

—
[
—

e
o | Vs
U

Do
Do
Do

’ng Do?:/
L[po|d
® | Le

Do
Do
Do

Qﬁ

=
Do
Do
Do

@ Visualize Python, Java, JavaSc X +

S G A Not Secure | pythontutor.com/visualize.html#mode=edit

Write code in | Python 3.6

1 u-=42
2 x = float(input())
3 print(x * math.e / 2)

Help improve this tool by completing a short user survey

Please wait ... exe*cuting (takes up to 10 seconds) Live Programming Mode

https://docs.google.com/file/d/1iVZQ_Zl2F2_uGXSeXpBQKLPUKmz_msiV/preview

Coding + Cannabis Use

|
el g . Software Engineer at WeedMaps (2017-present) ®
I wanted to see what your » J - Upvoted'! dhain Ol participant 13, 14
and working in the field.

DRI X HUEI Nl At WeedMaps we smoke and code everyday, all day. Some of the smartest, most

An e Cd Ota I eVi d e n Ce IR insightful people | know smoke pot daily.
a b O u n d S : ‘_Slockchain Engineer at Parallelcoin (2018-present) ® &ﬁ:;’g?;ig:iﬁtaiet i

really dive deep into
| believe that there is something about the type of brains that are common among
programmers that get along well with extra THC. | also want to point out that until
the 20th century, people were drinking milk and eating meat fed on hemp seed, and

Many programmers .,
use cannabis while *
prog ra m m i ng write good code, but the next morning I look and there are ridiculous errors that I never would

have made sober.

negative_epsilon

I have attempted to program while both high and drunk, and neither works well. I might think I

@ coding-on-marijuana

A fair amount of professional experience here. If you're a responsible, mature, self-respecting
adult then it's (mj) a great tool to use for software development. YMMV, this is my experience as
reflected by my own strengths and weaknesses as a developer.

Stress: None. Bugs won't bug you, defects won't stress you out, inexplicable side-effects become
fun logic puzzles.

Cannabis use can
conflict with
corporate anti-drug
policies

This conflict can lead
to hiring shortages!

We have a strict drug and alcohol policy. Employees are
not permitted to use, possess, sell, transfer, manufacture,
distribute, or be under the influence of illegal drugs on
Cisco-owned or leased property, during working hours,
while on company business, or while using company
property.

Although certain jurisdictions may allow the prescription or
other use of marijuana, this policy also applies to marijuana,
which remains illegal under U.S. Federal law. Employees are
not permitted to use, possess, sell, transfer, manufacture,
distribute or be under the influence of these drugs while on
Cisco owned or leased property, during working hours, while
on company business, or while using company property. In
addition, no employee may report for work, go on or remain
on duty while under the influence of, or impaired by, alcohol,
or these drugs or substances.

We find that 29% of software
developers have taken a drug
test for a programming-
related job.

TECHBY VICE

The FBI Says It Can't Find Hackers to Hire
Because They All Smoke Pot

The FBI is struggling to find good hackers because of marijuana

rules

By MARY SCHUMACHER
THE FRESH TOAST | APR 23, 2018 AT 11:52 AM

17

How can we represent ill-parsed programs when training our classifier?

Buggy Program Token Sequence
def foo(a): def \n
ndent return name + number \n
return a + 42 edent \n
\n

def bar(a):

indent name_=_name(name) + number \n
b = foo(a) t 17 return()
return dedent end_farker

18

How can we represent ill-parsed programs when training our classifier?

Buggy Program Token Sequence Abstracted Token Sequence
def foo(a): def \n Stmt \n
“hdent return name + number \n

return a + 42 edent \n

def name Params: \n
def bar(a): .\ indent St N

_ indent name_=_name(name) + number \n return n
b foo(a) + 17 return P P
return dedent oRIT-MITRET dedent end_marker
Great! But we have a new problem: Ambiguity
each abstracted token sequence can lead to multiple different ECE parse trees!

119

My Approach To Programming Productivity: What's Next?

The next generation of
neurosymbolic productivity support

The continued use of medical imaging
to inform programming practice

Using controlled experimental

O o design and objective measures to
,({?36 turn anecdote into evidence

1]

120

My Approach To Programming Productivity: What's Next?

Using Technical Reading Ability as a
lens for facilitating the ability to
understand and communicate complex
technical ideas at varying levels of
abstraction.

121

My Approach To Programming Productivity: What's Next?

Using Technical Reading Ability as a
lens for facilitating the ability to
understand and communicate complex
technical ideas at varying levels of

é
O% a) Oon
[’\? e —
m&&& Increasing participation and retention in

computing for diverse programmer
groups through improving developer
wellbeing

122

How can we represent ill-parsed programs when training our classifier?

Buggy Program Token Sequence Abstracted Token Sequence
def foo(a): def AL Stmt \n
“hdent return name + number \n

return a + 42 edent \n

def name Params: \n
- \n indent St 8

def bar(a):

b = foo(a) + 17 indent name_=_name (name) + number \n return(Expr BinOp -
return @
return dedent oNI—MIFRE dedent end_marker

Great! But we have a new problem: Ambiguity
Solution: Learn a Probabilistic Context Free Grammar to Pick the Right One

S — Stmts end_marker (p=100.0%)

Stmts — Stmt \n (p=38.77%) | Stmt \n Stmts (p=61.23%)
Stmt — ExprStmt (p=62.64%) | RetStmt (p=7.59%) |
RetStmt — return (p=1.61%) | return Args (p=98.39%)

123

Seq2Parse: Efficient Fixes for Novice Parse Errors

Program

With Parse
Error

Y

Error-Correcting Fixed
Erley Parser Program

Error Rule
Predictor
(Sequence

Python Tutor Dataset

Parse
Error
Programs

Fixed
Programs

Seq2Parse: Efficient Fixes for Novice Parse Errors

. Error Rule E C , :
Partial Predictor rror-Correcting Fixed

Parser (Sequence Erley Parser Program

Program

With Parse
Error

Python Tutor Dataset

Probabilistic
Context Free
Grammar

Parse
Error

Programs >_®

Fixed
Programs

125

Cannabis sativa is the world’s most
commonly used illicit substance, used
by more than 192 million people in 2018

Cannabis is used for many reasons both
medical (e.g., pain relief) and recreational
(e.g., altered consciousness)

126
Cannabis’s legality is changing rapidly with many
countries (e.g., UK, Colombia, Canada, Malawi)
recently taking steps towards legalization

Self-reported subjective programming performance when
high (compared to when sober)

Much better
4 7)) '//;)
Better

12.9%

Extremely worse

7.1%

Much wortse

24.3%

Same/Cannot tell
20.0%

Worse
31.4%

127
i

My Approach To Programming Productivity: What's Next?

Desired Research Attribute | Why I'm Excited

Provide Theoretically-
Grounded and Actionable
Insights

Include Empirical or Objective
Measures of Programmers

Minimize Scientific Bias to
Support Generalizability

Support Diverse Developers

Bridging the gap between novel theoretical
ideas to supporting programmers in practice
leads to higher impact

Captures aspects of programming beyond @&
self-reporting alone, including unconscious @
behaviors and habits

Controlled experimental design can capture a

:) iy
signal, even for complex human behavior i
| prefer approaches that not only help

programmers in general, but also help those

who need the most support ::.

128

Objective measures Models of Programming Identlfy Relevant Cognitive
of Cognition Cognition Skills

Spatial Visualization

Technical Reading

52

>

129

