
Optimizing Tradeoffs of Non-Functional Properties in Software

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Jonathan Dorn

August 2017



© 2017 Jonathan Dorn



Abstract

Software systems have become integral to the daily life of millions of people. These systems provide much of our

entertainment (e.g., video games [1], feature-length movies [2], and YouTube [3]) and our transportation (e.g., planes [4],

trains [5] and automobiles [6]). They ensure that the electricity to power homes and businesses is delivered [7] and are

significant consumers of that electricity themselves [8]. With so many people consuming software, the best balance

between runtime, energy or battery use, and accuracy is different for some users than for others. With so many

applications playing so many different roles and so many developers producing and modifying them, the tradeoff

between maintainability and other properties must be managed as well.

Existing methodologies for managing these “non-functional” properties require significant additional effort. Some

techniques impose restrictions on how software may be designed [9] or require time-consuming manual reviews [10].

These techniques are frequently specific to a single application domain, programming language, or architecture, and are

primarily applicable during initial software design and development. Further, modifying one property, such as runtime,

often changes another property as well, such as maintainability.

In this dissertation, we present a framework, exemplified by three case studies, for automatically manipulating

interconnected program properties to find the optimal tradeoffs. We exploit evolutionary search to explore the complex

interactions of diverse properties and present the results to users. We demonstrate the applicability and effectiveness of

this approach in three application domains, involving different combinations of dynamic properties (how the program

behaves as it runs) and static properties (what the source code itself is like). In doing so, we describe the ways in which

those domains impact the choices of how to represent programs, how to measure their properties effectively, and how

to search for the best among many candidate program implementations. We show that effective choices enable the

framework to take unmodified human-written programs and automatically produce new implementations with better

properties—and better tradeoffs between properties—than before.
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Chapter 1

Introduction

SOFTWARE plays a vital and ever-expanding role in the modern world. Software systems trade on the major

stock exchanges [7] and manage significant portions of our utility and shipping infrastructure [14]. Software

running on aircraft is responsible for the safety of hundreds of millions of passengers per year in the U.S.

alone [4, 15]. Virtual environments and 3D graphics contribute to billions of dollars brought in by 3D movies each

year [2]. The development and deployment of all this software have significant impact, beyond the utility of the software

itself. Software developers account for seven out of every 1000 workers in the U.S. [16, 17]. Data centers may account

for over 1% of global energy consumption [8], an amount significantly affected by the efficiency of the applications

deployed in those centers [18].

In addition to producing the correct outputs, which software engineers term functional correctness, these software

systems posses many other non-functional properties [19] that are often also of critical importance. For example,

while an aircraft autopilot must compute the correct control response to the current altitude, velocity, desired course,

etc. (a functional property), it is equally important that the computation be completed quickly (a non-functional

property). In part because of the variety of non-functional properties, researchers have proposed a number of methods

to help ensure or optimize them. Many of these methods require significant additional effort beyond the challenge of

writing functionally-correct software. For example, some researchers have designed frameworks for formal arguments

demonstrating the safety of a system [20], while others advocate targeted code reviews for individual properties, such

as efficiency or adherence to coding standards [10]. Others have proposed approaches that require evaluating (or

approximating) challenging integrals by hand [21] or using a particular design to allow performance optimization [9].

These techniques are time-consuming to apply, are frequently specific to a single domain or software architecture, and

are primarily applicable during the initial software design and development.

1
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Compounding the cost of managing individual properties, there is frequently a tension between distinct non-

functional properties; for example, all other things being equal, higher quality images require more time to produce.

Developers must produce software that achieves a reasonable balance between these competing concerns. If different

circumstances require different tradeoffs between properties, developers must either accept less desirable properties

in some circumstances or develop multiple implementations that may be selected as necessary. For example, artists

working in on 3D movies need to be able render scenes quickly to see the effects of the changes they make but can

tolerate small errors in the images, while the high-quality images for the final movie may take hours [22]. Depending on

the magnitude of the differences between these implementations, producing several implementations—such as separate

applications to generate development images as opposed to the final movie—may significantly magnify the cost of

development.

In this dissertation, we present a framework to provide assistance to programmers, allowing them to write a single

initial implementation, automatically generate additional implementations with different non-functional properties, then

present the best such implementations to the user. We view this as an optimization framework, since these additional

implementations possess at least one non-functional property that has been improved relative to the original. This

approach is applicable to a wide variety of domains and enables exploration of tradeoffs between different properties.

We leverage the hypothesis that competent programmers produce software that is close to correct [23]. That is, in cases

where the software does not yet have all the desired properties, developers tend to have written a program with many of

them and with a structure that can support the rest. Our key technical insight is that local source code transformations—

operations that change one part, possibly just one expression, of a program, producing a slightly different program—can

bridge that gap. Although many dynamic properties of programs cannot be determined statically [24], we observe that

many interesting non-functional properties may be measured or approximated efficiently at run time. Thus, we apply

search-based software engineering (SBSE) [25] techniques, which generate a large number of program variants and

iteratively select the best, to optimize non-functional properties. We hypothesize that,

Thesis: Search-based software engineering techniques applying local software transformations can auto-

matically and effectively explore tradeoffs between a variety of measurable non-functional properties in

existing software artifacts with indicative workloads across application domains.

We demonstrate the generality of our approach by applying it in the context of three application domains, covering

a variety of non-functional properties. First, we use our approach to identify new tradeoffs between visual quality and

run time in graphics programs (chapter 3). Second, we explore the tradeoff between energy use and output accuracy in

data center applications (chapter 4). Finally, we apply SBSE to automatically generate test suites that maximize both

readability and coverage (chapter 5).
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In the remainder of this chapter, we introduce the structure of our optimization framework, the assumptions it makes,

along with its inputs and outputs. Then we introduce the application areas in more detail and sketch out how each of

them fits into the framework.

1.1 An Evolutionary Optimization Framework

In this dissertation, we use evolutionary algorithms (EAs) to improve non-functional properties of programs. EAs are a

subset of search-based optimization (SBO) algorithms inspired by biological evolution [13]. We chose EAs because they

make relatively few assumptions about the solutions (i.e., programs) being optimized. In particular, unlike Newton’s

method [26] or gradient descent [13], which assume it is possible to calculate the rate of change in the desirability of

solutions, EAs require that new candidate solutions may be formed by transforming (or mutating) an existing solution

and that the desirability of two solutions may be measured and compared for order. EAs organize all possible solutions

as a network—the search space—such that any two solutions are connected by at least one path that may pass through

some number of intermediate solutions along the way. Two solutions are adjacent in the search space, i.e., the path

between them contains no intermediate solutions, if one may be reached by applying a single transformation to the

other. This permits EAs to explore the search space by maintaining a (possibly singleton) set, called a population,

of “current” solutions, inspecting the solutions adjacent to the population, and adding or removing solutions from

the population [27]. Different algorithms use different heuristics governing which adjacent solutions to inspect and

how to modify the population in an attempt to explore the search space efficiently. Our optimization framework is

parameterized with respect to the specific search algorithm employed.

In the following chapters, every candidate solution will be a program1 that can be generated by applying a sequence

of transformations to the original program written by the software developer. The goal of the search algorithm is to find

a sequence of transformations that will produce a program with the same or similar functional properties as the original,

while simultaneously improving the target non-functional properties. To explore tradeoffs between properties, instead

of a single optimized program, the algorithm identifies a set of programs that demonstrate different balances between

the properties. The following subsections discuss the representations we consider (section 1.1.1), what we measure

when a search algorithm inspects a new candidate (section 1.1.2), and how we define the set of programs exemplifying

the best tradeoffs (section 1.1.3).

1.1.1 Representing Programs and Transformations

As described above, the choice of how to represent programs and transformations defines the search space [28]. This

choice is subject to the competing concerns of expressiveness and efficiency. A more expressive choice of representation

1That is, a file or set of files that may be compiled or assembled to produce one or more executable programs.
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implies that the search space is more likely to contain programs that have the desired functional and non-functional

properties. However, a highly expressive representation may induce a search space in which the path to one of these

desired programs contains many intermediate programs that must be inspected, resulting in a less efficient search. For

example, one simple representation could treat every C program as a sequence of characters, with transformations that

append or delete a single character relative to an existing program. This representation is completely expressive, since

every program can be generated by a sequence of such appends and deletes. However, the path from one program to

another, with high probability, includes a large number of character sequences that do not compile and thus do not

maintain the desired functional and non-functional properties. The search algorithm must then take time to process

each of the intermediate non-compiling sequences before finding any with the desired properties.

In our framework, transformations need not be semantics-preserving. That is, unlike the transformations applied by

compilers [29] or many safety and security approaches [30, 31], we permit transformations that may alter the program

functionality and subsequently check the functionality of the resulting program. Programs that deviate too far from the

original’s functional behavior may be treated as very undesirable or completely rejected from the search. We check the

functional properties of each transformed program at the same time as we measure its non-functional properties, as

described in the next subsection.

1.1.2 Measuring Program Properties

Before we can optimize program properties, we must be able to measure them. We formalize the mechanism for

measuring the properties of a program as a function that takes a program as input and returns a list of values quantifying

each property as output. EAs refer to this function as the fitness function and the value it returns as the fitness.

While some research (e.g., [32, 33, 34]) suggests that certain dynamic properties of programs may be approximated

from static properties, in general it is necessary to run a program to determine how it behaves. Thus, a fitness function

that measures a dynamic property must frequently incorporate an indicative workload, that is, a set of inputs that cause

typical expected behavior. Since the fitness function will likely be evaluated for a large number of candidate programs,

the time required to evaluate the property using these workloads is the primary factor determining the rate at which the

search progresses. The indicative workload also serves a second important role in our framework. As mentioned above,

if the transformations do not guarantee functional equivalence, the fitness function is also responsible for assuring the

functional properties of the candidate program. In effect, the fitness function must include regression tests [35] to verify

that the candidate’s behavior is consistent with the original. This is typically accomplished by comparing the output

produced by the program on the indicative workload to the output of the original. If the program fails any tests, the

fitness function can assign it a pessimal fitness value to ensure that it cannot be returned as an optimized program.
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Although some non-functional properties—such as run time—are straightforward to measure and quantify, others—

such as image quality or readability—are not. A rich body of research has developed to describe how limitations in

the fitness function’s ability to capture the target properties affect the success of EAs; see Jin and Branke [36, § II

and IV] for an overview. At a high level, there are three ways2 in which a fitness function may capture an imprecise

estimate of a property. First, the measurement may be subject to noise; this is frequently the case with measurements of

physical quantities, such as time or power. We describe a noisy fitness function in chapter 4. Second, the function may

compute an approximation of a complex, time-consuming, or even unmeasurable property, such as the aesthetic appeal

of rendered images. Chapters 3 and 5 incorporate these sorts of approximating fitness functions. Third, the property

may change over time, such as adherence to changing coding standards. Existing approaches to handling changing

fitness values involve continuous optimization or, if changes can be recognized externally, restarting optimization after

a change. We do not explicitly address fitness properties that change over time in this dissertation.

1.1.3 Optimizing Multiple Objectives

Where possible, our framework will optimize all measured properties simultaneously. For example, if it discovers

a way to improve both run time and visual quality, the framework will exploit it. However, there are many cases in

which improvements in one property come only at the expense of another. In these cases, which are at the heart of

this dissertation, our framework is designed to generate an array of programs that exemplify different combinations of

properties.

We formalize the desired result of our search through the concept of Pareto dominance [37]. One solution is said

to Pareto dominate (or just “dominate”) another if the first has no properties that are worse than the corresponding

properties of the second and the first has at least one property that is better. To continue the earlier example, if we are

considering the tradeoff between run time and visual quality and two programs have the same run time but one has

better visual quality than the other, the first program dominates the second. If one has better run time while the other has

better visual quality, neither one dominates the other. We define the set of programs displaying the optimum tradeoffs to

be the programs that are not dominated by any other programs. This set of programs is called the Pareto frontier.

In the next three sections, we introduce the three application domains in which we will demonstrate our approach.

Subsequent chapters will explore these domains and the particular representations, fitness functions, and search strategies

they suggest.

2Jin and Branke [36] identify a fourth category, in which the candidate solution is itself subject to uncertainty. However, since the program source
is fully specified, this category is not applicable to our framework.
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(a) High-quality reference image. (b) Visual aliasing caused by insufficient sampling rate.

Figure 1.1: Photograph of brick wall showing aliasing artifacts. The image on the left is a reference image. Aliasing
appears in the image on the right as ripples in the wall surface, originating in the lower right of the image. Credit “Moire
pattern of bricks” by Colin M.L. Burnett, via Wikimedia Commons, licensed under CC BY-SA 3.0.

1.2 Run Time and Visual Quality

Computer graphics technologies underlie multi-billion dollar movie and video game industries. The use of 3D

visualization technologies is growing in fields as diverse as medical imaging [38], seismic exploration [39], and

aerospace engineering [40]. In all of these scenarios, the software must maintain an internal representation of a

virtual environment and determine for each image (or frame) the portion of the environment to draw. Many of these

applications are interactive, updating the image in response to user inputs, which requires that the computations to do so

happen quickly enough to maintain the user’s productivity [41]. The speed of rendering is important in non-interactive

applications as well, such as rendering computer animated movies, since validating an image within an hour is much

more efficient than waiting 10 or more hours [42].

This performance must be achieved while maintaining a sufficient level of visual quality. For example, consider the

two images in figure 1.1. In the image on the right, the wall appears to contain “ripples” that are caused by a mismatch

between the pattern of the bricks and the pixels (picture elements) of the image. This mismatch, technically known as

aliasing, affects computer generated images as well as photographs. Aliasing occurs when the pixels, which must each

https://commons.wikimedia.org/wiki/File:Moire_pattern_of_bricks.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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display a single color, are spaced too widely relative to the color variation in the underlying image they are used to

represent. The resulting undesired visual effects, or their absence, constitute an important component of visual quality.

Antialiasing approaches attempt to reduce visible aliasing. For example, since the program source code controls the

underlying image, changes to the program can alter the level of aliasing and therefore result in different image quality.

In this research thrust, we apply our optimization framework to the properties of visual quality (as caused by

aliasing) and run time in graphics programs. As a special case of our thesis, we hypothesize that:

Hypothesis 1: We can design local program transformations that, when applied to a particular class of

graphics programs, produce programs that are non-dominated with respect to the run time and visual

quality of existing antialiasing approaches.

In chapter 3, we evaluate this hypothesis by applying our technique to 12 graphics programs, including six used in

previous work on addressing aliasing. We measure the visual quality and run time of the optimized programs identified

by our technique and compare them to the same properties measured on the original programs and a baseline approach.

Our results show that the programs identified by our technique are Pareto dominated by neither the original program

nor the baseline approach, and thus represent a new and desirable tradeoff between these non-functional properties.

Indeed, in some cases the programs we identify dominate both the original and the baseline approach.

1.3 Output Accuracy and Energy Use

In recent years, the number and size of data centers have grown to the point where they are estimated to be responsible

for over 1% of global energy consumption [8]. The mechanical and electrical systems (such as lighting, cooling, air

circulation, and uninterruptible power supplies) required to support the computation may quadruple [43] the power

required by the computation itself. Since the load on many of these support systems grows with the computational

load—increased computation leads to increased waste heat, which must be removed—computational efficiency remains

a significant determinant of the economic and environmental costs of data centers. This computational efficiency can

hinge on relatively small local design and implementation decisions [44].

At the same time, many data center applications permit a “good enough” concept of correctness as they process

massive amounts of data to produce acceptable user experiences [45]. The growing field of approximate computing [46]

encompasses both hardware and software approaches that exploit human tolerance for imprecise results, whether due to

a lack of a well-defined correct result or due to human perceptual limitations, to produce approximate answers while

consuming less energy [47]. Existing approximate computing approaches require developers to annotate computations

and data that may be handled approximately [48, 49, 50], target special-purpose systems [51], or operate on a small,
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fixed set of program constructs [52, 53]. In contrast, we demonstrate that our framework permits optimization on

un-annotated code targeting general-purpose systems and using arbitrary program constructs.

In this research thrust, we address the problem of optimizing energy usage in data center applications. In support of

our main thesis, we hypothesize that:

Hypothesis 2: We can apply generic, local program transformations to reduce the energy usage of data

center applications.

Hypothesis 3: By explicitly optimizing energy usage and output accuracy simultaneously, we can achieve

greater energy reductions than optimizing energy usage alone while retaining a human-acceptable level of

output quality.

In chapter 4, we evaluate these hypotheses on the PARSEC benchmark suite [54], which was designed to mimic

data center application workloads. Our experiment consists of two separate optimization runs. The first run optimizes

each program’s energy requirements on indicative workloads. The second run optimizes both energy requirements and

output accuracy simultaneously. As a baseline for comparison, we use loop perforation [52], which has previously

been applied to several of the PARSEC benchmarks. Loop perforation also generates a Pareto frontier of programs

exemplifying different tradeoffs between energy and accuracy, allowing us to compare the range of tradeoffs identified

by both techniques. Our results show that our technique produces tradeoffs at least as good as, and better in many cases

than, those identified by loop perforation.

1.4 Readability and Code Coverage

Programmers spend far more—as much as 10 times more [55]—time reading code than writing it [56, 57]. Reading

code is a skill that must be acquired [58] because understanding programs is difficult [59, 60]. However, understanding

programs “plays a role in nearly all software tasks” [61]. It is necessary to understand the program to write it, to review

it, to test it, to debug it, and to extend it. Given the importance and difficulty of reading programs, it is unsurprising

that significant effort has been directed toward making it easier. Practitioners from open-source communities [62, 63]

and industry [64] have produced coding standards documents designed, at least in part, to “improve the readability of

code” [65].

We focus on the problem of readability as it applies to unit tests. Unit tests evaluate the functionality of the

lowest-level components of a software system, with the intention that when a unit test the faulty component will be

easier to identify and fix. Because of the sheer number of components in modern software systems and the resulting

scope of functionality to test, automatic test generation is a rich field of research (e.g., [66, 67, 68, 69]). As a proxy for
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the number of functional requirements tested, these approaches often attempt to generate a number of tests that together

maximize code coverage—for example, the number of lines, branches, or true conditional expressions—evaluated while

running the tests. However, when such a test fails, a developer must read the test to understand why and whether the

fault lies in the application or in the test itself [70].

In this research thrust, we optimize the readability of automatically-generated high-coverage tests. We specialize

our thesis in this application domain as follows:

Hypothesis 4: We can apply local transformations and search-based algorithms to maximize the readability

of automatically-generated high-coverage tests.

In chapter 5, we evaluate this hypothesis on 30 classes chosen from open-source projects. We use EVOSUITE, an

off-the-shelf test generation tool, to produce high-coverage tests for those classes. Using this suite as a baseline, we then

use our search-based framework to identify variants of the baseline suite that optimize readability while maintaining the

high coverage of the original suite. To evaluate the readability of our optimized suite, we conducted a human study in

which we asked participants to identify which test they preferred in a head-to-head comparison and separately asked

them to answer understanding questions about the generated tests. Our results show that the participants tended to prefer

the readability-optimized tests and could answer questions about them more quickly at the same level of accuracy.

1.5 Summary

This dissertation presents a framework for optimization of multiple, potentially conflicting non-functional properties of

programs. The framework accepts existing program code and automatically transforms it to produce similar programs

with potentially different non-functional properties than the original, identifying the set of implementations representing

the best tradeoffs between the measured properties. We apply our framework to three different application domains

with different relevant properties.



Chapter 2

Background and Related Work

TRADITIONALLY, program optimization1 has referred to changing a program so that it computes the same

output in less time (e.g., [29, 71, 72]). Nonetheless, various efforts have considered optimizing specific other

non-functional properties, such as energy use [73] or memory footprint [74]. This dissertation describes the

optimization of a variety of non-functional properties in a search-based optimization (SBO) framework. In this chapter,

we discuss background useful for placing that framework in context. We postpone discussion of the domain-specific

background related to each set of non-functional properties until the relevant chapters.

We begin by describing the problem of program optimization from the perspective of traditional semantics-preserving

compilers (section 2.1). We then show how this problem can be generalized as an example of an SBO problem and

discuss the use of SBO in search-based software engineering (SBSE) (section 2.2). Finally, we discuss transformations

that may alter the program semantics and mechanisms for managing the degree of change in section 2.3.

2.1 Compiler Optimizations

A compiler, such as GCC,2 LLVM,3 or MSVC,4 reads the source code of a program and writes out the code for a

functionally equivalent program [29]. We will consider the issue of transformations that produce functionally different

programs in section 2.3. Usually, the programming languages of the input and output programs are different—humans

often write in higher-level languages like C++, JavaScript or Python and rely on compilers to translate them into

lower-level languages like assembly or machine code. Conceptually, compilers accomplish this transformation in

phases: a front-end phase that translates the input program into an intermediate representation, an optimization phase

1In this context, we use “optimization” to refer to the process of improving (i.e., increasing or decreasing, as appropriate) the properties of a
program. For reasons we will return to in section 2.2, we do not use “optimization” in the mathematical sense of identifying the best possible solution.

2https://gcc.gnu.org/
3http://llvm.org/
4https://www.visualstudio.com/
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that modifies the intermediate representation, and a back-end that translates the intermediate representation into the

target language [29]. In practice, the situation is somewhat messier, as some optimizations, such as machine-specific

instruction choices, may be performed during the front- or back-end phases [75]. For example, the LLVM compilation

framework supports optimization of separately compiled files at the time they are linked together [76]. Indeed,

certain just-in-time compiler (JIT) environments (e.g., many Java environments) perform some optimizations during

compilation to an intermediate representation (e.g., bytecode), but delay others until the time the program is run [77].

We will return to JITs in more detail in section 2.1.2. Regardless of when an optimization is applied, however, it

generally modifies the contents of a particular representation—source code, intermediate representation, or output

code—of a program, but does not change the language used to represent it.

As noted above, the purpose of program optimization is to produce a program with the same functionality but

different non-functional properties—most often run time. Traditionally, compiler optimizations are applied statically.

That is, the compiler will apply an optimization only when it is safe and likely to improve the program, but the

compiler will usually not verify the magnitude of that improvement. (See section 2.1.2 for some techniques that do take

dynamic behavior into account.) For example, peephole optimization [72] recognizes patterns in very short sequences

of instructions—often just two or three instructions—in the target language and replaces them with an equivalent, more

efficient sequence.

To ensure that optimizations do not change the program functionality, each compiler optimization includes a

program analysis to determine the locations at which the optimization may be safely applied [78]. In some cases, such

as peephole optimization, this analysis is as simple as pattern matching. Since applying an optimization necessarily

changes the program, the set of safe locations for one optimization may be affected by the application of another. In

particular, after applying one optimization, there may be more or fewer opportunities for a second optimization [79].

Indeed, the optimal order in which optimizations should be applied may vary from program to program or even within

a single program. Compilers typically use offline heuristics to determine the order in which to apply optimizations,

in some cases applying the same optimizations multiple times [75], although some researchers have suggested using

genetic algorithms (GAs) to identify beneficial orderings [80, 81].

2.1.1 Superoptimization

Superoptimization is a technique that replaces short, typically loop-free sequences of instructions in a compiled program

with a more efficient sequence [82] and may be considered an automated form of peephole optimization [83]. Unlike

the optimizations mentioned in previous paragraphs, superoptimization does not rely on a human compiler writer

to explicitly define the transformation between one sequence of instructions and another. Instead, large numbers of

candidate sequences are generated automatically (either exhaustively or stochastically [84]) and checked for equivalence
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with the original sequence. Equivalent sequences may then be compared according to their estimated performance. The

potential need to check enormous numbers of sequences, as well as technical limitations, typically prevent measuring

the performance directly. This, in turn, tends to limit superoptimization to generating sequences of assembly or machine

language instructions, whose performance can be modeled more directly than instructions in higher-level languages.

Superoptimization is not typically implemented as part of an optimization phase in current commercial compilers.

However, sequences of instructions identified by superoptimization may be incorporated as peephole optimizations.

2.1.2 Profile-Guided Optimization

Profile-guided optimization (PGO) [85, 86, 87] techniques incorporate some information about a program’s dynamic

behavior when determining optimizations to apply. They rely on indicative workloads, sets of inputs that cause the

program to execute the functionality to be optimized. By running the workload and recording metrics, such as execution

counts, the compiler can gain information about which transformations are more likely to produce an improvement.

The dynamic metrics collected while running the indicative workload are collected into a profile, which maps parts of

the program to the recorded metric values. For instance, a profile for a C program may map the functions, branches, and

statements of the program to execution counts; a profile for an assembly program may map them to individual machine

instructions.

PGO techniques use the information encoded in the profile to identify where to apply optimizations or to choose

between competing optimizations. For example, certain transformations can improve the performance of some program

behavior at the expense of other behavior [86]; knowing that some code executes frequently could allow a compiler to

optimize access to the associated variables instead of others. Additionally, different transformations may be selected

based on the profile, allowing performance optimizations to be applied to time-consuming portions of the program and

memory-conserving optimizations to be applied elsewhere [88]. As with other compiler optimizations, traditional PGO

approaches must determine the locations where optimizations may safely be applied without modifying the program’s

functionality. If the profile indicates that an optimization would be beneficial in one location but the analysis cannot

determine that it is safe to do so, the optimization cannot be applied. As noted below (section 2.3) and in more detail in

chapter 4, certain applications may tolerate optimizations that modify program functionality; however, in this section,

we remain focused on traditional, semantics-preserving optimizations.

PGO has been integrated into many common compilers, including GCC,5 LLVM,6 and MSVC.7 It is also heavily

integrated into many JITs, including the Java HotSpot compiler [89]. Since JITs operate in conjunction with running

the program, they implicitly operate on the most accurate indicative workload—the actual use case itself. They also

5https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fprofile-use, accessed 06/2017.
6https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization, accessed 06/2017.
7https://docs.microsoft.com/en-us/cpp/build/reference/profile-guided-optimizations, accessed 06/2017.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fprofile-use
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://docs.microsoft.com/en-us/cpp/build/reference/profile-guided-optimizations
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benefit from the opportunity to reevaluate the effectiveness of choices of transformations; those that fail to improve

performance or become invalid may be removed, “deoptimizing” the program.

PGO highlights the fact that many transformations exist that may improve some programs under some conditions,

but may negatively impact others. For this reason, we view program optimization as a special case of search-based

optimization: the task of the optimization phase is to search for the transformations that improve the program in a

particular situation. We now discuss the background and terminology of this important field.

2.2 Search-Based Optimization

Search-based optimization is an approach to optimization in which candidate solutions are evaluated to find the best

one [90]. The “best” solution is defined in terms of an objective function—which computes a numerical value indicating

how “good” the solution is—and a direction—i.e., whether the best solution has the smallest or largest objective

value. This broad definition applies to a wide range of algorithms, including Newton’s method [26], Dantzig’s simplex

algorithm for linear programming [91], and the Nelder-Mead simplex algorithm for non-linear optimization [92].

Different SBO algorithms are distinguished primarily by how they select new candidate solutions to evaluate. For

example, Newton’s method selects the next point as a function of the current point, its objective value, and the first

derivative of the objective, while the Nelder-Mead algorithm maintains a set of points, computing new candidate points

as a linear function of the points in the set. The possibly infinite set of all possible solutions is called the search space

for the problem.

Search-based software engineering refers to the application of search-based optimization techniques to software

engineering problems [93]. SBSE has been used to address an enormous variety of problems [28], and spawned its own

dedicated conference [94]. In this dissertation, we are primarily interested in applying SBO algorithms to program

optimization. Specifically, we find that metaheuristics, particularly evolutionary algorithms (EAs), are well suited to

this problem.

2.2.1 Metaheuristics

Metaheuristics are a subset of SBO algorithms that make few assumptions about how solutions are represented or how

the objective function measures their quality [13]. EAs, in turn, are a subset of metaheuristics inspired by biological

evolution; they tend to maintain a set of candidate solutions and may require solutions to “compete,” as described below.

Unlike the Nelder-Mead algorithm, which requires solutions to be represented as points in RN [92], metaheuristics

interact with candidate solutions according to a finite set of abstract operations—essentially just the operations required

to modify one or more solutions to get new solutions. The objective functions used for metaheuristics must permit

comparing values for order (i.e., to determine whether one solution is better than another), but need not permit operations
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such as differentiation, required by Newton’s method. Finally, metaheuristics tend to be stochastic algorithms; that is,

they incorporate randomness as part of their search to help manage vast search spaces.

Evolutionary algorithms use their own, biologically-inspired terminology for many of the concepts of search-based

optimization and metaheuristics. Instead of a set of candidate solutions, EAs maintain a population of individuals. In

many EAs, particularly genetic algorithms, solution representations are called genomes. A mutation operation modifies

one individual to produce another. Each individual’s objective value is called its fitness and the objective function is

known as a fitness function. Throughout this dissertation, we will use the EA terminology interchangeably with the

standard corresponding SBO terminology; the term “population” is more convenient than “set of candidate solutions.”

EAs frequently involve explicit competition between individuals in the population. For example, GAs frequently

compare individuals’ fitness values when generating new candidate solutions, selecting the individual with the best

fitness to mutate. In some cases, the new individuals may compete to join the population or be discarded [13].

The metaheuristics we consider in this dissertation follow a common high-level algorithmic structure. Each

algorithm initializes its population using the original program and sufficient mutants to reach the desired population size.

In each iteration of the algorithm, some number of solutions are extracted from the population and mutated to produce

new solutions. These new solutions either automatically constitute the population for the next iteration or may replace

individuals with lower fitness in the population. This process repeats until a predefined number of fitness evaluations

have been performed, at which point the best member of the population is returned. In the following sections, we

concretize this algorithm for two metaheuristics, hill climbing and GAs.

2.2.2 Hill Climbing

Hill climbing is one of the simplest possible metaheuristic search algorithms [13], maintaining a single current solution

in its population. In the basic algorithm, shown in listing 2.1, in each iteration the current solution is mutated and the

mutant’s fitness is evaluated. If the mutant’s fitness is better than the current solution’s, it replaces the current solution;

otherwise the current solution is retained. The metaphor is with wandering up the side of a “hill” whose height is

given by the fitness function; each mutation takes a “step” in a random direction. A common variant of this algorithm,

steepest ascent hill climbing, generates a number (possibly an exhaustive enumeration) of mutants at each iteration,

selecting the best for comparison to the current solution. As above, the algorithm performs a predefined number of

iterations, then returns the current solution.

The performance of hill climbing algorithms is sensitive to the choice of mutation operation. Mutation operations

that produce larger changes may inhibit converging to the true optimum, instead “stepping over” the optimum to the

other side of the hill. By contrast, mutation operations that produce small changes may require more search iterations

to reach the optimum, since each iteration makes less progress. In addition, small mutations may cause the search to
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1: procedure HILLCLIMB(p,MaxCount)
2: current← p
3: for 1 ≤ i ≤ MaxCount do
4: q ← MUTATE(current)
5: if FITNESS(q) is better than FITNESS(current) then
6: current← q

7: return current

Listing 2.1: Hill climbing algorithm.

identify a local, rather than global, optimum. That is, if all mutants of the current solution have worse fitness, the current

solution will not be updated, even though the search space contains solutions with better fitness. The standard way to

address this latter problem is to repeat the search several times, starting with a different randomly generated-solution

each time [28].

2.2.3 Genetic Algorithms

Genetic algorithms replace the metaphor of a single individual climbing a hill with a population of individuals competing

for survival [95]. Listing 2.2 shows a generic generational genetic algorithm. After initializing the population (line 2),

the algorithm enters its main loop. In each iteration, or generation, of the main loop (lines 4 to 12), we build a new

population by selecting two parents taken from the current population (line 7), using crossover on the parents to get two

children (line 8), and finally mutating the children (line 9). Once the new population has the desired size, it replaces the

current population and a new generation begins.

1: procedure GENETICALGORITHM(p,MaxCount,PopSize)
2: P ← INITIALIZEPOPULATION(p,PopSize)
3: count← PopSize
4: while count < MaxCount do
5: Q← ∅
6: while count < MaxCount and |Q| < PopSize do
7: p1, p2 ← SELECTPARENTS(P, 2)
8: q1, q2 ← CROSSOVER(p1, p2)
9: r1, r2 ← MUTATE(q1),MUTATE(q2)

10: Q← Q ∪ {r1, r2}
11: count← count + 2

12: P ← Q

13: return GETBEST(P )

Listing 2.2: Genetic algorithm.

Relative to hill climbing, the genetic algorithm introduces a more complex process for generating new individuals,

using selection (most often a tournament [13]) and crossover as well as mutation. In a tournament, two or more

individuals are chosen at random, with replacement, from the population. The chosen individual with the best fitness

“wins” the tournament and is selected to become one of the two parents. Two parents are required so that their
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representations may be recombined through crossover. The implementation of crossover operators depends on the

way in which solutions are represented. Although crossover operators have been defined for a number of other

representations, such as trees or graphs [13, 27], we focus on crossover operators for the vector and list representations

used in this dissertation. One-point crossover selects one point in each representation, swapping everything after the

point in the first representation with everything after the point in the second representation. For fixed-length vectors, the

points should be the same so that the new vectors are the same length as their parents. Two-point crossover selects two

points in each representation, swapping the portions between the two points. As with one-point crossover, the points

should be aligned for fixed-length vectors.

2.3 Semantics-Modifying Transformations

In this dissertation, we allow our searches to perform transformations (i.e., mutations) that may alter the semantics

of the program. This allows for optimization opportunities unavailable to the semantics-preserving transformations

discussed in section 2.1. However, our strategy of using stochastic search-based algorithms to generate programs carries

with it the possibility that some of the programs created may have undesirable properties. To take an example that

arises in chapter 5, stochastically modifying a program to optimize readability could produce a highly readable program

that no longer does anything at all. We must therefore take precautions that the generated programs retain certain

semantic properties even as we modify other properties. In particular, we desire a mechanism for detecting semantic

similarity. Note that in many cases, such as the problem addressed in chapter 4, we desire (or at least tolerate) semantic

change. Thus, instead of mechanism to determine program equivalence, which is undecidable in general [96], we adapt

regression testing [35].

In general, software testing is the process of executing a program to check for differences between the program’s

required and demonstrated behavior [35]. Regression testing specifically looks for differences in behavior between

new and old versions of the same software. Testing a piece of software may be conceptually broken down into running

a set of test cases,8 which are typically automated [97] and may frequently be reused from testing previously new

functionality [35]. We define a test to consist of a set of inputs, or workload, along with an oracle comparator9 to

verify the behavior [98]. The result of the test, as determined by the oracle, may pass if the behavior is correct or fail if

not. Alternatively, the oracle may be treat passing and failing on a continuum, returning a real number to indicate the

confidence or degree of passing [99]. This latter interpretation of the oracle provides us with the basis for managing

semantics-altering transformations.

8In this dissertation, we may often use “test” to mean “test case” for brevity.
9For brevity, we also use “oracle” to mean “oracle comparator.”
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We incorporate regression testing into all of the fitness functions in this dissertation. That is, each fitness function

requires a workload and an oracle to verify the correct behavior of the modified program; naturally, the fitness function

must also incorporate a mechanism to estimate the non-functional properties to be optimized. This implies that every

fitness function in this dissertation attempts to run the modified programs generated during the search. The oracle

comparators we use return real numbers to indicate the degree to which the program’s functionality was affected. In all

cases, we apply a threshold, assigning pessimal fitness to individuals whose functionality differs too greatly from the

original program (e.g., by not producing any output at all).

2.4 Summary

This chapter presents background information related to program optimization interpreted as a search problem. This

material forms the basis for the framework introduced in chapter 1. To make this framework concrete, in subsequent

chapters, we instantiate this search framework with fitness functions (to estimate the desired program properties) and a

set of mutation operators (along with the representation on which they act).



(a) Significant aliasing. (b) Reference image, limited aliasing.

Figure 3.1: Example of aliasing in a rendered image. Image (a) shows significant aliasing artifacts, while image (b) has
acceptable visual quality, but required over two orders of magnitude more time to render. Both images were produced
at the same resolution; the pixels are enlarged to show detail.

Chapter 3

Run Time and Visual Quality

3.1 Introduction

MODERN graphics systems rely on procedural shaders for their flexibility and expressiveness in specifying

the material appearance in a virtual scene [100]. These programs compute the visual properties of

surfaces, lights, and even the “atmosphere” of a rendered scene [21]. Despite their prevalence, however,

procedural shaders1 remain sensitive to an especially problematic source of visual error known as aliasing. Aliasing

artifacts may manifest in a number of ways, including as jagged lines in place of smooth ones, small details that seem

to appear and disappear, or regular features that appear to cluster instead of being evenly distributed. For example,

consider figure 3.1. Figure 3.1(a) shows jagged lines in the foreground (toward the bottom of the image) which become

broken and seem to appear and disappear in the middle- and background (toward the top of the image). Compare these

aliasing artifacts to figure 3.1(b), which displays the same scene, but rendered using aggressive and time-consuming

1In this dissertation we will often use “shader” to mean “procedural shader” when context clarifies that the shader is a program.

18
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antialiasing techniques to the mitigate these artifacts. The challenge with respect to aliasing in procedural shaders is to

develop techniques that reduce noticeable aliasing artifacts while maintaining interactive run times.

Although the prevalent automatic approach to reducing aliasing in procedural shaders requires significant additional

computation and run time, it is possible for a developer to design a shader that is less susceptible to aliasing [21]. Shader

development is frequently challenging on both an artistic and a programmatic front, as the shader must run efficiently

and produce an aesthetically pleasing image. The requirement that the programmer must figure out how to produce

the correct image and then address aliasing as well adds further complexity to an already demanding process. In this

chapter, we use our optimization framework to develop an automatic approach to reducing aliasing while maintaining

short run times in existing procedural shaders. This allows the developer to write a program that generates the correct

image (notwithstanding aliasing) quickly, then apply automatic transformations to reduce aliasing. While we focus

in this chapter specifically on shaders for texture mapping, which are responsible for the appearance of surfaces, our

approach may apply to many other types of shaders.

To achieve this, we pay particular attention to the transformations our search framework applies. We take a

bottom-up approach, designing local transformations to the source code that reduce aliasing where they are applied and

that may be composed to reduce aliasing overall. The fitness function and search component of our framework identify

those locations at which the transformations were most beneficial and prune away non-constructive compositions.

The remainder of this chapter is organized as follows. First, we lay out the background on which we construct

our transformations (section 3.2). Then we develop the local and composed transformations in section 3.3. We

briefly discuss the fitness function and search components in section 3.4. In section 3.5 we present and discuss our

experimental results. Finally, we place our approach in the context of related work in section 3.6 and conclude the

chapter (section 3.7).

3.2 Computer-Generated Imagery Background

Computers display images as a grid of colored points called pixels. The problem for computer generated imagery is to

determine which color to assign to each pixel so that a human observer will perceive it as a recognizable image. Since

they are frequently assembled into animation sequences, these images (often called frames in this context) must be

generated quickly enough to support the illusion of motion (real-time graphics, such as video games) or meet production

deadlines (offline rendering, such as computer-animated movies). If we consider the scene definition—viewer position,

geometry, light sources, surface and material properties—to imply a function that describes the image, then determining

a color for the pixel reduces to sampling that function once for each pixel. Graphics researchers formalize this image
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function as the rendering equation [101], which we present in simplified form below:

color(w) =

∫
X

I(x)m(x) p(x,w) dx, (3.1)

where x ∈ X is a vector concatenating the coordinates of a point on a surface, the light direction, and other parameters;

w describes the pixel shape and location; and I , m, and p respectively represent the incoming light intensity, material

properties, and the contribution of light reflected from point x to the pixel described by w.2

This integral often cannot be calculated analytically; in practice, rendering systems employ various heuristics to

approximate it numerically [101]. The simplest approach is to ignore the integral completely and sample the integrand

once. This approach may produce significant error if the point sampled is not sufficiently representative of the integral

as a whole. For example, imagine an image of a picket fence. If the samples are taken every few inches so that every

sample coincides with a fence slat, the result will appear to be a solid wall. Conversely, if the samples happen to

consistently fall between slats, the result will not include the fence at all. The necessary sampling interval depends on

the scene itself.

The Nyquist-Shannon sampling theorem [104] gives a precise mathematical relationship between the complexity of

the image and the required distance between samples to represent it accurately. At a high level, images with more detail

require greater numbers of samples to capture. More specifically, if the coefficients of the Fourier decomposition [105]

of the image function are effectively zero for all frequencies greater than B (i.e., B is the bandwidth of the function),

then the maximum sufficient sampling interval (called as the Nyquist interval) is 1
2B . Aliasing arises when samples are

more widely spaced than the Nyquist interval [106]. The preceding suggests two fundamental strategies to mitigate

aliasing—reduce the sampling interval so that it is below the Nyquist interval or increase the Nyquist interval by

removing high frequencies from the image. The two common approaches to antialiasing shaders, supersampling and

prefiltering, take the former and latter strategies respectively.

3.2.1 Antialiasing Strategies

Supersampling evaluates more samples than the number of pixels, then computes the pixel color as a weighted average

of the nearby samples. This reduces aliasing and thereby improves visual quality at the cost of significant increases

in the computation required for the additional samples. Furthermore, since the Nyquist interval is dependent on the

particular image function, the cost of supersampling below the Nyquist interval may vary significantly from scene to

scene. Equivalently, supersampling with a fixed interval may still result in aliasing in some scenes. In practice, rather

than sampling sufficiently frequently to eliminate aliasing, many renderers shift the sample coordinates by a small

2Some researchers have included terms and parameters for light emission [101], surface scattering [102], wavelength and time [103]. Taken
together, x may have upwards of 10 dimensions. Further, the light intensity represented by I is itself an integral similar to equation 3.1 that captures
the light reflected toward x along a particular direction.
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random amount to disguise the aliasing as noise [21]. This allows for more consistent run times, but accepts a certain

amount of aliasing as inevitable.

On the other hand, prefiltering computes an alternative image function with reduced detail (i.e. “filtering” out the

coefficients for higher frequencies), so as to increase the Nyquist interval. Since increasing the Nyquist interval is

equivalent to decreasing the bandwidth of the function, this is also known as band-limiting the function. Prefiltering

techniques are designed to produce a function that can be evaluated more directly and efficiently at run time than equa-

tion 3.1. For example, prefiltering often takes the form of storing tables of precomputed integrals (e.g., mipmaps [107]

or summed area tables [108]). The upside to this approach is that it offers the benefit of exact solutions in many cases

with a constant number of operations at run time. The downside is that it increases storage requirements and can replace

inexpensive computations with relatively expensive memory accesses. Furthermore, these precomputation strategies

scale exponentially in the number of dimensions and so it is typically not practical to precompute integrals of functions

with more than two or three dimensions. Recall that in equation 3.1, x may incorporate a three-dimensional point on a

surface and a two-dimensional light direction, along with other parameters, resulting in a five—or more—dimensional

function.

An alternative strategy to prefiltering is to construct an analytically band-limited version of the shader function.

This can be mathematically expressed as the convolution of the function with a band-limiting function [106, 109].

Convolution is a way of combining two functions (e.g., f and k) into a new function that computes the weighted average

of one (f ) in the vicinity of a point, with the weights defined by the other (k) [21]. (The band-limiting function k is

often referred to as a kernel, hence the mnemonic.) Convolution is frequently applied to measured data in signal and

image processing [110], but is more difficult to apply directly to the functions generating that data. In most cases, the

shader developer must manually calculate the convolution integral. Because this calculation is usually complicated and

time-consuming for realistic shaders, it is rarely done in practice.

3.2.2 Band-Limiting for Procedural Shaders

This chapter explores the problem of automatically computing an exact analytic band-limited version of a procedural

shader function. Our system takes as input a shader program written in a high-level language with any number of user-

defined parameters and output a modified program that produces a band-limited version of the input shader. To permit

the shader to be used in different situations with different sampling intervals—e.g., different monitor resolutions—we

parameterize the band-limited shader with respect to the sampling intervals. The approach also allows limiting the

function to different bandwidths without requiring significant rendering times.

We instantiate our optimization framework (see section 1.1) to transform an existing shader program into a

band-limited version. We exploit the observation that, under certain conditions, band-limited subexpressions may be
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k(x− x′, w)

f(x′)

Figure 3.2: Determining the color of a pixel. The center of a single pixel projects to point x on the surface. The spacing
between pixels at the camera corresponds to a local surface spacing of w. To determine the best single color for the
pixel, we convolve the shader function f(x′) with the band-limiting kernel k(x−x′, w). Note that the sampling interval
w is a parameter to the kernel function.

composed to produce a larger band-limited expression. Our approach improves upon formerly ad-hoc band-limiting

strategies, such as replacing primitive functions that cause significant aliasing with others that cause less [21]. We

represent shader programs as abstract syntax trees (ASTs) [29]; our transformations replace calls to functions that are

susceptible to aliasing with the band-limited counterparts we derived (table 3.1). To support this, we develop two new

analyses on shader program source code. The first recognizes subexpressions for which we have derived solutions to

the band-limiting convolution (sections 3.3.1 and 3.3.2). This allows us to replace the original subexpression with a

band-limited expression. The second analysis conservatively approximates the relevant sampling intervals for each

subexpression (section 3.3.5). This allows the transformed subexpressions to be limited to the correct bandwidth; too

small a bandwidth would remove desirable detail from the scene while too large a bandwidth would result in aliasing.

As the fitness function for our search-based approach, we generate several images with the modified shader and compute

the image difference with respect to the corresponding “ground truth” images. Since the true band-limited function is

unknown (the purpose of the search is to find it) we use supersampling, which can approximate the desired image at the

expense of long run times, to generate the ground truth images.

3.3 Band-Limiting Transformations

This chapter considers the problem of analytically computing the band-limited version of a procedural shader function.

Figure 3.2 illustrates the problem in one dimension. Formally, given a shader function f(x) of a single coordinate

x, and a band-limiting kernel function k(x,w) with sampling interval w, we desire the band-limited shader function
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f̂(x,w), obtained by convolving f with k:

f̂(x,w) =

∫ ∞
−∞

f(x′) k(x− x′, w) dx′. (3.2)

Extending this to multiple dimensions is straightforward: the single-dimensional variables in equation 3.2 are replaced

by vectors with the appropriate dimensionality. We make no restrictions on the sampling intervals along different

dimensions; in particular, we do not assume that the sampling interval in one dimension is a function of the interval in

another. Thus, we replace w by a vector with the same number of dimensions as x. We return to the question of multiple

dimensions in section 3.3.4. Note the similarity between equation 3.2 and equation 3.1, where f(p) = I(p)m(p) and k

represents the pixel.

Perhaps unsurprisingly, there is currently no known way of analytically computing these band-limited functions in

general. This section describes conditions under which exact solutions are possible and derives closed-form expressions

for several common such situations. We then discuss the composition of separately band-limited components and intro-

duce strategies for approximation when exact solutions are not available. Recall that our bottom-up approach section 3.1

applies local band-limiting transformations to subcomponents of the shader and composes them to produce a shader

that approximates the band-limited counterpart to the original.

3.3.1 Exact Band-Limited Shaders by Construction

First, note that, given a set of functions for which we have solutions to equation 3.2, the band-limited expression

corresponding to any linear combination of those functions is straightforward to compute. Specifically, for any functions

f1, . . . , fn and constants c0, c1, . . . , cn, such that

g(x) = c0 + c1f1(x) + · · ·+ cnfn(x), (3.3)

it is the case that

ĝ(x,w) = c0 + c1f̂1(x,w) + · · ·+ cnf̂n(x,w). (3.4)

For example, since the truncate function (trunc) (i.e., rounding toward zero) can be expressed as trunc(x) = 1 + bxc−

step(x), where step is the Heaviside unit step function (which returns zero for negative numbers and one for positive

numbers), we may immediately conclude that t̂runc(x,w) = 1 + fl̂oor(x,w)− ŝtep(x,w).

For many arbitrary functions, equation 3.2 will not have a closed-form solution. However, for many built-in

functions that are commonly found in procedural shader languages, such as floor() or saturate(), this integral

can be computed directly, given a suitable choice of k. The band-limiting kernel k incorporates the sampling interval
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(a) Gaussian kernel (b) Rectangular kernel (c) Tent kernel

Figure 3.3: The band-limiting kernels considered in this chapter. The Gaussian kernel (a) is used for all derivations in
table 3.1 except fractR and fractT , which use the rectangular (b) and tent (c) kernels, respectively. All three kernels
are shown to the same scale.

and in a sense represents the pixel; in this chapter we take k to be the Gaussian function (see figure 3.3(a)) with a

standard deviation equal to the sampling interval w. The Gaussian function is commonly used in image processing

applications [111] and we find that it permits more aesthetically pleasing results than using a kernel corresponding to

rectangular pixels (e.g., figure 3.5(a)). We present the band-limited expressions for several built-in functions in table 3.1.

Full derivations for these expressions are available in appendix A. The derivation and presentation of exact band-limited

expressions in this table is a contribution of this work.

3.3.2 Band-Limiting the fract(x) Function

We now discuss in some detail the derivation of a band-limited expression for the fract function (fract), defined as

fract(x) = x−bxc. This function highlights some of the interesting challenges involved in calculating the band-limiting

integrals even for ostensibly “simple” functions and provides a framework to demonstrate some useful derivation

strategies. It also captures the “hard part” of other common functions, such as bxc, dxe, and trunc(x), since it is

straightforward to define the band-limited expressions for these functions in terms of fract(x) while deriving them

directly is much more challenging.

Recall that we derive the band-limited form of a function from equation 3.2, in this case substituting fract for f

and, for k, the Gaussian function with standard deviation w. Specifically,

f̂ract(x,w) =

∫ ∞
−∞

fract(x′)
1

w
√

2π
e−

(x−x′)2

2w2 dx′. (3.5)

To solve equation 3.5, we use the convolution theorem [105], which states that the convolution of two functions f and k

can be determined by taking the product of their Fourier transforms and the inverse Fourier transform of the result. The

Fourier transform of a function f(x) is a function describing the frequency content of f(x).

For brevity, we sketch the derivation here; see appendix A.3.5 for the full derivation. First, we rewrite fract in terms

of its Fourier series expansion:

fract(x) =
1

2
−
∞∑
n=1

1

πn
sin(2πnx). (3.6)
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f(x) f̂(x,w) Derivation

c c Prop. A.8

x x Prop. A.9

x2 x2 + w2 Prop. A.27

fractG(x)
1

2
−
∞∑
n=1

e−2w
2π2n2

πn
sin(2πnx) Prop. A.18

fractR(x)
1

2w

(
fract2

(
x+

w

2

)
+
⌊
x+

w

2

⌋
− fract2

(
x− w

2

)
−
⌊
x− w

2

⌋)
Prop. A.21

fractT (x)
1

12w2
(F (x+ w)− 2F (x) + F (x+ w)) Prop. A.24

where F (x) = 3x2 + 2fract3(x)− 3fract2(x) + fract(x)− x

|x| x erf

(
x

w
√

2

)
+ w

√
2

π
e−

x2

2w2 Prop. A.14

bxc x− f̂ract(x,w) Prop. A.17

dxe fl̂oor(x,w) + 1 Prop. A.15

cosx cosx e−
w2

2 Prop. A.16

saturate(x)
1

2

(
x erf

(
x

w
√

2

)
− (x− 1) erf

(
x− 1

w
√

2

)
+ w

√
2

π

(
e−

x2

2w2 − e−
(x−1)2

2w2

)
+ 1

)
Prop. A.25

sinx sinx e−
w2

2 Prop. A.26

step(x)
1

2

(
1 + erf

x

w
√

2

)
Prop. A.28

trunc(x) fl̂oor(x,w)− ŝtep(x,w) + 1 Prop. A.29

Table 3.1: Band-limited versions of several common one-dimensional primitive shader functions. The band-limiting
kernel used to derive the second column is the Gaussian function with a standard deviation equal to the sampling
interval w, except fractR and fractT , which use the rectangular and tent functions, respectively. The fract function,
used as the basis of bxc, dxe, and trunc(x), is defined: fract(x) = x− bxc. The trunc function truncates its argument
to the nearest integer in the direction of zero. The Gauss error function (erf) is defined erf x = 2√

π

∫ x
0
e−t

2

dt.

Following the convolution theorem, we take the product of the Fourier transforms of this function and of the Gaussian

kernel, then apply the inverse Fourier transform to the product, obtaining the convolution of the original functions:

f̂ract(x,w) =
1

2
−
∞∑
n=1

e−2w
2π2n2

πn
sin(2πnx). (3.7)

Although this expression—labeled fractG in table 3.1—is exact, it contains an infinite sum that cannot be evaluated

in practice. However, the terms in this sum are scaled by e−2w
2π2n2

. Thus, the absolute values of the later terms rapidly

approach zero. Therefore, one approximation method is to simply truncate this sum after a fixed number of terms
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or once an error bound is reached. Unfortunately, we found that this approach can still yield long running times and

noticeable artifacts, especially when used in conjunction with other functions (we will return to this issue in section 3.3.7

and figure 3.5(c)).

As a second approximation to the convolution of fract with a Gaussian, we also considered its convolution with

other band-limiting kernels. For illustrative purposes, we first derive the convolution of fract and the rectangular

function (figure 3.3(b)),

rect(x,w) =
1

w

(
step

(
x+

w

2

)
− step

(
x− w

2

))
. (3.8)

To solve this convolution, we use Heckbert’s technique of repeated integration [112], which is based on the observation

that the convolution of f and k is equivalent to the convolution of the nth integral of f with the nth derivative of k. We

note that the derivative of rect is zero almost-everywhere, except at x− w
2 and x+ w

2 , where it is positive and negative,

respectively. Functions with this form—zero almost-everywhere except a set of discreet points—are sometimes called

pulse trains. Finite-length pulse trains are the key to using the technique of repeated integration, since convolving a

function with one reduces to evaluating the function at a finite number of coordinates and multiplying by the appropriate

coefficients. Turning to the indefinite integral of fract , we find that it is given by (see proposition A.20 for details),

∫
fract(x) dx =

fract2(x) + bxc
2

. (3.9)

Evaluating this formula at x− w
2 and x+ w

2 and multiplying, the result of the convolution is given in table 3.1 (indicated

by fractR to distinguish it from convolution with the Gaussian function).

For our final example, we convolve fract with the tent function (figure 3.3(c)),

tent(x,w) =
1

w
max

(
0, 1−

∣∣∣ x
w

∣∣∣) . (3.10)

This function approximates the Gaussian better than the rect function while still permitting straightforward use of

repeated integration. Although the first derivative of tent is not a pulse train, the second derivative is, with a negative

coefficient at x and positive coefficients at x± w. Thus, we can compute the second indefinite integral of fract (see

proposition A.23), evaluate it at these three locations and multiply by the appropriate coefficients to get the convolution

of the original functions, indicated by fractT in table 3.1.

3.3.3 Band-Limiting Control Flow

The goal of our bottom-up approach is to construct a band-limited shader program out of band-limited sub-components.

Having discussed how we construct band-limited components corresponding to the primitive functions of the shader
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programming language, we now turn our attention to the control flow of that language.

In general, we handle control flow by transforming the program to compute the same function without it. For

example, we take advantage of the fact that many procedural shaders contain statically-unrollable loops and statically-

bounded function nesting. This allows us to unroll loops and inline function calls throughout the shaders. (We return to

the subject of loops and unbounded recursion in section 3.5.3.) After applying these transformations, we eliminate

if-statements by executing both branches and joining the results using a φ-function [113]. These functions implement

if-then-else (familiar to C programmers as the ternary operator ?:) in an assignment statement and were introduced to

simplify compiler analyses that require each variable to be assigned exactly once. Our use of φ-functions (i.e., executing

both branches, then joining) is similar to the elimination of branches through conditional instructions [114, 115].

We build our φ-function on top of the step function. Note that step(x) computes the Boolean expression x ≥ 0

with 0 representing false and 1 representing true. This can be extended to arbitrary conditions of the form a ≥ b,

since this is equivalent to a − b ≥ 0. With this same encoding of true and false, we implement Boolean and as

multiplication, Boolean or as addition, and Boolean not as subtraction from 1. This allows us to implement arbitrary

Boolean combinations of inequalities3 by translating the Boolean operators into multiplication, addition, and subtraction

and the inequalities into calls to step. Our φ-function multiplies the expression from the true branch by the translated

condition and adds the product of the expression from the false branch and the translation of the negated condition.

If a variable x is assigned along only one branch, we proceed as if the other branch included the assignment x = x.

In effect, this transformation allows the band-limiting expression to integrate over both branches of the if-statement.

Heidrich et al. [116] used the step function in a similar fashion to modify if-statements for use in their analysis, but

did not to our knowledge use it to implement φ-functions.

We present an example of this transformation in listing 3.1. Since y is assigned only along the true (line 3) branch

and x is assigned only along the false (line 5) branch, we introduce dummy assignments x=x and y=y along the

other branches (i.e., after lines 3 and 5, respectively). The transformation then moves all assignments outside of the if

statement, introducing temporary variables y1 and x1 to hold the values from the true branch as well as y2 and x2 for

the false branch. Next, it introduces another temporary variable for the translated condition, using the identity a < b

≡ !(a >= b), then replacing the Boolean operators as described in the previous paragraph. Finally, it assigns the

result of each φ-function to the corresponding variable (lines 14 and 15)

Now consider what happens if a = 1, b = 2, and c = 3. Then cond is set to (1− step(1− 2)) (1− step(2− 3)),

which evaluates to (1− 0) (1− 0) = 1, indicating the condition is true. In this case, y is set to y1 (which from line 9 is

equal to x) and x is set to (which from line 10 is set to x) x1. On the other hand, if a = c = 3 and b = 2, then cond

will be (1− step(3− 2)) (1− step(2− 3)) = 0. This results in y being set to y2 (which from line 12 is equal to y)

and x being set to x2 (which from line 11 is equal to y), as desired.

3Equalities involving spatially varying quantities have measure zero and are therefore effectively always false.
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1 // before transformation
2 if (a < b && b < c) {
3 y = x;
4 } else {
5 x = y;
6 }

8 // after transformation
9 y1 = x;

10 x1 = x;
11 x2 = y;
12 y2 = y;
13 cond = (1-step(a-b))*(1-step(b-c));
14 y = cond*y1 + (1-cond)*y2; // y = φ(cond,y1,y2)
15 x = cond*x1 + (1-cond)*x2; // x = φ(cond,x1,x2)

Listing 3.1: Example of replacing if-statements in shader programs. Both branches of the original if-statement
are executed, using temporary variable names, then any variables assigned in the bodies are joined using a
φ-function.

By constructing our φ-function in terms of step, which appears in table 3.1, we are able to rewrite if-statements as

expressions of sub-components that may be band-limited. This allows us to apply our bottom-up transformations to

programs with combinations of simple functions and control flow.

3.3.4 Extension to Multiple Dimensions

Building expressions from arbitrary combinations of language primitives, whether done by the programmer or our

φ-function transformation, can produce functions with high dimensionality. Instead of attempting to band-limit these

analytically in all cases, we present several heuristics in this section that allow us to combine components that were

band-limited separately into an approximately band-limited whole. We discuss the circumstances in which these

heuristics produce exact answers as well as mechanisms to mitigate error when the result is less than exact.

So far, we have addressed band-limiting only one-dimensional functions. However, procedural shaders are often

functions of multiple variables, ~x = 〈x1, x2, . . . , xn〉 (e.g., texture coordinates, components of the normalized vector

towards the camera, etc.). Although the convolution integral is easily extended to functions of multiple dimensions,

solving it analytically becomes increasingly difficult with each additional dimension. Instead, our insight is to understand

when the simpler one-dimensional solutions may be directly combined and introduce a heuristic to make other situations

resemble the desired condition more closely.

Specifically, we identify partial multiplicative separability as an important condition for combining simpler solutions.

(Throughout this chapter, we will often use separability to mean partial multiplicative separability.) In the special case

where the shader function and the band-limiting kernel are separable, the band-limited version of f(~x) may be written



3.3 Band-Limiting Transformations 29

in terms of band-limited subexpressions. Formally, let us partition the dimensions of ~x into two disjoint sets, A and

B, and write fA(~x) to denote a function that depends only on the dimensions of ~x in set A and similarly with fB(~x).

Recall from section 3.3 that, for generality, we allow ~w to have the same dimensions as ~x. Now, if there exist sets A and

B such that

f(~x) = fA(~x)fB(~x) and k(~x, ~w) = kA(~x, ~w)kB(~x, ~w) (3.11)

then

f̂(~x, ~w) = f̂A(~x, ~w)f̂B(~x, ~w). (3.12)

Using equations 3.4 and 3.12 to compute f̂ in terms of simpler band-limited functions is the core of our bottom-up

approach (cf. section 3.1). These equations indicate that we will generate exact band-limited shaders under the right

conditions, namely equations 3.3 and 3.11, when the shader function and band-limiting kernel may be decomposed into

simpler functions for which the band-limited version is available.

In general, of course, many shader functions cannot be factored into simple products or linear combinations of

known band-limited functions. In fact, there are many situations where the Gaussian band-limiting kernel itself cannot

be factored. For example, consider the important case of shader functions of two spatial dimensions (e.g., surface

texture coordinates). Recall from section 3.3 that the band-limiting kernel represents the pixel for which we desire a

color. For simplicity, we treat the pixel temporarily as a rectangle instead of a Gaussian, and illustrate the following

discussion in figure 3.4. The region of the surface subtended by a single pixel is a quadrilateral—the intersection of the

surface and the pyramid formed by the viewpoint and the corners of the pixel—if we assume the surface is effectively

planar over such a small region. In general, a quadrilateral cannot be expressed as the product of two independent

rectangular functions, so it is not multiplicatively separable.

To handle this frequent situation, we start with the common approximation of the quadrilateral as a parallelo-

gram [109] (lighter shaded region in figure 3.4). Our insight is to further approximate this parallelogram by its

axis-aligned bounding rectangle (darker shaded region in the figure). If x and y denote the image plane coordinate

axes and s and t denote the surface texture coordinate axes, the lengths |∂s/∂x| + |∂s/∂y| and |∂t/∂x| + |∂t/∂y|

define extent of the bounding rectangle in s and t, respectively. Since the pixels of the screen induce horizontal and

vertical sampling intervals that are the width and height, respectively, of the pixels, this approximation also gives us an

approximation of the sampling intervals in surface coordinates. The bounding rectangle is multiplicatively separable,

enabling separable surface functions to be band-limited exactly. Note that this approach is exact whenever the image

plane axes are aligned with the texture coordinate axes (i.e., the quadrilateral is the same as the rectangle in the figure)

and favors blurring over aliasing otherwise.
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Figure 3.4: Axis-aligned approximation of the projection of a pixel onto a surface. To distinguish the pixel coordinate
system from the coordinate system of the surface, we use x and y for the former and s and t for the latter. The figure
is shown in the surface (s and t) coordinate system. Assuming locally planar geometry, the projection of a single
pixel in the image plane subtends a quadrilateral (white region) in the surface coordinate system. We approximate this
quadrilateral by the axis-aligned bounding rectangle (dark shading) around the parallelogram (light shading) formed by
two of its edges. The shaded regions indicate the extent of over-approximation of the sampling intervals, causing too
much band-limiting which manifests as over-blurring the image.

3.3.5 Determining the Sampling Rate

Having developed an approach to acquire separable sampling intervals on entering the function, we now discuss the use

of sampling intervals within the function. To achieve the correct degree of band-limiting, a band-limited expression

must incorporate the sampling intervals for each of the parameters of the original expression as additional parameters.

For example, consider a modification of the checkerboard shader in listing 3.4 that replaces fract(p.s) with

fract(p.s*2) to produce checks that are taller than they are wide. This doubles the effective interval between

samples of the band-limited expression; the sampling interval parameter must be doubled to reflect this.

In general, the interval between samples of the result of an expression may be different from the interval between

samples of its inputs. Note that we cannot simply compute the sampling interval based on the partial derivative with

respect to the input parameters. For example, the derivative of bxc with respect to x is 0 (indicating that the value is

unchanging) almost everywhere, yet this does not imply that every function of bxc is smooth and free from aliasing

(we show an example of aliasing in such a function in section 3.3.7). Nor can we use finite differencing methods, such

as dFdx/dFdy in the OpenGL Shading Language [117] or Du/Dv in the RenderMan Shading Language [21], which

estimate the derivative by sampling their parameter at adjacent pixels. If the sampling interval is sufficiently small, these

methods approximate the derivative closely and are subject to the same limitations as analytically-computed derivatives.

For sufficiently large sampling intervals, these methods are themselves subject to aliasing.

Instead, we develop an analysis in the style of traditional dataflow analysis [78] to approximate the sampling interval

as a function of the axis-aligned projection of the pixel onto the surface (see section 3.3.4 and figure 3.4). The values

propagated through our analysis do not form a finite height lattice; thus, Kildall’s proof [78] that dataflow analyses
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terminate does not apply. However, the transformations described in section 3.3.3 produce shaders without loops,

ensuring that our analysis terminates.

We make a simplifying approximation by modeling the subexpression sampling interval as a polynomial function of

the axis-aligned sampling intervals in each dimension, where each term includes only dimensions of degree one. In the

example of the modified checkerboard above, our analysis would determine the sampling interval for p.s*2 is 2ws

(assuming the sampling interval for p.s is ws). Our analysis assigns each constant expression c the dimensionless

sampling interval with coefficient c. For addition and subtraction expressions, we assign the vector representing the

sum of the polynomials for the daughter terms. Multiplication expressions are assigned the vector representing the

product of the polynomials, unless that product would include dimensions with degree greater than one. For all other

expressions, including multiplication that would result in dimensions with degree two or greater, we assign the average

of the vectors for the inputs.

3.3.6 Band-Limiting Transformation in a Nutshell

We may now summarize the previous subsections to describe our band-limiting transformation. Preparatory to band-

limiting, we extend the shader function to compute the sampling interval for each of the original shader’s parameters,

applying the axis-aligned approximation discussed in section 3.3.4. In the pseudo-code examples in this chapter, we

use OpenGL-inspired fuctions—dFdx(p) and dFdy(p)—to retrieve the two quadrilateral sides that are the basis of

the approximation.4 This step is performed automatically once for the shader, independent of the number of times the

band-limiting transformation is applied.

Our transformation applies to any node in the AST of a prepared shader that is not already band-limited. We define

the set of nodes that are already band-limited as follows. First, we consider all constants and variable references to

be band-limited since f(x) = f̂(x) in the first two rows of table 3.1. Next, we consider all addition and subtraction

nodes to be band-limited, following equation 3.4. Similarly, we consider multiplication nodes where one side of

the multiplication is a constant to be band-limited for the same reason. Finally, we consider multiplication between

expressions based on different input variables to be band-limited, following equation 3.12. The remaining AST nodes,

mostly (if not exclusively) calls to primitive functions of the shading language, are considered non-band-limited. We

refer to these remaining nodes as non-band-limited nodes.

To transform an AST, we select one of the non-band-limited nodes and replace it with a call to a function

implementing the appropriate band-limited expression (e.g., from table 3.1). In general, an expression of n variables,

x1, . . . , xn, will have a corresponding band-limited expression of 2n variables, x1, . . . , xn, w1, . . . , wn. Each of the

xi in the non-band-limited expression is retained in the band-limited expression; for each wi, we use the polynomial
4In this special case, it is safe to use dFdx(p) when calculating the sampling interval (despite the concerns raised in section 3.3.5) because

the band-limited expression on the second line of table 3.1 is independent of the sampling rate and the derivative is truly constant. Thus, finite
differencing will produce the correct derivative regardless of the sampling interval.
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computed by the analysis described in section 3.3.5 for xi. For example, to transform the expression cosx, we construct

the replacement expression cosx e−
w2

2 where w is the polynomial approximation of the sampling interval for x.

3.3.7 Example: Band-Limited Checkerboard

We conclude this section with an example of the preceding results, including a comparison of the different approximation

strategies for fract(x) (section 3.3.2). We start with the simple black-and-white checkerboard shader in listing 3.2,

constructing the band-limited shader in listing 3.3.

1 float3 checker1(float2 p) {
2 float ss = floor(p.s + 0.5) - floor(p.s);
3 float tt = floor(p.t + 0.5) - floor(p.t);
4 return (float3)(ss*tt + (1-ss)*(1-tt));
5 }

Listing 3.2: A black-and-white checkerboard shader implemented using the floor(x) function. The shaders in this
chapter are written in a C-like pseudocode. Since the shader executes in the surface coordinate system, we use
p.s and p.t to access the s and t surface coorinates, respectively.

1 float3 checker1(float2 p) {
2 float2 w = axis_aligned_approx(dFdx(p), dFdy(p));
3 float ss = floor_bl(p.s + 0.5, w.s) - floor_bl(p.s, w.s);
4 float tt = floor_bl(p.t + 0.5, w.t) - floor_bl(p.t, w.t);
5 return (float3)(ss*tt + (1-ss)*(1-tt));
6 }

Listing 3.3: Band-limited checkerboard shader corresponding to the shader in listing 3.2.

We first determine the projections of the screen-space vectors describing a single pixel, using our axis-aligned

approximation (section 3.3.4) to compute the sampling interval in the surface s and t coordinate system (listing 3.3,

line 2). We then construct the body of the band-limited shader in a bottom-up fashion. We first note the already-

band-limited nodes in the function: the constants and variable references, along with the addition, subtraction, and

multiplication operators. (The multiplication operators are band-limited because they are between expressions that

depend on different sets of input parameters.) Next, we simply replace calls to floor with calls to the band-limited

floor function from the table (here written floor_bl); our static analysis determines that the appropriate sampling

intervals are the unscaled axis-aligned intervals (lines 3 and 4). Since we have addressed every node in the AST of this

simple function, we have finished band-limiting the checkerboard shader.
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Figure 3.5 shows the band-limited checkerboard shader applied to an infinite plane. The target image (figure 3.5(d))

was produced using supersampling. Figure 3.5(a) shows the effect of using the rectangular band-limiting kernel in

fractR (which is part of the band-limited expression for floor, see table 3.1). Note the significant remaining aliasing

near the top of the figure as compared to the tent band-limiting kernel in figure 3.5(b). Finally, figure 3.5(c) shows the

effect of truncating the infinite series introduced with the Gaussian band-limiting kernel. For this figure, we truncated

the series so that the shader run time matched that required for figure 3.5(b). We note that the figure using fractT

demonstrates little error relative to the original shader (not shown) and the figures using fractG and fractR, while

taking time comparable to the original shader. On this shader, therefore, we have already met our goal of little aliasing

with fast run times. For this reason, we use the fractT band-limited expression for fract throughout the remainder of

this chapter.

3.4 Search and Fitness

We have introduced a transformation that band-limits shaders under the assumption that they are partially multiplicatively

separable and use limited function composition, employing a practical approximation that ensures the band-limiting

kernel is separable. We now turn to the problem of shader functions that are not separable. In this section we consider

an automated search strategy for approximating band-limited shaders in such situations. We motivate our approach with

observations on two simple shaders: an alternate formulation of the checkerboard and a field of tiled circles.

Consider the checkerboard shader in listing 3.4. It produces an image (figure 3.6) that is essentially identical to that

(figure 3.5) produced by the shader in listing 3.2. Note that this alternate implementation employs function composition

(lines 2 and 3 in listing 3.4), to which the techniques of the previous section do not directly apply. However, if we

replace the calls to fract and step with the band-limited expressions in table 3.1, despite the function composition,

we produce the reasonable image in figure 3.6(c). This supports our insight that, even though we do not have an exact

solution for situations involving function composition, it is sensible to consider the effect of composing band-limited

subexpressions.

1 float3 checker2(float2 p) {
2 float ss = step(fract(p.s) - 0.5);
3 float tt = step(fract(p.t) - 0.5);
4 return (float3)(ss*tt + (1-ss)*(1-tt));
5 }

Listing 3.4: A multiplicatively inseparable black-and-white checkerboard shader. Compare this program with the
code in listing 3.2.
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(a) fractR (b) fractT

(c) fractG (d) Target

Figure 3.5: Renderings of a checkerboard using different band-limiting kernels. The target image (d) was rendered
using the original shader with 2048 Gaussian-distributed samples per pixel. The remaining images were rendered using
a single sample per pixel. The shapes of the corresponding approximations of a band-limited square pulse are given
above each rendered image. The faint grid of gray dots and blurred edges of the foreground checkers in (c) is due
to truncating the infinite series in the band-limited expression for fractG to achieve a run time similar to fractT (b).
Truncating the series later reduces the visual effect at the cost of increased runtime.

Our second example to motivate the search, the circles shader in listing 3.5 (images in figure 3.7), is nearly as

simple as the checkerboard shaders. It employs function composition of the same functions (step and fract) to the
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(a) Target (2048 samples) (b) Original (16 samples) (c) Band-limited (1 sample)

Figure 3.6: Renderings with the multiplicatively inseparable checkerboard shader in listing 3.4. The band-limited image
was generated using the fractT approximation to fract, given in table 3.1. The other two images were generated
using a Gaussian distribution for consistency with the band-limiting kernel we use in this chapter. The false-color
insets indicate the L2 image error relative to the target image (a). Rendering (c) was an order of magnitude faster than
rendering (b) with only 16% more visual error.

same depth. This time, however, as shown in figure 3.7(b), naively replacing each subexpression with band-limited

expressions introduces unacceptable artifacts. The circles appear to be inscribed within a grid of lines and the distant

portion of the image is black instead of a uniform gray. These artifacts are due to squaring the result of the band-limited

fract and to applying step to the result of band-limited squares, respectively. Crucially, however, we observe that

replacing only the call to step produces the more appealing image in figure 3.7(c).

1 float3 circles(float2 p) {
2 float ss = fract(p.s*10) - 0.5;
3 float tt = fract(p.t*10) - 0.5;
4 return (float3) step(0.2 - ss*ss - tt*tt);
5 }

Listing 3.5: A shader for an infinite grid of circles. Unlike the shader in listing 3.4, replacing each subexpression
with its band-limited version produces an unacceptable result.

Taken together, the checkerboard and circles examples support our intuition that a band-limited shader can be

approximated in the presence of function composition by substituting only a subset of the relevant functions. We exploit

this observation in the following sections, using evolutionary algorithms (EAs) to identify subsets of expressions to

band-limit such that their composition results in an approximately band-limited shader.

3.4.1 Exploring the Search Space

We define the search space with respect to the set of non-band-limited nodes in a shader program as follows. Each

program in the search space is created by transforming a subset of such nodes as described in section 3.3.6. Thus, we
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identify each program by the bit vector indicating which of its nodes are transformed [95]. Note that we only consider

the non-band-limited nodes in the original program. By construction, any nodes inserted by a transformation are part

of a band-limited expression that does not require further band-limiting. This implies that our search space is finite;

once every node in the original shader has been transformed, no further transformations are possible. Thus, for very

small shaders, it is possible to exhaustively evaluate every program in the search space. However, since the search

space contains 2N programs if the original shader has N non-band-limited nodes, it is not practical to explore the entire

search space for most shaders.

As with the circles shader (listing 3.5), selecting different subsets of nodes to replace may result in different output

quality. We therefore define the following measurement of the fitness of the new shader. For each original shader,

we first construct target images using the same expensive supersampling techniques we used in figures 3.5(d), 3.6(a)

and 3.7(a). During the search, we render the same scenes using the candidate band-limited shader and compute the

differences between these and the target images. Algorithms to compute the difference between two images are well

studied [118, 119, 120]; our fitness function is independent of the particular metric chosen. The fitness for the program

is simply the sum of the differences for each pair of images.

We use a genetic algorithm (GA) (see section 2.2.3) to guide exploration of this search space. Although GAs have

previously been shown to apply well to repairing faulty programs [121] and reducing shader run time [122, 123], to the

best of our knowledge, such searches have not previously been applied to the problem of band-limiting shaders. The

result of our search is the shader that produces images with the smallest measured error relative to the target images (for

example, see figure 3.7(c)).

3.4.2 Adjusting the Sampling Interval

The transformations applied by the genetic search rely on the sampling intervals developed in section 3.3.5. However,

these intervals are produced by an analysis that makes several simplifying approximations which may result in the

estimated sampling interval being too large or too small. Once the genetic search is complete, we take the resulting

shader and perform a second search to refine the sampling intervals by adjusting the coefficients of the polynomials. In

this case, we use the Nelder-Mead simplex algorithm [92], a well-established non-linear multidimensional optimization

algorithm, to learn new coefficients using the same fitness function we used during the genetic search. This algorithm

produces a set of coefficients for the set of nodes that were band-limited in the genetic search result. Inserting these

coefficients into the band-limited nodes of the shader produces our final result. For example, figure 3.7(d) shows the

effects of the genetic and simplex searches in producing an approximately band-limited shader based on the circles in

listing 3.5.
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(a) Target (b) Naive Replacement

(c) Genetic Search Result (d) Genetic + Simplex Result

Figure 3.7: Renderings of circles (listing 3.5) showing the effect of using search to determine which expressions to
replace and which coefficients to use to determine sampling interval. The target image (a) was rendered using the
original shader with 2048 samples per pixel. Naı̈vely replacing every expression produces artifacts around each the
circle (b). Using the genetic search (c) to determine which expressions to replace produces a result that, while still not
perfect, more closely matches the desired image. Combining the results of the genetic and simplex search (d) produces
an even closer approximation of the target.

3.5 Experiments

In this section, we describe our experimental setup, present our results, and discuss their implications.

3.5.1 Experimental Setup

We evaluate the effectiveness of our technique for band-limiting the shaders listed in table 3.2, drawn from the shaders

used in previous work on antialiasing [124]. Several of these shaders (e.g., brick and wood) sample a random

texture or employ a procedural noise function as a source of randomness. We treat these in the same way as any of
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L2 error Runtime (ms)

Shader Lines Nodes Ours Supersampling Ours Supersampling Description

step 1 1 0.000 0.001 0.6 17 Black and white plane
ridges 1 1 0.011 0.056 1.3 17 fract(x)
pulse 2 2 0.021 0.089 2.2 18 Black and white stripes
noise1 26 3 0.042 0.044 39 241 Super-imposed noise
checker 3 4 0.072 0.125 4.1 18 Checkerboard
circles1 3 5 0.268 0.308 0.9 18 Tiled circles
wood 51 18 0.141 0.049 268 1337 Wood grain
brick 40 26 0.048 0.118 116 683 Brick wall
noise2 66 28 0.222 0.218 55 319 Color mapped noise
circles2 71 74 0.157 0.066 58 1180 Overlapping circles
perlin 79 244 0.146a 0.068 4.0 71 Improved Perlin noise
a The best shader identified by our search produced the same amount of error as the original shader.

Table 3.2: Shaders used for evaluation. “Lines” indicates the number of non-comment, non-blank lines; “Nodes” lists
the number of non-band-limited nodes that are candidates for replacement. “L2 error” and “Runtime (ms)” indicate
the performance of our antialiased shaders versus 16× supersample antialiasing. The best error and runtime results
for each shader are shown in bold. Our shaders are often an order of magnitude faster than 16× supersampling while
maintaining comparable or better image quality.

the functions in table 3.1, that is, as nodes that the search may or may not replace with a corresponding band-limited

node. Specifically, our implementation uses summed area tables [108], which implement prefiltered texture images (see

section 3.2.1), and Gabor noise [125], for which an anisotropic band-limited formulation is known.

Although our technique is independent of the exact scenes represented by the target images and the exact image

difference metric used, we must choose some particular scene and metric to run our experiments. For these experiments,

we chose a scene consisting of an infinite plane whose appearance is determined by the shader function. The target

images render this scene, using 2048 Gaussian-distributed supersamples per pixel, from five different rotations (0, 30,

45, 60, and 90 degrees) around an axis perpendicular to the plane. To compute the difference between a candidate image

and a target image, we calculate the total L2 distance in RGB (i.e.,
∑
i

√
∆r2i + ∆g2i + ∆b2i , where ∆ri indicates, for

the ith pixel in each image, the difference in the red component of the two colors). This is a common simple image

difference metric used in previous work on shader transformations [126].

For each shader we ran 10 random restarts of the genetic search with a population of 200 candidate shaders for

20 generations. Thus, for roughly half of our shaders, our search exhaustively evaluated every variant shader that our

technique generates, completing the search in under a minute. On the other hand, for the brick shader, the search

evaluated less than one out of every 16 000 possible variants. For these shaders, the genetic search required roughly 8

hours for each random restart. We ran the simplex search using the same error metric and same set of representative

scenes as the genetic search, with 100 random restarts.
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3.5.2 Results

Table 3.2 reports the error and run time of the images produced by the best shader from the genetic search using the

best coefficients from the simplex search. Note that the run times of our shaders are significantly better than 16×

supersampling, which loosely corresponds to the state of the art, despite our search considering only image quality.

Even though the band-limited subexpressions are typically more computationally-intensive than their non-band-limited

counterparts, the benefit of taking a single sample per pixel outweighs the added complexity. The shaders produced by

our technique are consistently faster than supersampling and in almost all cases have less error than the original shader.

(We discuss the one shader that displayed the same error as the original below in section 3.5.3.) This implies that our

shaders represent new points on their respective Pareto frontiers. In many cases (e.g., the brick shader), our shader

Pareto dominates both the original shader and supersampling; that is, our shader produces images with less error and

better run time.

We present example images generated using these shaders in figure 3.8. Each row of the figure contains the

results for a different shader. In each row, the first column contains the target images for the shader, generated using

supersampling. The second column contains the image produced by the original shader with no antialiasing, while

the images in the third were approximately antialiased using 16× supersampling. The rightmost column the image

produced by the approximately prefiltered shader generated by the genetic and simplex searches. The heatmap in the

lower-right corner of each image displays the L2 difference between that image and the target image, ranging from

black indicating no difference through dark and light blue to green indicating significant difference.

Each image displays an infinite plane with uniform lighting. Since the plane is drawn in perspective, the sampling

interval in the lower portion of each image is smaller than the interval in the upper portion. For example, in the second

column (figure 3.8(i)) of the first row (figure 3.8(a)), the sampling interval at the bottom of the image is sufficiently

small, allowing the checkerboard to appear with little noticeable aliasing (however, some aliasing appears as jagged

edges to the checks and as blue lines in the heatmap inset). On the other hand, the sampling interval is much larger at

the top of the image, resulting in significant aliasing, as indicated by the bright green region at the top of the heatmap

inset. The third column (figure 3.8(j)) of the same row shows that 16× supersampling can reduce the jagged lines at

edges in the foreground of the checkers image, but is insufficient to reduce the sampling interval in the background. In

contrast, the prefiltered shader in the fourth column (figure 3.8(k)), produced by our technique, reduces the aliasing in

both the foreground and background effectively. A similar pattern holds in the second row (figure 3.8(b)). As shown

in table 3.2, our prefiltered checker and brick shaders produce images with roughly half as much error as 16×

supersampling in roughly one-sixth the time.

In the next two rows (figures 3.8(c) and 3.8(d)) our prefiltered shaders generated images with about the same total

error as 16× supersampling. In both cases, our prefiltering approach produced a shader that generates images with
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(h) Target image (i) No antialiasing (j) 16× supersampling (k) Prefiltered

Figure 3.8: Comparison of images generated with different antialiasing techniques. From left to right, the techniques
are (h) 2048× supersampling, (i) none, (j) 16× supersampling, and (k) our prefiltering approach.
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reduced aliasing. However, the prefiltered noise1 shader retains some aliasing in the middle distance, while the

prefiltered noise2 retains some slight aliasing in the foreground. The aliasing artifacts for both shaders are reflected

in the blue regions of the heatmaps in the fourth column (figure 3.8(k)) of these rows. The heatmap for the wood shader

(figure 3.8(e)) shows a similar pattern to that for the noise2 shader. However, the largest source of error in this row is

due to fact that band-limiting certain subexpressions resulted in slight shifts in the location of the wood grain in the

foreground. Although the shifted grain still produces a woodlike appearance to human eyes, the simple L2 error metric

is unable to recognize the similarity. In the penultimate row (figure 3.8(f)), we see that our search failed to identify a

shader that eliminated all of the aliasing in the far distance; nonetheless, our technique is able to mitigate much of the

original aliasing. Finally, our search was unable to reduce the aliasing in the perlin shader used to generate last row

(figure 3.8(g)). We discuss potential reasons for this limitation and possible improvements to address them in the next

section.

3.5.3 Discussion

Our technique consistently produces shaders that are several times faster than 16× supersampling. In many cases, these

shaders also produce comparable or less error than supersampling. However, in some cases, such as the wood and

circles2 shaders in our evaluation, we found that although our technique was more accurate than using only a single

sample per pixel, it did not outperform supersampling in terms of visual quality. Furthermore, for the perlin shader,

our technique failed to achieve any significant improvement. This prompted us to analyze the circles2 and perlin

shaders to determine what aspects of those programs made the search more difficult. We summarize our findings and

suggest directions for future research in this section.

Loops. Both shaders are structured around an outer loop. The circles2 shader divides the texture space into

cells and processes adjacent cells in a loop. The perlin shader accumulates several layers of noise, called octaves,

in its outer loop, with an inner loop that sums the contributions from the vertices of the cell. The outer loop of the

former shader and the inner loop of the latter have a number of iterations fixed by the algorithm and so may be easily

unrolled completely. However, the number of octaves of Perlin noise to accumulate is often a user-controlled parameter.

Similarly to Velázquez-Armendáriz et al. [127], we support loop unrolling for a predefined number of iterations and

leave it to future work to address variable numbers of iterations. For our experiments, we fixed the number of octaves at

four.

Significantly, the bounds of the loops we investigated do not depend on spatially varying parameters. However, we

note that one common approach to manually band-limiting Perlin noise is to exclude higher-frequency octaves when

the sampling interval grows sufficiently large. Previous work on automatic shader simplification has demonstrated the

capability to unconditionally remove high-frequency octaves [122], but these techniques do not incorporate sampling
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intervals in their transformations. This suggests a new band-limiting transformation to investigate, namely, introducing

spatially-varying bounds to existing loops. Since arbitrary loops necessarily introduce high-frequency effects to

represent the jump between an integer number of iterations, further research into band-limiting them is required.

Conditionals. Both the circles2 and perlin shaders include if-statements, using them to determine the top-most

circle and to identify the correct cell, respectively. As described in section 3.3.5, we always compute both branches and

merge their values with a φ-function [113] based on step. Interestingly, the majority of nodes in circles2 replaced

by the genetic search were these step nodes. This suggests future research could investigate the effects of different

φ-function implementations on the success of the genetic search.

Lookup Tables. Perlin noise is often implemented using nested array accesses, where one array contains indices into

a second array. Simply band-limiting the arrays in the way one might band-limit a texture [107, 108] would have the

result of averaging the indices in the first array. This is unlikely to produce reasonable results. Recently, researchers

have begun to investigate formal analysis and modeling of such nested array accesses [128]. Further research is required

to discover automated transformations to handle these cases or to identify data structures and coding styles that handle

them without requiring further transformation.

3.6 Related Work

In this section, we place the work described in this chapter in the context of the most relevant areas of related work.

Texture Prefiltering. Mipmapping [107] and summed area tables [108] are prefiltering strategies that produce lookup

tables allowing a static texture to be band-limited in constant time. In contrast, our approach requires no additional

memory tables and allows for dynamically adjusting shader parameters.

Norton and Rockwood [109] propose an approximation for shaders that can be decomposed as a sum of sines. They

scale the amplitude of the sines based on the size of a pixel projected on the surface at that point using a power series

approximation to a box kernel. Our approach is similar in spirit but more general, addressing a larger class of both

shader and kernel functions.

Heitz et al. [129] describe a technique using precomputed lookup tables to band-limit static or procedural color map

textures for which the mean and standard deviation can be efficiently computed. Their technique assumes that a shader

to calculate the mean already exists; our approach aims to generate such shaders.

Edge Antialiasing. Much recent effort has been directed at efficient algorithms for antialiasing edges in rendered

images. Morphological Antialiasing [130] post-processes the rendered image to identify groups of pixels with a large
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color gradient and particular spatial arrangement then blends their colors locally. The technique explicitly assumes that

textures are separately band-limited using other techniques such as mipmapping.

Bala et al. [131] and Chajdas et al. [132] reduce the computational cost of supersample antialiasing by sampling

shading at greater intervals than geometry and using interpolation. These techniques detect edges to avoid interpolating

shading between unrelated regions. In the absence of edges, shading quality is predicated on shading having low

frequency content relative to the geometry.

In contrast to these techniques, our approach addresses high-frequency and non-band-limited shaders.

Shader Simplification. Several researchers have investigated techniques for accelerating procedural shaders in

contexts with reduced requirements for level-of-detail. Olano et al. [133] present a compiler technique for applying

local transformations to a procedural shader, replacing memory accesses with constant colors. Pellacini’s [134] compiler

technique locally simplifies computational logic in the shader as well as removing texture accesses. His approach uses

a hill-climbing search to generate a sequence of progressively simpler shaders with increasing error relative to the

original.

Sitthi-amorn et al. [122] employ a genetic algorithm that applies local syntactic simplifications to optimize the Pareto

frontier between rendering time and image error. Wang et al. [123] also employ a genetic algorithm to search through

code transformations to optimize a Pareto frontier over time, error, and memory consumption. Their transformations

are informed by modeling the shader function as Bézier functions on the shaded surface.

Rather than addressing rendering time while tolerating a certain amount of infidelity in the resulting image, our

approach explicitly addresses the visual property (greater sampling intervals) that enables previous techniques to tolerate

error in shaders at lower levels of detail. We apply local transformations to the shader program, but produce a single

shader with a dependent frequency spectrum.

Automatic Shader Bounds. Heidrich et al. [116] and Velázquez-Armendáriz et al. [127] describe compiler-based

transformations that automatically augment shaders to also compute approximate bounds on their output value as a

function of the bounds of their inputs. These bounds allow renderers to apply techniques such as importance sampling

to more efficiently converge. The transformations applied by our technique are similar in spirit. However, they are

designed to band-limit the output function instead of quantifying its bounds.

3.7 Conclusion and Future Work

This chapter explores the problem of automatically band-limiting procedural shaders as a special case of our optimization

framework. To the best of our knowledge, this is the first project to address this problem. In general, this is a hard
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problem involving finding a solution to the convolution of an input shader function and a band-limiting kernel

parameterized by the sampling interval. We showed that in certain cases an analytic solution can be achieved and

provide those results for a number of built-in functions that are common in modern procedural shader languages

(table 3.1). We also demonstrated that exact solutions can be obtained for any linear combination or separable product

of these functions. Building upon those insights, we developed a new approximation strategy for the many cases when

an exact solution is not possible. Our approach integrates a meta-heuristic genetic search over possible subexpression

replacements along with a non-linear simplex search over sampling interval parameters. We showed that in some

cases this approximation strategy is able to find visually pleasing results (figure 3.8 and table 3.2) that require far less

computational effort than supersampling. In a few cases, our search failed to find a satisfying result largely due to the

difficulty of this search problem (section 3.5.3).

We see a number of interesting directions for future work. One idea is to study alternative methods of parameterizing

the space of code transformations that are considered during the search. Our genetic algorithm considers the set of

shader functions reachable by replacing a subset of the subexpressions with their band-limited counterparts. However,

as noted in section 3.5.3, a common technique to band-limit certain shaders is to reduce the number of iterations of

particular loops as the sampling interval increases. We also note that more terms of the infinite sum in the band-limited

expression for fractG (see table 3.1) are needed when the sampling interval is small, but that the series may be truncated

earlier when the sampling interval is larger. These examples suggest an explicit transformation that addresses loop

bounds as a function of the sampling interval. Another possibility is to develop closed-form expressions for more

complex expressions directly (i.e., expand table 3.1) instead of manually band-limiting exclusively one-dimensional

functions. This would expand the set of subexpressions that can be exactly band-limited, potentially including some

non-separable functions. Perhaps an approach that considers more function transformations would lead to better results.

It would be interesting to study how the design of the language may assist with this challenging task. As was

demonstrated by the checker1 and checker2 shaders, there are typically many different mathematical functions

that produce the same visual effect. Furthermore, it is frequently the case that one mathematical expression is preferable

in terms of its suitability for this type of analysis (e.g., checker1 permits a better solution than checker2 with our

method). It would be interesting to develop languages or language constructs that force a developer to produce shaders

that permit analytic band-limited versions.
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Output Accuracy and Energy Use

4.1 Introduction

THE use of data centers and warehouse-scale computers (WSCs) has expanded in recent years to support a

growing spectrum of applications [43]. At these scales, energy consumption can have significant economic

and environmental impact. Between 2000 and 2010, data center energy usage more than doubled, accounting

for over 1% of global energy consumption [8] and is projected to cost American businesses $13 billion per year by

2020 [135]. To help mitigate the environmental impact of these computing services, in 2016, Google announced

its commitment to purchase $2.5 billion of renewable energy as part of a long-term goal to use energy exclusively

from renewable sources [136]. The mechanical and electrical systems (such as lighting, cooling, air circulation, and

uninterruptible power supplies) required to support warehouse-scale computation can quadruple [43] the power required

by the computation itself. Because the load on many of these support systems grows with the computational load,

computational efficiency is a significant determinant of the economic and environmental costs of data centers. In this

setting, even modest reductions in energy consumption or heat generation can, through the scale of deployment, produce

significant savings.

One of the difficulties in managing energy usage is lack of visibility into how implementation decisions relate to

energy use [137]. Indeed, one artifact of the large number of variables that influence energy consumption is the wide

variety of techniques that have been proposed to manage it. Researchers have approached energy reduction from several

perspectives, including hardware (e.g., providing for voltage scaling and resource hibernation [138]), scheduling (e.g.,

predicting the interaction between workloads running on shared systems [139]), compilation (e.g., using instruction

scheduling [73] to lower the switching activity between consecutive instructions [140]), and the API (e.g., selecting

low-energy API implementations [137]). These perspectives are largely complementary. For example, a program that

45
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uses a low-energy API may be compiled to minimize switching activity, then scheduled at a reduced priority by the OS

to minimize interference with other tasks, allowing the processor to use a lower frequency/voltage combination. In this

chapter we use our optimization framework to develop an automated approach to reduce energy usage (addressing the

implementation decision challenge with search-based techniques) at the software level. Our approach fits in after API

and compiler techniques but before OS and hardware techniques are applied. This allows us to leverage the sophisticated

optimizations of modern compilers and to avoid the costs of runtime monitoring and just-in-time compilation.

Most existing approaches to energy reduction aspire to be semantics-preserving, avoiding optimization opportunities

that may alter the program’s behavior. However, the growing field of approximate computing [46] exploits the observa-

tion that, for many WSC applications, some variation in the output is easily tolerated, whether due to human perceptual

limitations or to a lack of a single well-defined correct result [47]. For example, this same observation underlies

many “lossy” image, video, and audio compression algorithms, which may introduce some error in reconstructing the

media in exchange for reduced storage and bandwidth requirements. Data center applications, such as video streaming,

may benefit from the same exchange. As a second example, many shopping and streaming services provide lists of

recommended items; the lists should predominantly contain items the user will like, but need not contain all such

items [141]. Although software techniques have received some attention [48, 49, 52], much of the recent work on

approximate computing has focused on hardware approaches [46, 47, 51, 53]. Our insight is to treat approximate

computing as a multi-objective optimization problem to be solved with a genetic algorithm (GA), exploiting the fact that

some transformations will modify the program output to generate a Pareto frontier that explores the tradeoff between

output accuracy and energy use. In chapter 3, we showed that our optimization framework is well-suited to optimizing

output quality; in this chapter, instead of merely mitigating output differences introduced by certain transformations,

we exploit them to achieve larger energy optimizations. Specifically, we use a multi-objective search to determine a

Pareto-optimal frontier of programs that maximize output quality while minimizing energy use.

Thus, in this chapter, we instantiate our optimization framework to implement a post-compiler approximate

computing approach for energy optimization. To achieve this, we select a program representation and transformations

to fit between compilation and execution in the software deployment process. We develop tools and techniques to

measure the energy of a program as part of an efficient fitness function. The rest of this chapter is organized as follows.

Section 4.2 provides background on data centers and energy measurement. Next, section 4.3 describes our proposed

energy measurement system to address the problem of using physical energy measurement in a fitness function. We

discuss the program representation and transformations in section 4.4. In section 4.5 we place our representation and

fitness function into our multi-objective search algorithm. Section 4.6 describes our experimental setup and reports

results. Finally, section 4.7 places our approach in the context of related work and section 4.8 concludes the chapter.
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4.2 Background on Energy and Power

This chapter addresses the problem of energy usage in data centers and particularly in WSCs. In this context, a data

center consists of a collection of computer systems (i.e., the integration of CPU, memory, local storage, etc.), the

communication and storage systems (e.g., network switches, routers, network attached storage, etc.), and support

infrastructure (e.g., cooling, power, lighting, etc.) in a single location. A warehouse-scale computer is a data center

designed to flexibly run very large distributed applications or services [43]. Although WSCs provide a unified platform

on which to run these applications, they need not (and often do not) present the user with the abstraction of a single

very large computer.

Computer systems in a data center consume energy to drive electrical signals on the CPU, memory, motherboard,

network cards and cabling, etc., as well as to move physical media such as hard drives [43]. Electrical resistance and

the first law of thermodynamics mean that regulating and distributing electricity to the various components consumes

additional energy, as do cooling systems to remove the consequent waste heat from the system. Finally, the data center

as a whole uses energy for its own environmental systems (e.g., lighting and air conditioning) as well as to distribute

electricity to the individual computers. The rate at which energy is consumed is called power [142]. The units for energy

and power in the International System of Units (SI) are joules (J) and watts (W) or J s−1, respectively. (The kilowatt

hour (kWh), used for household energy measurement in the US, is a unit of energy equivalent to 3.6 MJ.) For example,

if a server consumes 200 W while rendering a frame of a movie, taking an hour to do so, the energy required to produce

the frame is 720 kJ. Although the companies managing data centers—and their electricity providers—measure the

aggregate energy consumed, to optimize energy consumption on the scale of an individual program requires different

techniques.

4.2.1 Estimating System and Program Energy

There are three main ways to measure or estimate the energy consumption of a computer system: simulation, modeling,

and physical measurement. If a simulator represents the hardware with sufficient detail, it can associate each simulated

activity with an energy cost [143]. As the simulation executes, these costs may be accumulated and reported. For

example, the gem5 simulator was implemented with this level of detail, enabling research into energy-efficient hardware

implementations [144]. This has the advantage of providing very precise control over the set of events that are included

in the energy measurement. However, simulating hardware at a very high level of detail requires a correspondingly large

amount of time—as much as three to six orders of magnitude more time than running directly on hardware [145, 146].

Although several techniques have been proposed to reduce this cost, they cannot eliminate it completely and result in

increased inaccuracy [146, 147].
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A common alternative to simulation is the use of a mathematical model based on performance counters on real

hardware. They work by combining the performance counts—such as number of instructions issued or number of cache

misses—in a mathematical formula designed to approximate the energy used [148, 149]. Apple’s Activity Monitor1

provides a similar estimate of energy, but uses an abstract unit of impact instead of approximating joules. Since the

relevant performance counters can often be associated with individual processes, these approaches enable per-process

energy accounting [148]. However, they depend on coefficients that estimate the energy associated with each counted

event; these coefficients must be learned for each platform [150]. In addition, Haraldsson and Woodward observe that

models may not accurately capture all of the components (e.g., memory, disk drives, network cards, fans, etc.) affected

by the software [151]. These models become increasingly inaccurate as the energy consumption of the un-modeled

components grows.

The most direct way to measure energy is with a power meter (along with a timer). External energy meters work by

measuring the electrical current transmitted to a system or component, either in parallel (e.g., by clamping a sensor to

the wire) or in series (e.g., by plugging the wire into the sensor). Since electrical power is the product of the current and

the voltage, these meters must also measure the voltage on the same circuit to compute the power. Accumulated power

measurements over a known time interval indicate the amount of energy consumed. For example, most houses connected

to the electrical grid have a meter outside that accumulates the kWh of energy transmitted to the house. Commercial

examples of such meters for individual appliances include the Watts up? PRO or Kill A Watt ®. Recently, open-source

projects, such as the emonTx [152] have published designs for building meters for household use. Alternatively, Intel

chips starting with the Haswell microarchitecture include registers that accumulate the energy consumed by certain

large chip components [153]. Although direct measurement techniques avoid the accuracy and calibration issues of

mathematical models and the performance issues caused by simulation, they typically measure the energy of an entire

multi-core CPU or even a whole system, complicating the task of associating energy with a particular program.

4.2.2 Profiling

Recall from section 2.1.2 that a profile is a mapping from program elements to dynamic metrics about those elements.

For example, these metrics may indicate execution counts or energy consumed by that part of the program while

executing indicative workloads. Many profiling techniques work by periodically sampling the desired metric and

associating it with the currently-executing instruction. This has the advantage of reducing the overhead introduced

by the act of recording the metric; such overheads could affect the recorded energy use, for example. As with any

sampling-based approach, these techniques are subject to aliasing if the metric varies too rapidly relative to the sampling

interval, as discussed in chapter 3. In these cases, the profile may be smoothed via convolution to distribute the recorded

1https://support.apple.com/en-us/HT201464#energy, accessed 06/2017.

https://support.apple.com/en-us/HT201464#energy
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metric over nearby instructions [154]. However, certain metrics such as execution counts are not affected by the

recording overhead, and may therefore be collected exactly.

Since profile information is collected dynamically, it is highly sensitive to the workload being executed. Thus, the

more similar the workload is to the program’s actual use in a data center, the more accurate the profile will be. However,

in many cases, the actual workloads are not known in advance, are too numerous, or are rendered impractical to execute

due to the profiling overhead. In these cases, indicative workloads cause the program to approximate the desired

dynamic behavior; careful selection of the indicative workload can improve the approximation and, by extension, the

results of using the profile.

4.3 Energy Measurement

As discussed section 4.2, energy measurement may be approached in several ways, including simulation, energy models,

and physical measurement. We reject simulation, which is often orders of magnitude slower than running directly on

hardware [146], as too time-consuming for our fitness function. We conducted a preliminary investigation into using an

energy model, but found that the potential for model inaccuracies can have significant negative impact. Specifically,

using the model suggested by Schulte et al. [155], we identified a variant of freqmine with over 70% predicted energy

improvement, but only 2% actual improvement. To avoid misleading the search to such a significant degree, we decided

to use physical measurements in our fitness function. We discuss our choice of measurement device in section 4.3.1 and

address our approach to mitigating noise and the problem of multiple energy consumers in section 4.3.2.

4.3.1 Measurement Apparatus

Practical fitness functions must be both fast and accurate. In a single search, the fitness function may be evaluated on

tens of thousands of variants (cf. sections 3.5.1 and 4.6.1); if each evaluation requires just one second to complete, the

fitness function could be solely responsible for tens of hours of search time. Longer fitness evaluations increase the

search time proportionally. As discussed below (section 4.3.2), fitness evaluations of programs running on different

cores may not be usefully comparable, preventing us from leveraging parallelism to accelerate the search. At the same

time, an inaccurate fitness function can cause the search to spend time evaluating undesirable variants while ignoring

desirable ones. Although genetic algorithms, such as we use in section 4.5, often perform well in the presence of

noise [27, 156, 157], noise mitigation techniques, such as increasing population size and acquiring multiple fitness

estimates, are often necessary [36]. Notably, both of these mitigation strategies increase further the number of fitness

evaluations conducted during the search.

To serve as part of the fitness evaluation for our experiments, we require an apparatus capable of measuring

whole-system energy of individual server systems without hardware modifications. This apparatus must also have
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suitably fine-grained time and energy resolution. For example, with a device that reports energy consumption once

a second, recording one extra reading after running our freqmine benchmark would increase the measured energy

consumption by over 10%, potentially masking significant energy reductions. With a device that reports ten times a

second, one extra reading would represent only a 1% increase. Additionally, to minimize noise due to overhead on the

system under test, we require that the device be entirely self-contained without relying on monitoring software running

on the system under test. As a practical matter, we also require it to be sufficiently cost effective to run several distinct

experiments in parallel.

These constraints prevented us from using consumer-grade energy meters, such as the Watts up? PRO device.2

These meters are typically designed for long-term monitoring and are not designed to capture rapid changes such as

those caused by relatively short program executions. Although the Watts up? PRO meets several of our constraints, we

found the response time too slow (1 Hz) for our experiments. In addition, while several solutions for measuring energy

on mobile or embedded devices, such as LEAP [158], JetsonLeap [159], or the Monsoon Power Monitor3 exist, these

solutions are incompatible with the server class systems that run data center workloads. The lack of available energy

measurement devices that met our requirements for server systems prompted us to construct our own energy meters.

Our final energy energy meter is shown in figure 4.1. We based our design on the emonTx V3 energy monitoring

node [152]. This open source design consists of an ATmega328 microcontroller with sockets to connect an AC-AC

voltage adapter and up to four current transformers. The microcontroller (A in figure 4.1(a)) is programmable using the

Arduino API [160]. The current transformers (D) read the varying amperage on up to four separate lines (C) while

the voltage adapter (E) reads the varying voltage from the same power source. We evaluated several different current

transformers and chose Accu-CT ACT-0750 current transformers4 rated for 5 A with the 1 V output option because our

testing showed that these gave us the most precise measurements in range of powers used by our systems (i.e., 40 to

100 W).

Although this baseline hardware provides us with a cost-effective solution for high resolution time and energy

measurements, we found that the default firmware needed to be completely rewritten to meet our time resolution

requirements. Our software running on the microcontroller combines the signals from the current transformers with the

voltage reading from the AC-AC voltage adapter to compute the real power on each line. This power is reported via a

serial bus. Our present prototype implementation is capable of reading the inputs from the four current transformers and

the voltage adapter at about 1200 Hz, which is significantly faster than can be transmitted via the serial controller. We

therefore aggregate a configurable number of measurements together and report the average power usage less frequently.

For all experiments in this chapter, the microcontroller reported measurements on the serial bus at 10 Hz. This is ten

2https://www.wattsupmeters.com/secure/products.php?pn=0, accessed 06/2017.
3https://www.msoon.com/LabEquipment/PowerMonitor/, accessed 06/2017.
4https://ctlsys.com/act-0750_series_split-core_current_transformers/, accessed 06/2017.

https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.msoon.com/LabEquipment/PowerMonitor/
https://ctlsys.com/act-0750_series_split-core_current_transformers/
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(a) Components of a single measurement circuit. (b) Rack-mounted energy measurement circuits.

Figure 4.1: Custom energy meter setup. In (a), we show the components of a single measurement circuit outside of its
enclosure. In (b), we show the final assembly of 10 circuits that was used to conduct the experiments in this chapter.
The three emonTx V3 devices in the center are connected to three Raspberry Pis at the center-right. Each socket housing
contains a components C and D from (a). Each emonTx measures the power usage of up to four connected sockets.
The Raspberry Pis computes the energy usage for each channel of the connected emonTx and the readings available via
TCP/IP over ethernet.

times faster than the sampling rate that was possible with the Watts up? PRO energy meters, and supports sampling

energy consumption at a rate that makes large-scale searches feasible.

The code to convert the integral sensor readings into floating point current and voltage readings requires coefficients

to scale the values properly. We calibrated these using a Watts up? PRO device as a baseline. Although the Watts up?

PRO is not suitable for fitness evaluations, as a commercially calibrated meter, it is suitable for use as a baseline for

calibration, which can tolerate slower responses. Note that properly calibrating real power measurements requires a

resistive load such as a high-wattage light bulb or small heating element so that real power and apparent power are

equal [161, § 8.4]. We chose to use a lamp with three 40-watt incandescent light bulbs as a load large enough that the

limited power resolution of the Watts up? PRO provided four significant digits. After calibration we collected 2500

readings of the resistive load to confirm that the power readings from the microcontroller were reliable. We confirmed

that they were approximately normally distributed (Shapiro-Wilk normality test, p > 0.1: large p-values fail to reject

the null hypothesis that the distribution is normal [162]) and showed a small standard deviation relative to the average

value (about 0.7%).

To support running experiments in parallel and measuring the energy usage of programs running on multiple
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machines, we desired a solution that made the multiple separate energy measurements from a single microcontroller

available via ethernet. This design allows the energy measurements to be dynamically distributed to different machines

as necessary. We accomplished this by connecting the output of the microcontroller to the GPIO pins of a Raspberry

Pi 3 [163] (B in figure 4.1(a)). We wrote a simple tool to read the power measurements from the GPIO pins, multiply

by the time since the last reported measurement to obtain energy, and make the result available via TCP/IP. Note that

the Raspberry Pi is simply a convenient system to distribute the energy readings. It is straightforward to connect

the microcontroller to any system with a USB port using a UART to USB cable, allowing that system to distribute

measurements or simply consume them directly.

As of 2017, the hardware required to monitor the energy consumption of a single machine costs $244. However, a

single emonTx v3 node can simultaneously measure four different current transformers; the additional cost of measuring

up to three more machines is only $47 per current transformer. Thus, the final hardware cost to monitor four machines

is $385, just under $100 per machine. The completed apparatus, with capacity to measure the energy consumption of

10 machines (i.e., two emonTx devices measuring the power used by four machines each, with another measuring two

machines), can be seen in figure 4.1(b).

This system provides fast, reliable measurement of a constant load, showing less than 1% deviation in the measure-

ment of reference light bulbs. However, the energy usage of a computer system is much more complicated. In the next

section, we discuss measures to mitigate measurement variation due to the server system itself.

4.3.2 Configuring the System to Minimize Noise

In addition to precise measurements of energy consumption from our meters, we also desire a low level of noise in the

energy consumed by the systems running our search. That is, the system should add minimal variation to the measured

energy; the less variation that must be ascribed to the system, the more certain we can be that any variation in energy

level is due to the program being evaluated. We identify two broad categories of variation introduced by the system:

energy that is unrelated to the program being evaluated (e.g., energy used by other processes running on the same

system) and energy associated with the way in which the program is executed.

To reduce the variation in energy consumption due to different hardware platforms, we first ensured that all systems

used for our experiments were purchased at the same time, to the same specifications, from a single distributor. We

mitigated variation due to operating system activities by installing the Ubuntu Server 16.04.1 image (which is smaller

than the desktop image) and only adding the minimum set of packages (mostly libraries) required to compile our

benchmarks. Using a relatively small base distribution and adding few other packages reduced the chance that an

unexpected cron job or daemon service would run during a fitness evaluation, which would add extra energy to the

measurement. To limit race conditions with the upstream package maintainers distributing updates, we installed all
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packages and software updates simultaneously to all machines. Next, we disabled dynamic frequency scaling governors

by adding the argument intel_pstate=disable to the kernel boot arguments. Frequency scaling is used by the

system to adjust power consumption; as with unexpected daemon processes, our search could misinterpret unexpected

changes to the system frequency as an artifact of the program being evaluated. After the search, frequency scaling can

be reenabled to take advantage of the additional power savings.

The second category of variation—variation associated with running the variant program—may be due to non-

determinism in the behavior of the program itself or to non-determinism in which hardware resources are used to run

the program. To mitigate the former, benchmarks were run in single-threaded mode wherever possible. With regard

to the latter, manufacturing variations in the hardware itself can add surprisingly significant variations to the energy

consumed while running a program. Over the course of preliminary runs, we detected unexpected variance that we

were unable to attribute to our measurement equipment, the operating system, frequency scaling, or program behavior.

Instead, we discovered that the differences were due to the CPU cores on which the program ran. In particular, the

average energy consumed while running the benchmark on one core could be significantly higher than when running the

same benchmark on another core. For example, on one of our systems we found about 0.4 J difference between running

the benchmark on cores 5 and 6 (we restricted the OS to only schedule normal tasks to core 2 in both cases). Since the

measurements on the same cores showed a standard deviation around 0.2 J, allowing programs to be scheduled to either

core would represent a 100% increase in the measurement uncertainty.

To mitigate this source of uncertainty, we restricted the scheduler to always assign the fitness evaluation to one

core on a given system and to assign all other processes to a second core. To determine which cores to use for each

experimental system we measured the energy used while running a particular benchmark under each possible allocation

of two cores. We then selected the combination with the smallest variance and used it for all experiments on that system.

Although we carefully restrict the scheduler and select cores during the search, the subsequent evaluation demonstrates

that the optimizations that we find do generalize to other cores and other machines with the same hardware.

4.3.3 Remaining Sources of Noise

The measures described above mitigate most of the noise we observe. However they do not eliminate noise completely.

Some remaining potential sources of noise include environmental factors such as ambient temperature, the physical

limitations of the measuring device, periodic system maintenance tasks scheduled by the Linux kernel, scheduling

delays between opening the TCP/IP connection and starting the subprocess, and communication delays on the TCP/IP

or serial communication channels. To address these and other, less predictable sources of noise, we follow the common

procedure of averaging several energy measurements to compute the fitness [36].
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4.3.4 Measuring Program Energy

This setup permits our fitness function to use the following procedure to measure the energy consumed by a process: on

the machine that will run the process, (1) make a TCP/IP connection to the Raspberry Pi to receive continuous energy

measurements, (2) launch the process and record the energy while waiting for it to complete, and (3) close the TCP/IP

connection. Although it seems that the overhead from networking could impact our measurements, Langdon et al. have

shown that this effect is negligible at the energy and time scales of our benchmarks [164].

The workload used when running the program during step (2) above is of critical importance. It must exercise the

parts of the program to be optimized, and it should cause the program to run long enough that the performance may be

measured accurately, but no longer. The first requirement stems from the fact that, unless the optimized part of the

program is executed, there will be no way to measure the effect of the optimization. The second requirement is purely

practical, since longer fitness evaluations result in longer search times.

4.4 Post-Compiler Representation

Having described our process for measuring the fitness of program variants, we now discuss how we generate those

variants. The goal of providing post-compiler optimizations requires that we operate on programs produced by compilers.

We choose to manipulate programs written in assembly language. Assembly language is commonly available as a

compiler output format [29], permits optimizations in the spirit of instruction scheduling [73] and superoptimization [82],

and has previously been successfully used as the basis for post-compiler optimizations [155].

Within this chapter, we consider an assembly language program to consist of a set of files, each of which contains

an ordered list of lines. Each line is uniquely identified by a location, which we define to be a tuple containing the

assembly file name and the number of the line within that file. Lines may be instructions, directives, labels, or comments.

Instructions represent the operations to be performed by the CPU when the program is run; they translate more-or-less

directly into the binary encoding of the operation in the executable program. Directives are commands to the program

processing the assembly file. There are a number of directives for different purposes, including providing information

about the program (e.g., debugging information), embedding literal data, and specifying instruction or data alignment.

Labels identify the next instruction, for example, as the target of branch or jump instructions. The files comprising

an assembly program are transmuted into an executable by assembling them—that is, converting them into object

code—and linking the object code into the executable. We refer to this process as building the program.

Previous work applying search-based software engineering (SBSE) to assembly programs used a representation

that very closely matches the assembly code itself [154]. However the sheer scale of many WSC applications—Kanev

et al. reported in 2015 that binaries running in Google’s data centers frequently exceeded 100 MB [165]—precludes
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such a straightforward implementation. A population of hundreds of such programs would consume large amounts

of memory unnecessarily, since many variants in the population would have very similar source code. Instead, we

adopt a patch-based representation [166, 167] in which genomes consist of list of transformations that, when applied to

the original program, produce the desired variant. Similar to previous work [154, 155], we implement three kinds of

transformations to assembly programs: delete a line, swap two lines, and copy a line into a new location. The “target”

of a transformation is the location of the line to be deleted, of either line to be swapped, or of the line after which a new

line is to be copied. The “source” of the copy transformation is the line to be copied after the target line. Since the

number of transformations applied to any variant during the search is small relative to the size of a program, this choice

of representation results in significant memory savings during the search.

As the size of the program increases, so too does the time required to build and evaluate each variant, increasing

the time to search a fixed number of variants or reducing the number of variants that may be searched in a fixed time.

In the following sections, we develop a number of heuristics to avoid evaluating variants that have little chance of

showing improved fitness. We divide these into heuristics that may be evaluated statically, without reference to the

particular workload in the fitness function (section 4.4.1) and those that take the fitness function workload into account

(section 4.4.2).

4.4.1 Static Heuristics

Given a sufficiently large supply of lines to copy, these transformations can produce any desired program by using

the copy transformation to insert the lines of the desired program then using delete to remove any undesired lines of

the original program. However, this requires a number of transformations on the order of the combined lengths of the

original and desired programs. Even allowing for the smaller set of programs reachable via a much shorter sequence of

transformations, the sizes of WSC programs results in an enormous number of programs that the search may potentially

evaluate. Both the copy and swap transformations involve selecting two independent locations in the program (i.e.,

the locations of the two lines to swap or one location to copy from and another to copy to). However, many of these

O(N2) choices may be redundant, since certain instructions, such as those saving space for local variables at the

beginning of a function, are duplicated exactly throughout the program. In fact, as many as 97% of the lines of larger

assembly programs may be duplicates of the remaining 3% (see table 4.1). We therefore remove duplicate lines from

consideration before selecting a line to copy, thus avoiding the cost of evaluating the fitness of the many identical

programs that might otherwise be generated.5

5Related work in automated program repair [121] avoids duplicate fitness evaluations by caching fitness values, keyed by a hash of the program
source code. Although we employ this optimization as well, the heuristics in this section are designed to avoid evaluating equivalent programs with
different source code (cf. AE [168]).
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In addition to redundant programs, naive application of our transformations may result in programs that cannot be

successfully built, much less executed. To avoid the cost of generating and attempting to build such doomed variants,

we introduce the following heuristics.

• When selecting target locations for the copy transformation, we exclude from consideration both assembly

directives and labels that are not used as jump targets. For example, in listing 4.1 copying an instruction after

line 1 has the same functional effect as copying it after line 2 or line 3. Our heuristic considers only the insertion

after line 1.

• We exclude labels from consideration when selecting targets for the delete transformation and when selecting

lines to insert using the copy transformation. Deleting a label that is referenced by some instruction or inserting a

copy of label that already exists would prevent the program from building. Deleting or inserting a copy of a label

that is never referenced would produce no change in the program’s behavior, resulting in a redundant variant.

• When selecting lines for the swap transformation, we only allow labels to be swapped with lines in the same file.

This is because swapping a label into a different file would produce the same effects discussed in the previous

heuristic.

1 jle .L91
2 .p2align 4,,10
3 .p2align 3
4 movl %r13d, (%r14)

Listing 4.1: Example of redundant insertion locations in sequence of assembly instructions. This code is taken
from the blackscholes benchmark. Copying an instruction after line 1 has the same effect as copying it after
line 2 or line 3.

4.4.2 Dynamic Heuristics

Just as inserting an unused label into a program will not alter the program’s behavior, inserting an instruction that is

not used (e.g., because the workload does not exercise the module containing the new instruction) is unlikely to affect

energy usage. This leads to our insight that we can adapt the indicative workloads of profile-guided optimization (PGO),

to target optimization efforts on a particular region. Previous work on program repair has used profile information for

fault localization [121, 154], directing repair effort to regions associated with buggy behavior. We also use profiling, but

instead use it to direct our search to transform regions associated with frequent execution, which are hopefully also

associated with high energy use. Specifically, we profile the original program’s behavior using the workload from our

fitness function, collecting the instruction execution counts. We then adjust the probability that an instruction is the
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target of a transformation in proportion to the execution count of that instruction in the profile. Since the profile describes

the same behavior of the original program that we use to measure its fitness, we expect that regions of instructions with

high counts in the profile are likely to magnify the effect of small improvements in energy consumption.

4.5 Search Algorithm

Our search operates on the compiled assembly program representation after compiler optimizations have been applied.

We use this program to seed an initial population for a genetic algorithm as described in section 2.2.3. To evaluate the

fitness of each variant in the population, we build the program and run it on the representative workload, measuring

energy using the meter described in section 4.3. We then measure the difference in the program output, relative to

the output of the original program run on the same workload. These two quantities—the program energy and the

output error—constitute the objectives of our search. Note that while this error measurement is similar to a test case (it

exercises the program on an input and compares the result to the desired output), in this case, the comparison to the

desired output must result in a continuous estimate of quality rather than a binary pass or fail. We use a multi-objective

search algorithm (NSGA-II [169]) to optimize both objectives simultaneously, allowing us to realize optimizations

made possible by allowing slightly different output.

The final result of this search is a set of genomes representing the final Pareto frontier. Each genome in the set

includes some number of transformations that, when applied to the original program, produce a variant with Pareto

non-dominated fitness. However, due to the stochastic nature of the search, many of these transformations are quite

often unnecessary to produce the desired fitness. We include a final post-processing phase to remove these superfluous

transformations to reduce the chance that they alter the program’s behavior on some untested corner case, and to

simplify the task of understanding the identified optimizations. In the following sections, we describe the multi-objective

genetic algorithm (section 4.5.1) and our post-processing algorithm for identifying and eliminating neutral mutations

(section 4.5.2).

4.5.1 Multi-Objective Search

We initialize the GA population with the original program and PopSize−1 mutants, where PopSize indicates the desired

number of individuals in the population. The NSGA-II algorithm is a generational genetic algorithm. In each generation,

after evaluating the multi-dimensional fitness of each individual in the current population, the entire population is sorted

using a non-dominated sorting algorithm [169]. This allows parents to be selected via tournament—two individuals

are selected randomly with replacement, then the one with a better fitness according to the total ordering enforced

by the sort is selected to win the tournament. Every two tournament winners undergo crossover, producing children

which are mutated, and the mutants are set aside in a new population. Our algorithm is elitist: once the new population
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contains PopSize variants, the two populations are concatenated, sorted again, and the PopSize variants with the best

fitness according to the sort are retained in the next generation. This process continues until a predefined number of

generations have occurred. We save the frontier of Pareto non-dominated variants from the final generation as the result

of the search.

4.5.2 Edit Minimization

The genomes of the individuals on the final Pareto frontier generated by NSGA-II may include transformations that do

not impact the energy use or measured error of the program on the workloads used by the fitness function. We therefore

include a final minimization step to eliminate transformations that do not improve the fitness metrics.

The basis of our minimization algorithm is Delta Debugging [170], which takes as input a set of edits and identifies

a 1-minimal subset of those edits that maintain the optimized performance as measured by the fitness function. The

Delta Debugging algorithm runs in linear time and requires evaluating the fitness of a new collection of edits at each

step. Due to the stochastic nature of energy measurements, we collect several samples of the fitness and apply a

one-tailed Wilcoxon Rank-Sum Test [171] to determine whether the distribution of fitness values is worse than the

distribution of values collected for the optimized variant. If the test for either objective indicates a difference between

the distributions with p < 0.05, we treat that variant as “unoptimized.” In all experiments described in this chapter, we

collected at least 25 fitness samples for each Delta Debugging query, increasing this number as necessary so that the

relative standard error was below 0.01. Increasing the number of samples increases the power of the statistical test,

allowing it to distinguish the fitness of different genomes more effectively. We found that starting with 25 and using the

relative standard error threshold provided a good tradeoff between runtime and smaller minimized genomes.

4.6 Evaluation

As discussed in section 4.5, the final result of our search and post-processing is a Pareto frontier of minimized genomes

representing the best tradeoffs between output accuracy and energy use that the search discovered. This frontier allows

the user to select which variant provides the most desirable tradeoff between these two properties. To evaluate the

effectiveness of our technique at optimizing programs, we identify a maximum level of acceptable error for each

benchmark and measure the largest energy reduction our search identified without producing more error. We also

investigate the energy reduction achieved when no error is considered acceptable.

We introduce our benchmarks and experimental methodology in section 4.6.1. Then, in section 4.6.2, we discuss

the results of our search at no error and human-acceptable error.
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Unique Executed

Benchmark Assembly Lines Lines % Lines % Tests (s) Error Metric

blackscholes 12 437 3 504 28 637 5 2.7 RMSE
bodytrack 198 462 62 544 32 23 746 12 3.3 RMSE
ferret 80 811 26 883 33 15 181 19 6.4 Kendall’s τ
fluidanimate 7 511 4 436 59 3 828 51 2.7 Hamming distance
freqmine 26 281 12 115 46 10 404 40 7.4 RMSE
swaptions 55 753 14 911 27 2 911 5 3.2 RMSE
vips 822 655 160 075 19 24 000 3 18.1 CIELAB distance
x264 205 801 58 754 29 41 063 20 5.7 CIELAB distance

blender (car) 17 559 869 1 574 349 9 256 687 1 17.6 CIELAB distance
blender (planet) - - - 221 397 1 10.6 CIELAB distance
libav (mpeg4) 22 831 124 698 445 3 42 747 0 1.3 CIELAB distance
libav (prores) - - - 34 634 0 2.7 CIELAB distance

Total lines 43 128 694 2 836 551 677 235

Table 4.1: Data center benchmark applications. The benchmarks taken from the PARSEC suite are grouped at the top
of the table. The blender and libav benchmarks each have two workloads; entries containing “-” indicate that
the value is the same for the second workload. The columns indicate, from left to right, the name of the benchmark
program, the number of lines in the compiled assembly, the number of those lines that are unique, the percentage of
lines that are unique, the number of lines executed, the percentage of lines executed, the duration of the test workload,
and the metric used to measure output error.

4.6.1 Benchmarks and Experimental Setup

Table 4.1 lists the benchmarks we use in our evaluation. We selected most of our benchmarks from the PARSEC

benchmark suite [172] to allow direct comparisons with previous work [52, 155]. These benchmarks were designed to

mimic the behavior of data center applications.

We also include two larger programs to investigate the capability of our implementation to scale to more realistic

program sizes. First, we selected blender, a large 3D computer graphics application supporting a wide variety of tasks

such as scene and character design as well as physics simulation and rendering. Second, we chose libav, a collection

of audio and video processing libraries for manipulating and encoding multimedia. Both types of software are often used

in large-scale server environments, and blender and libav are mature, production-scale programs that we believe

represent realistic targets for optimization using our framework. The former project has been used for visual effects in

the movie industry [173], while the latter is a fork of the FFmpeg encoder, which is used as a backend for video players

(such as VLC [174]) and video streaming websites (including YouTube [3]). We note that libav and blender

together are 28× the combined sizes of the PARSEC benchmarks. They allow for a more indicative assessment of

our algorithm’s ability to scale to larger datacenter-scale applications [165]. Unlike the PARSEC benchmarks, these

programs incorporate a number of independent sets of features; we therefore include two different workloads for each

to investigate optimizing separate features.

Each benchmark has an associated indicative workload used as a target for our optimizations. The PARSEC



Chapter 4 Output Accuracy and Energy Use 60

benchmarks are distributed with several workloads; we used the same workloads as Schulte et al. [155] used for their

experiments. For the blender workloads, we render scenes downloaded from the project’s demo files web page.6 We

adapted the libav workloads from the project’s test suite.

Profile Collection

As described in section 4.4.2, we use profiles of execution counts to guide our search toward transformations in regions

that are frequently executed. Intuitively, these regions are more likely to have a significant impact on the energy use of

the program as a whole. Recall (section 2.1.2) that a profile maps metrics, in this case execution counts, to program

instructions. For the experiments in this chapter, we used Pin [175] to instrument basic blocks—sequences of assembly

instructions with one entrance and one exit—and record the total number of times they were executed. Since executing

any instruction in a basic block entails executing every instruction in that block, this gave us execution counts for every

instruction. Table 4.1 shows the number of lines with non-zero execution counts in our profiles.

Error Metrics

Our multi-objective search algorithm considers both energy usage and output error. We describe our mechanism for

measuring energy usage in section 4.3. However, the selection of error metrics that correlate with human perception of

error inherently requires some amount of domain knowledge. The functions we use to compute this comparison depend

on the benchmark, and are listed in table 4.1. We selected our error metrics based on each benchmark’s documentation,

targeting the primary user-visible output for benchmarks that produced more than one output.

To measure the output error for a variant, we compare its output to a reference output produced by the original

program. Six of our benchmarks (two workloads apiece for blender and libav, plus vips and x264) use

“CIELAB distance” as their error metric. All of these benchmarks produce images (or movies, which we treat as

sequences of images) as their primary output. We compute the difference between the candidate and reference image

as the total L2 distance in the CIELAB color space [176] between pairs of pixels. (This is the same difference

comparison presented in section 3.5.1, but here used with a perceptually-uniform color space.) The primary outputs

of blackscholes, bodytrack, freqmine, and swaptions are vectors of numbers; for these benchmarks, we

calculate the root-mean-square error (RMSE) relative to the reference vectors. The ferret benchmark computes a

number of image similarity queries; for each query, the output consists of a list containing the names of images, ordered

by similarity. For this benchmark’s error metric, we use Kendall’s τ , which quantifies the similarity of order between

two sequences. Finally, fluidanimate’s output is a serialized C data structure; since this admits less human intuition

about the meaning of “acceptable” levels of error, we simply compute the Hamming distance between the two files.

6https://www.blender.org/download/demo-files/, accessed 05/2015.

https://www.blender.org/download/demo-files/
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Human Acceptability

The error metrics we selected are intended to correlate with human perceptions of error. That is, the metrics should

assign larger error to outputs that humans would rate as less accurate. However, the these metrics are only able to

approximate human perception to a greater or lesser degree. Moreover, the degree of accuracy required may be different

in different situations. Thus, it remains necessary for a human to make the final decision as to which variants on the

Pareto frontier are acceptable.

In our experiments, we used the following protocol to determine the variants that demonstrated an acceptable level

of error. We manually inspected the outputs of the minimized variants in the final Pareto frontier determined by the

search (see section 4.5). For the benchmarks for which the primary outputs are images or movies (blender, libav,

vips, and x264), we considered the output unacceptable if it showed any noticeable distortion on casual viewing. We

performed a visual comparison for bodytrack as well, since its secondary output is an image in which a person’s

torso, limbs, and head are identified by boxes. We considered the bodytrack output unacceptable if the image

contained the wrong number of boxes or if the boxes did not align with the person in the image. Both blackscholes

and swaptions output lists of computed values for financial instruments; we considered these outputs acceptable if

the calculated values were all within 5% of the reference values. We used the same threshold of acceptability for the list

of frequency counts output by freqmine. We considered the lists of names of similar images produced by ferret

to be acceptable if at least five image names in each list appeared in the corresponding list from the reference output.

Finally, since the output fluidanimate is a serialized C data structure, admitting little human intuition, we only

considered output that was identical to the reference to be acceptable.

These criteria for acceptability are necessarily somewhat subjective; other observers may find the 5% threshold too

permissive for swaptions, for instance. Indeed, we consider the subjectivity of acceptability to be a strong argument

in favor of producing a Pareto frontier instead of a single variant optimized under a predefined error threshold.

Comparison to Existing Techniques

We identified two previously published techniques to compare against. The first is GOA, another post-compiler

optimization technique based on a genetic algorithm [155]. Their approach only addresses program energy usage,

requiring that the optimized program produces identical output to the original, and does not incorporate our heuristics

for guiding the search. The second is loop perforation, which transforms loops to skip iterations [52], for example,

by only executing every other iteration. Unlike GOA, the motivation and evaluation of loop perforation includes

consideration of the tradeoff between output accuracy and energy. Both of these techniques were originally evaluated

on subsets of the PARSEC benchmark suite.
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Experiments

We ran our technique on each benchmark using a PopSize of 512 individuals, the same size population Schulte et al.

used for their single-objective GA. For all of the PARSEC benchmarks, we ran the search for 128 generations, resulting

in 65 536 total fitness evaluations. In all cases except vips, this allowed the search to complete in under 72 hours,

essentially “over the weekend.” (The search for vips took longer than expected, either because we mistakenly used a

different workload than Schulte et al. or because that workload takes significantly longer on our machines than the

ones they used.) Note that, in addition to only considering the single-objective search, Schulte et al. reported results

after 262 144 fitness evaluations, a significantly longer search than we conducted. With respect to identifying energy

optimizations that produce no error, both of these differences should tend to favor their results relative to ours, since

their search had a larger budget with which to evaluate variants to find optimizations and was not directed to expend part

of that budget exploring optimizations that produced output containing error. Since the workloads for blender take

much longer to process than most of our workloads, we only ran 64 generations, so that those searches completed in a

week. Although the nominal workload durations for libav are in line with the PARSEC workloads, we discovered

that the search took significantly longer than we expected; we were forced to terminate these experiments after a month

of run time. We only consider the results after 32 generations for the mpeg4 workload and after 64 generations for the

prores workload.

To facilitate evaluating the effectiveness of our search heuristics (sections 4.4.1 and 4.4.2), we conduct experiments

using no heuristics, only the static heuristics, only the dynamic heuristics, and both heuristics together.

4.6.2 Results

Table 4.2 summarizes the results of our experiments. Based on these results, we can group the benchmarks into three

overlapping categories. The first category contains blackscholes, swaptions, and vips, benchmarks on which

we find significant energy reductions with no error, whether we employ our heuristics or not. We note that these are the

same benchmarks on which Schulte et al. found their most significant improvements and that their results are consistent

with the magnitude of improvements that we found, despite their longer search and focus on optimizations that produce

identical output.

The second category consists of those benchmarks (bodytrack, ferret, swaptions, vips, x264, blender,

and libav) for which we found significant energy improvements while maintaining an acceptable level of error. Fig-

ure 4.2 demonstrates this tradeoff for the blender benchmark’s car workload. The figure shows energy reduction

along the X axis, with error along the Y axis. The points in the figure represent the energy reduction and output error

observed with the programs along the Pareto frontier, with minimum error at the bottom-left and maximum energy

reduction at the top-right. The program represented by the lower-left point produces the same image as the original
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% Energy Reduction

No Heuristics Best Heuristics

Benchmark No Error Acceptable Error No Error Acceptable Error

blackscholes 91 91 92 92
bodytrack 0 0 0 59
ferret 0 30 0 30
fluidanimate 0 0 0 0
freqmine 0 0 8 8
swaptions 39 68 39 68
vips 21 29 21 29
x264 0 65 0 65

blender (car) 0 0 1 10
blender (planet) 0 0 0 0
libav (mpeg4) 0 0 0 36
libav (prores) 3 3 3 92

Average 13 24 14 41

Table 4.2: Energy reductions found by our technique. We present the largest energy reductions found while maintaining
identical output to the original program (“No Error”) and while maintaining an acceptable level of error, as described
in section 4.6.1 (“Acceptable Error”). No amount of error was deemed acceptable for fluidanimate. We include
the “No Heuristics” columns to highlight the effectiveness of our heuristics at directing the search toward profitable
transformations.

program (indicated with “No error”) using 1% less energy. The image meeting our definition of acceptability (indicated

with “Human acceptable”) was produced by the third program in the frontier, moving from left to right, using 10% less

energy than the original. Although this represents the acceptable level of error, based on the guidelines we established

above, different people or different situations may admit more or less error. For example, some users may find the

images on either side of the one we selected to be the most acceptable in certain situations, leading to either 6%

or 15% energy reduction instead. Recall from chapter 1 that we desire exactly this capability: from a single initial

implementation, we automatically generated a range of implementations with different non-functional properties from

which the user can select the best tradeoff for their situation.

The third category, containing bodytrack, freqmine, blender, and libav, shows significant improvement

in the energy reductions when our heuristics are employed in the search. Figure 4.3 shows the Pareto frontiers our

search discovered for the libav benchmark running the prores workload. Without applying any of our heuristics

(figure 4.3(a)), our search was unable to find any useful tradeoffs. However, using the static heuristics (figure 4.3(b)),

dynamic heuristics (figure 4.3(c)), or both (figure 4.3(d)), it discovered a number of programs generating different

balances of energy usage and error. In particular, the dynamic heuristics enabled the search to find programs that use

significantly less energy while producing very little error. Note, however, that the dynamic heuristics are not strictly

better than the static; for example, the search found the largest energy reductions for freqmine using the static

heuristics.
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Figure 4.2: Annotated Pareto frontier for the blender benchmark running the car workload. The X and Y axes show
energy reduction and output error, respectively. The points in the graph represent the programs along the frontier; the
images produced by selected programs are shown around the edge of the figure.

As previously noted, our technique found energy improvments with identical output comparable to those seen by

Schulte at al., and, when allowing some differences in the output, found signficantly larger improvements. We also

compared our technique to loop perforation, which, like our approach, considers both energy and output accuracy

objectives. We present the Pareto frontiers generated by our technique and loop perforation in figure 4.4; as with all

frontiers presented in this chapter, the combination of large energy reduction and low error appears in the lower-right

corner. As can be seen in the figure, the frontiers identified by our technique for blackscholes, swaptions, and

x264 dominate or coincide with the frontiers generated with loop perforation. However, the frontiers for bodytrack

and ferret cross each other; some of the points on the loop perforation frontier dominate some of the points on

our frontier. In such cases, more knowledge of the user’s preferences is necessary to determine whether the preferred

tradeoff was generated by one technique or the other. In the absense of such knowledge, the hypervolume indicator

(IH ) is often used to evaluate the quality of a set of non-dominated points [37]. The hypervolume indicator of a Pareto
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(b) Static heuristics.
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(c) Dynamic heuristics.
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Figure 4.3: Comparison of search results using different heuristics. All results are for the libav benchmark running
the prores workload. The Pareto frontier for the control (no heuristics) in (a) contains just one point.

frontier is defined as the measure (that is, the area in our two-dimensional setting) of the points dominated by frontier.

Computing this for ferret shows that for our technique, IH = 86%, while for loop perforation, IH = 70%. That is,

our technique found optimizations that dominate more of the design space than were identified by loop perforation.
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Figure 4.4: Comparison of our technique to loop perforation. The Y axes for ferret and x264 are in percentages,
since the maximum possible error is well defined. Since the other benchmarks use the RMSE metric, the maximum
error is in principle infinite and scaling to percentages is not possible. The Pareto frontiers our technique produced
for blackscholes, swaptions, and x264 dominate the frontiers produced by loop perforation. The situation for
bodytack and ferret is more nuanced.

4.7 Related Work

In this section, we discuss the broader context of energy optimization research as it relates to the work described in this

chapter.

Semantics-Preserving Techniques. As discussed in section 2.1, semantics preserving optimizations have been well

studied.

Profile-guided optimization uses profiles of program behavior to guide decisions about which optimizations to

apply [86]. This allows the realization of optimization opportunities that cannot be determined statically, particularly

optimizations that may improve performance under some conditions while reducing performance under others [85, 87].

Using profiles, these tradeoffs can be applied to improve the performance under the usual operating conditions of the

software. At a high level, we also use profiles to identify the portions of a program where optimizations may have the
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most benefit. However, unlike most profile-guided optimizations, we do not determine in advance what transformations

to apply to sufficiently frequently executed code.

Superoptimization techniques [82, 84] attempt to search for the optimal sequence of machine instructions to

implement desired functionality. Due to the exponential number of sequences containing a given number of instructions,

these techniques are limited to very short sequences. Additionally, they are frequently limited to implementing loop-free

code to simplify the task of determining whether a candidate sequence matches the desired functionality. In contrast,

our approach operates on whole programs and relies on tests to validate functionality.

A number of approaches, such as voltage scaling [138] and clock gating [177], attempt to reduce the energy

consumption of hardware by placing components or even an entire chip into a “low power” mode. These techniques do

not modify the functionality of programs running on the hardware although they may introduce delays due to lower

frequencies. These approaches are essentially orthogonal to our approach, allowing the benefits of both to be realized.

Approximate Computing. A number of researchers have introduced approximate computing techniques in hardware

as well [45]. For example, simpler adder or multiplier circuits may be designed that consume significantly less

energy while computing a similar function to a true adder or multiplier [46, 178, 179]. Other circuits may not meet

timing constraints under all circumstances, leading to imprecision [180]. As with the semantics-preserving hardware

techniques, these techniques are largely complementary to our approach. However, the approximations from these

techniques may interact with those introduced by ours; maintaining the desired level of output quality would probably

require evaluating the fitness function approximate hardware directly.

Precision scaling [181, 182] improves efficiency by altering arithmetic precision. For example, rounding values

and using fewer bits to represent data can use less hardware and change memory layout, potentially improving cache

performance.

Task skipping [183] and loop perforation [52] are software-level techniques that trade accuracy for energy by

skipping computation. Although task skipping requires the developer to annotate tasks so that a runtime can determine

which tasks to run, loop perforation is a fully automated technique. Our approach is more general than loop perforation

in that our transformations may result in skipping loop iterations, but have the potential to produce other optimizations

as well.

Genetic Algorithms for Power Improvement. Researchers have recently begun investigating the potential of GAs

and related methods for reducing software energy consumption. For example, Linares-Vásquez et al. [184] use a GA

to identify low-energy color palettes for mobile applications. Schulte et al. [155] and Bruce et al. [185] use GAs to

optimize the energy use of desktop and data center applications. Although the first project modifies the program output

slightly to reduce energy use, it relies on the behavior of a specific type of display. The latter two projects apply more
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general transformations, but do not exploit the possibility of approximate computation. Our approach combines general

transformations with approximate correctness to achieve larger improvements.

4.8 Conclusion

Data center scale computation accounts for a significant fraction of energy consumption and has a growing economic

impact on business. Although advances in hardware and compilers partially address this problem, software perspectives

on energy reduction are relatively unexplored. Advances in search-based software engineering have shown that

automated program optimization techniques can successfully be applied to the domain of energy reduction, but current

techniques do not scale and can only improve modeled (as opposed to measured) energy.

We combine off-the-shelf components and specialized firmware with insights from search-based software engineer-

ing and profile-guided optimization to develop a software-level energy-reduction approach that scales to much larger

applications than were previously possible. We present inexpensive hardware and system configurations that allow the

rapid sampling of real-world energy consumption capable of directing an evolutionary search when combined with a

modified genetic algorithm. We also present large search space reductions and use precise instruction-level profiling to

direct the search in order to find optimizations in programs with over 20 million lines of assembly. Our technique finds

optimizations that reduce the energy consumption in half of our benchmarks without affecting the program output, and

achieve 41% on average with human-acceptable levels of error.
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Readability and Test Coverage

5.1 Introduction

ONE of the most common ways of checking a program for faults is testing [66]. Although it is well known

that thorough and early testing is more effective than testing scantily or late, the cost of developing and

maintaining tests often discourages humans from writing them. This has led to significant research into

automatic techniques for generating tests, particularly unit tests [66, 67, 68, 69, 186, 187, 188, 189]. These algorithms

apply various techniques to automatically determine inputs to functions that cause them to execute different portions of

their functionality. The resulting test cases, relying as they do on randomly generated or mathematically derived inputs,

may be counter-intuitive to many developers [190]. Indeed, Beller et al. found that, when they interact with testing code,

developers appear to spend a larger proportion of their time reading than they do when interacting with the product

code (i.e., the source code of the program itself) [191]. When an automatically-generated test fails, the developer must

read the test, which they did not write and may not have previously seen, to understand the source of the fault [70].

However, aside from a few heuristics [70, 190], little research has targeted the readability of the generated tests.

Readability, a judgment of how easy a program is to understand [192], has long been recognized as an important

aspect of program quality [10, 58, 193, 194, 195]. Reading a program’s source code is a primary way that programmers

understand it, a necessary step in almost any maintenance activity [61]. Indeed, it has been estimated that when

programmers interact with source code, they spend anywhere from two-thirds [191] to nine-tenths [55] of their time

reading it—and, as mentioned above, this fraction is larger for test code than product code. Since US companies paid

over $100B in software developer salaries in 2016 [16], the time and effort spent reading and understanding programs

has significant economic impact.

In this chapter, we instantiate our optimization framework to optimize the readability of automatically generated

69
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test cases. To accomplish this, we develop a function to automatically estimate the readability of unit tests to guide

our search. The remainder of this chapter is organized as follows. First, we discuss some background relating to unit

test generation and the framework we use to develop our readability estimator in section 5.2. Then, we describe our

estimator in detail in section 5.3. In section 5.4, we present the representation and transformation we use to modify unit

test readability, along with our choice of search algorithm. Section 5.5 presents our experimental evaluation of our

approach. Finally, we place our approach in the context of related work in section 5.6 and section 5.7 concludes the

chapter.

5.2 Readability Metrics and Testing Background

5.2.1 Machine Learning and Regression

The field of machine learning (ML) covers a wide variety of problems, approaches, and algorithms [196, 197]. In this

chapter, we focus on regression models, which represent the desired quantity (readability) as a mathematical expression

in terms of measured values (known as features or attributes) associated with instances of source code. In particular,

we discuss simple linear and logistic regression models. Both of these types of models are trained off-line; that is, the

expressions are determined during a distinct learning phase, after which they may be used without modification. In

both cases, learning is supervised in the sense that it requires knowledge of the desired values (called labels) of the

expression for each of the instances used during training. Simple linear regression models predict numeric values using

the linear expression, w0 + w1a1 + · · ·+ wnan. Logistic regression models compute the probability that an instance

falls in one of two classes using the expression, (1 + ew0+w1a1+···+wnan)
−1. In both linear and logistic expressions,

the ai represent feature values related to a particular instance, while the wi are coefficients particular to the metric1 and

used for all instances. Training uses a set of instances (the “training set”) to determine the coefficients that minimize the

sum of the squared error between the predicted and desired outcome (linear regression) or maximize the likelihood of

the desired classification (logistic regression).

As with any ML algorithm, there is a chance that these regression metrics may compute incorrect values for instances

that are not part of the training set. In this case, the metric is said to fail to generalize. One common approach to check

how well a metric may be expected to generalize is n-fold cross-validation [196], which splits the training set into n

partitions (or folds), then trains a metric using n− 1 partitions and evaluates its performance on the remaining partition.

So that each partition is used for evaluation exactly once, this is repeated n times and the resulting performances are

averaged. Note that the cross-validation performance is not the performance of any single metric; in particular, it is not

1Throughout this chapter, we use model to refer to the choice of expression (linear or logistic) used to represent readability, including the choice
of features but not coefficients. We use metric to refer to a model with a particular choice of coefficient values; that is, a metric is a function that
computes readability given a set of features. One model may produce an infinite number of different metrics by selecting different coefficients during
training.
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the performance of a metric trained using the entire training set. However, the average cross-validation performance

provides an estimate of how such a metric will perform on future instances (assuming, of course that the training set is

representative of the future instances).

5.2.2 Readability

The fact that the notation in which a program is written affects the ease with which programmers write and maintain it

has been recognized since the earliest days of programmable computers [198, 199]. This intuition led early language

designers to develop conventions based on existing mathematical notation [71, 200]. However, some programs remain

easier to write and maintain than others written in the same language. Conceptually, we may attribute these differences

to variations in the underlying problems being solved, in the structures of the implemented solutions, and in the

typographic presentation of the program [194]. The Halstead [201] and cyclomatic [202] complexity metrics are

concerned primarily with the first and second categories. In this chapter, we hold the problem (testing) and solution

structure (unit tests) constant and focus on the third category, which we call simply readability.

Researchers have proposed many different features of the presentation of programs that might affect their readability.

Use of identifier names [61], comments [203], and indentation [204] are some of the most popular. Buse and Weimer

incorporated these and other presentation features into a logistic regression model to classify code as readable or

unreadable [192]. They trained a metric based on their model using the results of a human study of upper-level students

at their university. However, although cross-validation did not indicate a lack of generality, Posnett et al. showed that

the Buse and Weimer metric increasingly tends to classify code as unreadable as the code features become less similar

to their training examples, proposing their own model and metric to mitigate this limitation [205]. Posnett’s metric

generalizes somewhat more than Buse’s, although since both were trained using the same data, both display their best

performance on short samples taken from open-source product code.

We desire a metric to estimate the readability of automatically generated test suites, which we discuss in the next

section. We will return to the issue of readability metrics in the context of test suites in section 5.3.

5.2.3 Testing and Coverage

As described in section 2.3, software testing is the process of executing a program to check for differences between

the program’s required and demonstrated behavior [35] by running tests. Individual tests may be characterized by the

requirements they cover [97]. For a collection of tests, called a test suite, we define coverage in terms of the fraction of

requirements represented by the union of the requirements covered by the tests in the suite. However, given the difficulty

of exhaustively verifying compliance with requirements as well as the reality of incomplete requirements specifications,

coverage is often specified in terms of more easily measured quantities. For example, statement coverage measures the
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number of program statements executed during the test, while branch coverage tracks which branches are taken, as

measured by collecting a profile (see section 2.1.2) while running the tests. Alternatively, mutation testing [206] counts

the number of mutants detected by the test suite. These metrics only approximate requirements coverage, since, for

example, executing every statement or detecting every mutant may leave some requirements unevaluated; similarly

some statements may be unreachable while some mutations leave functionality unaffected.

Test suites may be automatically generated by producing a number of inputs along with the necessary oracles.

Techniques to produce inputs include random generation (fuzz testing) [189], solving symbolic path constraints [187,

207], and a combination of the two [66, 67, 208]. The associated oracles may implement simple heuristics (e.g., the

program should not crash or leak memory) [189, 209], or be derived from current program behavior [210, 211, 212].

5.3 Measuring Test Case Readability

In this section, we develop an automated fitness function to estimate the readability of each test. Our approach is based

on supervised machine learning techniques, in the spirit of the readability models developed by Buse and Weimer [192]

and Posnett et al. [205]. As mentioned in section 5.2.2, it has been shown that these metrics do not generalize well to

code that is too dissimilar from the training data they used [205]. Since our search is over automatically-generated test

cases while the existing metrics were trained on product code from SourceForge2 [192], we expect the existing metrics

to provide poor indications of relative readability in our context. We therefore constructed our own metric to estimate

relative readability.

We desire a readability metric that is capable of discriminating between two readable (or unreadable) instances to

determine which is more (or less) readable. Thus, we reject the logistic regression models on which previous metrics

were based, since logistic regression is not designed to distinguish between instances of the same class. Instead, we

use a linear regression model which can treat readability as a continuous quantity. Linear regression models have

the additional benefit (relative to other regression models, such as multilayer perceptrons [196]) of simplicity and of

permitting direct interpretation of the coefficients.

In section 5.3.1 we collect unit tests and readability ratings to form the training set we used to learn coefficients for

our metric. Then, in section 5.3.2, we describe our process for selecting the features of the model.

5.3.1 Training Data

To construct a set of unit tests with which to learn our metric coefficients, we desire examples of both developer-written

and automatically-generated tests. Specifically, the developer-written examples should display combinations of features

that humans consider readable while the automatically-generated tests represent the features produced by current

2https://sourceforge.net/

https://sourceforge.net/
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test-generation algorithms. By including both sets in our training data, we hope to bracket the search space of tests,

improving the chance that our metric will generalize to new tests encountered during the search.

We collected developer-written training examples from eight open-source Java projects, including Apache Com-

mons,3 Apache POI,4 GNU Trove,5 JFreeChart,6 Joda,7 JDOM,8 iText,9 and Guava.10 These projects incorporate

extensive test suites that have been maintained over several years, arguing in favor of the acceptability of the tests they

contain. We supplemented these tests with test suites generated by EVOSUITE11 [68] to maximize branch coverage,

a common metric used in test generation research [186], for each project. From this pool of unit tests, we manually

selected a diverse set of training examples.

To determine readability scores—the labels for our supervised learning algorithm—for these training examples,

we conducted a set of IRB-approved (protocol #2012-0072-00) online human surveys. For each survey, we solicited

participants to view and rate unit tests on Amazon Mechanical Turk,12 a micro-task marketplace that has proven

an effective resource for collecting large numbers of scientifically meaningful responses on tasks requiring human

intelligence [213]. Before participating in our surveys, we required participants to complete a brief quiz to ensure

that they were familiar enough with Java programming to provide a meaningful rating. The quiz requires potential

participants to read and understand four Java methods; people answering correctly for three out of four methods were

allowed to participate. Each participant who passed the quiz was then given a survey in one of two formats. In the first

format, we asked participants to rate a random subset of training examples on a scale of 1 (low readability) to 5 (high

readability). In the second, forced choice, format, we presented the participants with pairs of examples and asked them

to select the member of each pair that was more readable. As in previous work [192], we did not define readability but

instead asked participants to rate readability based on their own subjective impression.

We collected 15 669 readability scores from 231 participants on our training set of 450 unit tests using the first

survey format and 4950 readability choices from 197 participants on 200 pairs of tests using the second survey format.

Figure 5.1 shows the distribution of the average scores for each test in the set. The average readability score over

all tests was 3.5, with two thirds falling in the range from 3.0–4.0. We note that this distribution of scores differs

significantly from the bimodal distribution observed by Buse and Weimer [192]. This may be due to our use of different

participants (their participants were primarily fourth-year students) or different types of code (complete unit tests as

opposed to three simple statements take from product code [214]). We used the average readability scores (from the

3https://commons.apache.org/, accessed 06/2017.
4https://poi.apache.org/, accessed 06/2017.
5http://trove.starlight-systems.com/, accessed 06/2017.
6http://www.jfree.org/jfreechart/, accessed 06/2017.
7http://www.joda.org/, accessed 06/2017.
8http://www.jdom.org/, accessed 06/2017.
9https://github.com/itext/itextpdf, accessed 06/2017.

10https://github.com/google/guava, accessed 06/2017.
11This research is in collaboration with the authors of EVOSUITE. Their expertise was instrumental in incorporating the techniques described in

this chapter into their cutting-edge test generation framework.
12http://aws.amazon.com/mturk/, accessed 03/2015.

https://commons.apache.org/
https://poi.apache.org/
http://trove.starlight-systems.com/
http://www.jfree.org/jfreechart/
http://www.joda.org/
http://www.jdom.org/
https://github.com/itext/itextpdf
https://github.com/google/guava
http://aws.amazon.com/mturk/
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Figure 5.1: Distribution of average readability scores for unit tests in our training set.

first survey format) to train the regression metric and both the average readability scores and the majority readability

choices (from the second survey format) to evaluate its performance, as described in the next section.

5.3.2 Feature Selection

Previous work suggests that regression techniques can effectively model readability as a function of syntactic, semantic,

and textual complexity measures [192, 205]. We approach the problem of selecting the best set of features for our

model as an attribute selection problem [196]. Thus, we first identified a number of relevant features, then selected the

most relevant subset for use in our model. The larger set of features, numbering 116 in total, included all those used in

previous models, as well as a number of new features measuring the number of assertions, exceptions, constructor or

method calls, field accesses, branches, type casts, and different data types. (See Daka et al. [215] for a full discussion of

the additional features we considered.)

To select the most relevant subset of these features, we used a wrapper selection algorithm [216]. Wrapper

approaches operate by training a number of metrics, each with a different subset of features, then selecting the features

that resulted in the metric with the best performance. We trained each metric using the test cases labeled with the

average readability scores collected using the first (1–5 ranking) survey format. We defined the metric performance as

the sum of the Pearson correlation with the labels, plus the average agreement with the majority of participants in the

second (binary classification) survey format. Recall that the Pearson correlation ranges between -1 and 1, while the

average agreement ranges between 0 (disagree on all training data) and 1 (agree on all training data). To help mitigate

the danger of overfitting, we performed 10-fold cross-validation to compute the metric performance.
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We used a steepest ascent hill climbing algorithm (see section 2.2.2) with random restarts as the core of our wrapper

selection algorithm. Each restart of hill climbing selected a random feature, trained the metric, and recorded its

performance as defined above. We then took the remaining n− 1 features and generated n− 1 two-feature models

by pairing the previously selected feature with each of the remaining features in turn. After training metrics based on

these models, we selected the model with the best performance and made its pair of features the new selected features.

We then took the remaining n− 2 features, generated n− 2 three-feature models, identified the model with the best

performance, and selected its features before starting the next iteration. This process continued, adding one feature at a

time to the set of selected features, until no further performance improvements were found by adding another feature to

the model. The set of features that produced the best performance after several random restarts gave us our final model.

The final 16-feature metric is given in Daka et al. [215, table 1].

5.4 Test Case Representation and Transformations

Having introduced a fitness function that approximates human perception of readability, we next instantiate a search

that generates test suites that optimize both code coverage and readability. We use EVOSUITE [68], an extensible,

search-based platform for generating high-coverage test suites, as the basis for our search algorithm. Unlike the

optimization problem discussed in chapter 4, where a single set of mutation operators could modify either dimension of

fitness, EVOSUITE’s transformations to optimize coverage tend to produce intermediate variants with low readability.

Specifically, EVOSUITE applies transformations that may introduce redundant statements that do not affect the coverage

of the current individual, but instead provide opportunities for transformations that improve coverage in subsequent

generations. Since our model penalizes (i.e., includes a negative coefficient for) longer tests, if we were to include

readability as an additional objective in a multi-objective optimization algorithm, any tests including these redundant

statements would be Pareto dominated by equivalent tests that do not include the redundancy. Since dominated

variants are less likely to survive into the next generation, EVOSUITE would have fewer opportunities for producing

high-coverage test suites.

Instead, we search for a highly readable implementation of each test in the suite after having completed the search

for a high-coverage test suite. Since we assume the test suite is already high-coverage, our search does not explicitly

increase coverage. An advantage of this approach is that our search can optimize the readability of test suites created by

other algorithms, or even human-written test suites, so long as they satisfy the assumptions of our representation. In

particular, we represent tests as sequences of variable assignments and method calls. The tests generated by EVOSUITE

have exactly this structure; the only control flow consists of try–catch constructs surrounding particular statements.

We assume that the test covers some requirements (or a proxy, such as branches) and that we are given a mechanism to

verify that modified tests cover the same requirements.
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Using this representation, we design a transformation operation that replaces assignments or method calls with

alternatives that may be more readable. Specifically, our single transformation replaces the right-hand side of an

assignment statement with a method or constructor call that returns a value of the type on the left-hand side. The search

can verify that the test covers the same requirements and, if so, check whether the readability improved.

This transformation requires some attention to detail to ensure that the new test compiles. First, we supply the

parameters of the new call with constants or with variables from previous lines of the test, chosen at random. If no

in-scope variables with the correct type exist, a new assignment statement of the desired type is inserted immediately

prior to the transformed statement and the right-hand side of the new assignment is generated using the same process.

Second, the restriction on the return type ensures that method calls for which the variable is a parameter will continue

to compile. Finally, we remove any variable assignments that are no longer used after replacing the old method call.

For example, consider line 6 in the test case in listing 5.1. Applying our transformation to this line replaces the

constructor call on the right-hand side of the assignment with a new call that returns ObjectHandlerAdapter.

In this example, we randomly chose a one-argument constructor of that type. To supply the parameter, we chose the

constant null. The transformation now removes the assignment to the unused variable rootHandler0, after which

object0 is no longer used and its assignment is removed. This continues until all of the unused preceding lines in the

test have been removed. The subjectively more readable test resulting from this transformation is shown in listing 5.2.

1 ElementName elementName0 = new ElementName("", "");
2 Class<Object> class0 = Object.class;
3 VirtualHandler virtualHandler0 =

new VirtualHandler(elementName0, (Class) class0);
4 Object object0 = new Object();
5 RootHandler rootHandler0 =

new RootHandler((ObjectHandler) virtualHandler0, object0);
6 ObjectHandlerAdapter objectHandlerAdapter0 =

new ObjectHandlerAdapter((ObjectHandlerInterface) rootHandler0);

Listing 5.1: Example of test case before optimizing for readability. Long lines have been wrapped to fit on the
page.

1 ObjectHandlerAdapter objectHandlerAdapter0 =
new ObjectHandlerAdapter((ObjectHandlerInterface) null);

Listing 5.2: Test case in listing 5.1 after optimization. Long lines have been wrapped to fit on the page.

We implemented our search as a post-processing step in EVOSUITE after the test suite is generated and minimized,

but before assertions are inserted. Our search applies to each test individually, transforming the test as described above
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under the constraint that the transformed test meets the same coverage objectives as the original.13 This ensures that we

maintain the same high level of coverage as the original generated test suite. In many cases, pruning tests that cover

fewer requirements than the original renders the search space sufficiently small that we can explore it exhaustively, as

we also saw in section 3.4.1. In particular, in our evaluation, we found just five alternatives for every test, on average.

5.5 Evaluation

We evaluate our readability optimization algorithm in terms of improvement in human perceptions of readability and

improvement in human understanding.

We generated test suites using EVOSUITE for classes selected from the open-source projects listed in section 5.3.1.

Specifically, we selected 30 product classes from these projects for which EVOSUITE was able to generate test

suites with at least 80% branch coverage. We selected classes with fewer than 500 lines of code and relatively few

dependencies to simplify the tasks assigned to participants in our human studies (see below for more details). Since

EVOSUITE internally uses stochastic search algorithms, we generated tests for these classes 10 times to get a variety of

test implementations. This combination of classes, coverage, and multiple runs gave us a large number of tests to apply

our readability optimization algorithm to. Our algorithm found alternative implementations for 56% of the tests we

generated with EVOSUITE. Only 5% of methods had no tests with alternative implementations. This suggests both that

our algorithm should apply to a significant portion of generated tests suites and that further opportunities for readability

optimization could exist.

To evaluate whether humans perceive the tests produced by our readability optimization algorithm as more readable,

we conducted a human study. As in the earlier readability survey, all participants were required to pass a brief quiz to

ensure familiarity with Java. We presented participants with pairs of tests, asking that they select the one they find more

readable, as in the forced-choice survey described in section 5.3.1. In each pair, one test was optimized by our algorithm

and the other was the output of EVOSUITE without our algorithm. For this human study, we collected three pairs of

tests for each class, with both tests in a pair covering the same branch. Our results, comprising 4150 choices from 131

Amazon Mechanical Turk participants, show that the study participants preferred the readability optimized test 69% of

the time. In only one out of the 90 test pairs in the survey was the readability optimized test selected less than 50% of

the time. We thus conclude that our algorithm successfully improves the readability of automatically generated tests as

perceived by humans.

We also conducted a second human study to investigate whether humans were able to understand our more readable

tests better. In this study, we presented participants with a test case along with the source code of the class being

13For example, the transformed test should cause the same if-statement branches to be evaluated to maintain a branch coverage objective.
Alternatively, to maintain a mutation testing objective (see section 5.2.3), the transformed test should detect the same mutants as the original test.
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Readability Time (min) Correct (%)

Class Orig Opt Orig Opt Orig Opt

Attribute 3.33 3.81 4.7 5.8 60 38
ChainBase 2.99 3.75 4.0 3.8 76 55
CharRange 3.82 4.04 4.4 1.9 50 100
FilterListIterator 3.10 3.73 4.8 3.0 71 86
FixedOrderComparator 2.63 3.30 4.9 3.3 64 23
Option 3.55 4.01 2.2 2.7 100 75
PluginRules 2.49 3.46 6.4 6.0 73 63
RulesBase 2.80 3.76 4.8 3.2 91 100
StdXMLReader 3.40 3.79 4.3 3.8 60 61
YearMonthDay 3.25 3.81 6.1 6.5 31 62

Average 3.14 3.75 4.6 4.0 68 68

Table 5.1: Human understanding task performance on 10 readability-optimized test cases. We present the average
performance on the selected test cases for each class, with “Orig” indicating the test case was generated using the
original EVOSUITE algorithm (i.e., without optimizing readability) and “Opt” indicating it was generated using our
readability optimization algorithm. The best response time and correctness scores for each class are indicated in bold.

tested and asked them whether the test would pass or fail. To gather failing tests for this study, we repeated the test

generation process (with and without optimizing readability) described above, but modified EVOSUITE to generate

failing assertions. From this pool of passing and failing tests, we selected one pair of tests for each class—one optimized

for readability and the other unoptimized—then chose the 10 pairs showing the largest difference in estimated readability

according to our metric. After passing the Java familiarity quiz, participants were given one hour to determine whether

ten tests (one randomly selected from each pair) would pass, with reference to the associated product code. Both the

tests and the product code were presented with syntax highlighting in a web browser interface with IDE-like navigation

and participants were instructed not to compile and run the code locally. In addition to recording whether their answers

were correct, we also recorded the time they spent inspecting each test and associated product code.

Overall, the participants in this study, 30 students from the University of Sheffield, spent less time (238 s versus

274 s) inspecting the readability-optimized tests, on average. The Spearman’s rank correlation between readability and

response time was −0.22 (p = 0.0001), indicating a weak but significant connection; recall that a negative correlation

indicates that response time decreases as readability increases. At least some of the residual difference may be due

to differences in the methods and classes being tested. However, applying the Mann-Whitney U test to the optimized

and unoptimized results for each class in turn, results in a p-value under 0.005 (using a lower threshold to account

for repeated statistical tests) for CharRange. One possible explanation for the reduced response time on tests with

higher readability scores would be if participants were in fact discouraged by the tests rather than finding them easier

to understand. However, participants correctly identified whether the test would pass or fail in two thirds of cases,

regardless of whether the tests were optimized for readability. This suggests that participants took the time to achieve

similar levels of understanding for both optimized and unoptimized tests. We conclude that our readability optimization
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algorithm allowed participants to reach this level of understanding more quickly.

5.6 Related Work

Readability Metrics. Readability metrics are well-established in the domain of non-software natural language. For

example, the Flesch-Kincaid Grade Level [217] is integrated into popular editors, such as Microsoft Word. Metrics

such as this, the Gunning-Fog Index [218], or the SMOG Index [219] are based on a few simple measurements, such as

of of the number of syllables in words or the lengths of sentences.

To the best of our knowledge, Buse and Weimer were the first to apply a similar model of readability to source

code [192]. Their model is based on character and token counts within the code being measured. Posnett et al. [205]

developed a simpler model of code readability with fewer features, based on size, Halstead [201] metrics, and entropy.

Both groups relied on the same human study data, 120 student participants evaluating 100 short product code samples,

to determine coefficients for their metrics. Our work is based on the same readability model concept, but consists of a

domain-specific model for unit tests, using dedicated test features, allowing us to train a metric with better performance

and prediction power in our domain.

Understanding Tests. The problem of understanding tests, particularly failing tests, is well known. For human-

written tests, Meszaros [220] and van Deursen et al. [221] recommend patterns to follow or avoid so that tests remain

comprehensible and maintainable.

Several approaches have been suggested to simplify automatically-generated tests to aid in comprehension and

debugging. Harman et al. [222] suggest reducing the number of tests generated in the first place. Fraser and Zeller [69]

reduce the number of assertions in a test using mutation analysis. Zhang’s SimpleTest algorithm [223] attempts to

improve readability by transforming existing tests to use fewer statements. This transformation is the most similar to

ours in both goal and behavior; however, our technique optimizes readability (as determined by our metric) directly and

explores a more diverse set of tests, increasing the opportunities for optimization.

A few other researchers have proposed heuristics specifically to improve the readability of automatically-generated

tests. For example, Fraser and Zeller [190] propose a test case generation algorithm based on models of common object

usage learned from existing source code. Although their algorithm might improve the similarity between human-written

code and sequences of instructions in the generated tests, it does not directly optimize measured readability. Afshan et

al. [70] apply a natural language model to select natural string literals, which are often simply random characters, to

more English-like text. Although we considered their language model when developing our model features, it did not

provide significant predictive power on our training dataset.
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On the basis that it is most important to understand a failing test, Leitner et al. [224] and Lei and Andrews [225]

suggest algorithms specifically for simplifying failing tests and identifying the failure cause. Zhang et al. [226]

synthesized natural language documentation to explain the failure. Xuan and Monperrus [227] refactor failing tests to

have exactly one assertion to improve fault localization.

5.7 Conclusion

Unit tests, like most source code, must be read and understood by humans more often than they are written. This is

especially true of automatically-generated tests, which are not written by humans. We introduce a technique to improve

the readability of automatically generated tests to ease the burden on developers who must understand those tests. We

use an approximate metric of human readability to estimate the readability of candidate tests during optimization. This

metric is based on human ratings of readability; we show that humans continue to prefer tests that show high readability

according to our metric. Our results also show that participants in our study were able to understand tests with higher

readability scores more quickly.

Our technique to increase the readability of unit tests relies on a small set of changes to improve the appearance of

tests. We generate alternative test implementations using these transformations and select the most readable. It would

be interesting in the future to create alternative test implementations by integrating heuristic approaches. For example,

our metric training data indicates that identifier names may play a particularly significant role in test case readability.

Since many test case generation algorithms, including EVOSUITE, use very simple algorithms for generating identifier

names, improving these names (such as with language models [228, 229]), could be fruitful.

Our experiments also demonstrate potential distinctions between readability—i.e., the effect of textual presentation

on understanding—and other influences on comprehensibility. Improving the readability of tests without taking other

aspects, such as algorithm complexity, into account does not universally improve performance on tasks related to

understanding. Including semantic features or explicit code complexity metrics as optimization targets may allow

generating even more understandable tests.
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Conclusion

SOFTWARE plays a vital and ever-expanding role in the modern world. In addition to producing the correct

outputs, which software engineers term functional correctness, software systems also possess non-functional

properties [19] that can be of critical importance. Developers must produce software that achieves a reasonable

balance between competing properties. In this dissertation, we presented a framework to provide assistance to

programmers, allowing them to write a single initial implementation, automatically generate additional implementations

with different non-functional properties, then present the best such implementations to the user. Our approach uses

search-based optimization (SBO) algorithms to explore the program implementations made possible by a set of program

transformations, selecting those with the best fitness. We demonstrated the generality of our approach by applying it in

the context of three application domains, covering a variety of non-functional properties. In doing so, we highlighted

the ways in which these different domains influenced the selection of domain-specific program transformations and

search strategies.

In chapter 3, we investigated the problem of improving the visual quality of procedural shaders with respect

to aliasing. This led us to develop a strategy for local program transformations that could reduce the aliasing of

certain subexpressions in the program without the high runtime cost of previous techniques. Since our transformations

introduced limited additional runtime by construction, the search algorithm we selected for this domain optimized only

visual quality explicitly. We showed that our approach produced shaders that generated images with rendering time and

output quality that Pareto dominated existing supersampling techniques in many cases. In most remaining cases, our

technique introduced new points on a Pareto frontier that includes supersampling.

In chapter 4, we addressed the tradeoff between energy consumption and output quality in data centers. We chose

a general set of program transformations capable of producing a wide variety of alternative implementations. To

mitigate the limitations of existing simulation, performance counter, and consumer-level energy measurements, we

81
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Venue Title Notes

TSE Automatically Exploring Tradeoffs Between Software Output Fidelity and
Energy Costs (under submission)

PG Towards Automatic Band-Limited Procedural Shaders [230]
ESEC/FSE Modeling Readability to Improve Unit Tests [215] Distinguished paper
SSBSE Generating Readable Unit Tests for Guava [231]
ASPLOS Post-compiler Software Optimization for Reducing Energy [155]

Table 6.1: Publications supporting this dissertation.

developed an economical device to accurately measure energy consumption on servers in a data center setting. We

used a multi-objective genetic algorithm (GA) to leverage the generality of our transformations to optimize both energy

use and output quality, measuring the latter with a set of application-specific metrics. Our results showed that our

approach achieved significant energy improvements while maintaining the same quality of output as the unoptimized

program. By explicitly optimizing output quality simultaneously, we achieved even greater energy improvements while

maintaining a human-acceptable quality of output. Finally, we showed that our approach is more effective than loop

perforation, a state-of-the-art, but less general technique.

In chapter 5, we applied our framework to program readability as it applies to high-coverage test suites. We selected

a transformation to produce alternative test implementations while retaining the structure common to automatically

generated unit tests. To estimate the readability of large numbers of candidate test implementations, we used machine

learning to develop a domain-specific readability metric for unit tests that correlated with human perception. Our search

algorithm selected the most readable test implementation that maintained the coverage of the original test. We showed

that humans find our tests to be more readable on average and that they were able to understand our tests more quickly

than tests without our readability optimizations.

Table 6.1 lists peer-reviewed publications in support of the findings presented in this dissertation. The diversity of

domains demonstrates the flexibility of the framework to apply to a plethora of properties, both static and dynamic.

It also highlights the importance of considering multiple properties simultaneously when selecting transformations,

fitness functions, and search algorithms. For example, although we were able to design transformations to modify

aliasing with minimal effect on run time in chapter 3—particularly relative to the existing state of the art—naively

implementing them in terms of existing antialiasing would have been insufficient. In chapters 4 and 5, the effect of our

transformations were not limited to a single primary property, requiring us to embrace and exploit the simultaneous

property changes (chapter 4) or to compensate in the search design (chapter 5). By bearing multiple properties in

mind simultaneously when designing our representations, transformations, and searches, we successfully developed

techniques that discovered useful balances of those properties in a wide variety of benchmark applications. These

results demonstrate that it is possible to design and implement algorithms, not just for optimizing one property at a time,

but for optimizing tradeoffs of non-functional properties in software.
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Derivations of Band-Limited Expressions

In this appendix, we derive band-limited expressions for several common built-in shading language functions. These

derivations fill in the rows of table 3.1.

As described in section 3.3, we define the band-limited expression for a function f , with respect to a band-limiting

kernel k, as follows:

f̂(x,w) =

∫ ∞
−∞

f(x′)k(x− x′, w) dx′. (A.1)

This is equivalent, via a change of variables, to

f̂(x,w) =

∫ ∞
−∞

f(x− x′)k(x′, w) dx′. (A.2)

We desire that the integral of the band-limited function match that of the original function. To achieve this, we

require that the band-limiting kernel be normalized such that,

∫ ∞
−∞

k(x,w) dx = 1. (A.3)

Proposition A.1. If
∫∞
−∞ k(x′, w) dx′ = 1, then

∫∞
−∞ f̂(x) dx =

∫∞
−∞ f(x,w) dx.
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Proof. The result follows from manipulation of the integral for f̂ .

∫ ∞
−∞

f̂(x) dx =

∫ ∞
−∞

(∫ ∞
−∞

f(x′)k(x− x′, w) dx′
)
dx substituting equation A.1

=

∫ ∞
−∞

(∫ ∞
−∞

f(x′)k(x− x′, w) dx

)
dx′ by Fubini’s theorem [232]

=

∫ ∞
−∞

f(x′)

(∫ ∞
−∞

k(x− x′, w) dx

)
dx′

=

∫ ∞
−∞

f(x′) dx′ by assumption.

(A.4)

Except as noted below, we will use a normalized Gaussian kernel with standard deviation w as our band-limiting

kernel:

k(x,w) =
1

w
√

2π
e−

x2

2w2 . (A.5)

A.1 Useful Properties of the Gaussian Band-Limiting Kernel

In this section, we derive some useful properties of the Gaussian band-limiting kernel, starting with a demonstration

that it is normalized as required.

Proposition A.2. The Gaussian kernel defined above is normalized such that

∫ ∞
−∞

1

w
√

2π
e−

x2

2w2 dx = 1. (A.6)

Proof. We rearrange the integral to match the form given in Gradshteyn and Ryzhik [233, eq. 3.461-2], using n = 0

and p = 1
2w2 ,

∫ ∞
−∞

1

w
√

2π
e−

x2

2w2 dx =
1

w
√

2π

∫ ∞
−∞

e−
x2

2w2 dx

=
2

w
√

2π

∫ ∞
0

e−
x2

2w2 dx since e−
x2

2w2 is an even function of x

=
2

w
√

2π

∫ ∞
0

e−px
2

dx

=
2

w
√

2π

(
1

2

√
π

p

)
=

1

w
√

2

√
2w2

= 1.

(A.7)

The next several results relate the integral of the kernel to the Gauss error function (erf): erf(x) = 2√
π

∫ x
0
e−t

2

dt.

Proposition A.3. Let f(x) = 1
w
√
2π

∫ x
0
e−

x′2
2w2 dx′. Then f(x) = 1

2 erf
(

x
w
√
2

)
.
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Proof. We let u = x′

w
√
2

, such that du = dx′

w
√
2

. Using u-substitution, we have,

f(x) =
1

w
√

2π

∫ x

0

e−
x′2
2w2 dx′

=
1

w
√

2π

∫ x
w
√

2

0

e−u
2

w
√

2 du

=
1√
π

∫ x
w
√

2

0

e−u
2

du

=
1√
π

√
π

2
erf

(
x

w
√

2

)
=

1

2
erf

(
x

w
√

2

)
.

(A.8)

Proposition A.4. Let f(x) = 1
w
√
2π

∫ x
−∞ e−

x′2
2w2 dx′. Then f(x) = 1

2 + 1
2 erf

(
x

w
√
2

)
.

Proof. We start by partitioning the integral in the definition of f(x):

f(x) =
1

w
√

2π

∫ x

−∞
e−

x′2
2w2 dx′

=
1

w
√

2π

∫ 0

−∞
e−

x′2
2w2 dx′ +

1

w
√

2π

∫ x

0

e−
x′2
2w2 dx′.

(A.9)

Since e−
x′2
2w2 is an even function of x′, the value of the first integral is half the value of the integral from−∞ to∞, which

we know to be 1. Therefore, the value of the first integral is 1
2 . Substituting this and the result from proposition A.3, we

are left with,

f(x) =
1

2
+

1

2
erf

(
x

w
√

2

)
. (A.10)

Proposition A.5. Let f(x) = 1
w
√
2π

∫ b
a
e−

x′2
2w2 dx′. Then f(x) = 1

2

(
erf
(

b
w
√
2

)
− erf

(
a

w
√
2

))
.

Proof. Note that we can add and subtract the integral from −∞ to a without changing the value of f(x):

f(x) =
1

w
√

2π

∫ b

a

e−
x′2
2w2 dx′

=
1

w
√

2π

∫ b

−∞
e−

x′2
2w2 dx′ − 1

w
√

2π

∫ a

−∞
e−

x′2
2w2 dx′

=

(
1

2
+

1

2
erf

(
b

w
√

2

))
−
(

1

2
+

1

2
erf

(
a

w
√

2

))
by proposition A.4

=
1

2

(
erf

(
b

w
√

2

)
− erf

(
a

w
√

2

))
.

(A.11)

Finally, we derive formulae for the definite integral of the product of the Gaussian kernel and the identity function.

Proposition A.6. Let f(x) = 1
w
√
2π

∫ x
−∞ x′ e−

x′2
2w2 dx′. Then f(x) = − w√

2π
e−

x2

2w2 .
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Proof. We let u = − x′2

2w2 , such that du = − x′

w2 dx
′. Using u-substitution,

f(x) =
1

w
√

2π

∫ x

−∞
x′ e−

x′2
2w2 dx′

=
1

w
√

2π

∫ − x2

2w2

−∞
eu
(
−w2

)
du

= − w√
2π

∫ − x2

2w2

−∞
eu du

= − w√
2π

e−
x2

2w2 .

(A.12)

Proposition A.7. Let f(x) = 1
w
√
2π

∫∞
x
x′ e−

x′2
2w2 dx′. Then f(x) = w√

2π
e−

x2

2w2 .

Proof. Note that, since x′ is an odd function of x′ and the Gaussian kernel is an even function of x′, their product is an

odd function. Thus, we see,

−f(x) = − 1

w
√

2π

∫ ∞
x

x′ e−
x′2
2w2 dx′

=
1

w
√

2π

∫ −x
−∞

x′ e−
x′2
2w2 dx′ since x′ is an odd function

= − w√
2π

e−
(−x)2

2w2 by proposition A.6

f(x) =
w√
2π

e−
x2

2w2 .

(A.13)

We will use these results to simplify the derivations throughout the rest of this appendix.

A.2 Combinations of Band-Limited Components

In this section, we derive results that will allow us to construct band-limited expressions in terms of sub-expressions.

These results provide the underlying structure of our bottom-up approach to band-limiting shaders, as described in

sections 3.3.1 and 3.3.4.

Proposition A.8. Let f(x) = c be a constant. Then f̂(x,w) = c.
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Proof. Starting with equation A.2,

f̂(x,w) =

∫ ∞
−∞

f(x− x′) k(x′, w) dx′

=

∫ ∞
−∞

c k(x′, w) dx′

= c

∫ ∞
−∞

k(x′, w) dx′

= c by equation A.3.

(A.14)

Proposition A.9. Let f(x) = x. If k(x,w) is an even function (i.e., k(x,w) = k(−x,w)), then f̂(x,w) = x.

Proof. Starting with equation A.2,

f̂(x,w) =

∫ ∞
−∞

f(x− x′)k(x′, w) dx′

=

∫ ∞
−∞

(x− x′)k(x′, w) dx′

=

∫ ∞
−∞

xk(x′, w) dx′ −
∫ ∞
−∞

x′k(x′, w) dx′.

(A.15)

Since k is an even function of x′ by assumption while x′ is an odd function of x′, their product is an odd function of x′.

Therefore, the portion of the second integral from −∞ to 0 has the same magnitude but opposite sign as the portion

from 0 to∞; the entire second integral evaluates to 0. Thus,

f̂(x,w) = x

∫ ∞
−∞

k(x′, w) dx′

= x by equation A.3.

(A.16)

Note that the band-limiting kernels considered in this dissertation—the Gaussian, rectangular, and tent kernels (see

figure 3.3)—are all even functions. Thus when using any of these band-limiting kernels, if f(x) = x then f̂(x) = x.

Proposition A.10. Let f(x) = g(x) + h(x). Then f̂(x,w) = ĝ(x,w) + ĥ(x,w).
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Proof. Starting with equation A.1,

f̂(x,w) =

∫ ∞
−∞

f(x′)k(x− x′, w) dx′

=

∫ ∞
−∞

(g(x′) + h(x′))k(x− x′, w) dx′

=

∫ ∞
−∞

g(x′)k(x− x′, w) + h(x′)k(x− x′, w) dx′

=

∫ ∞
−∞

g(x′)k(x− x′, w) dx′ +

∫ ∞
−∞

h(x′)k(x− x′, w) dx′

= ĝ(x,w) + ĥ(x,w).

(A.17)

Proposition A.11. Let f(x) = cg(x), where c is a constant. Then f̂(x,w) = cĝ(x,w).

Proof. Starting with equation A.1,

f̂(x,w) =

∫ ∞
−∞

f(x′)k(x− x′, w) dx′

=

∫ ∞
−∞

cg(x′)k(x− x′, w) dx′

= c

∫ ∞
−∞

g(x′)k(x− x′, w) dx′

= cĝ(x,w).

(A.18)

Proposition A.12. Let f(x) = c0 + c1f1(x) + · · ·+ cnfn(x), with functions f1, . . . , fn and constants c0, c1, . . . , cn.

Then f̂(x,w) = c0 + c1f̂1(x,w) + · · ·+ cnf̂n(x,w).

Proof. Let g0(x) = c0, g1(x) = c1f1(x), . . . , gn(x) = cnfn(x). Thus, f(x) = g0(x) + g1(x) + · · · + gn(x). Then

by proposition A.10,

f̂(x,w) = ĝ0(x,w) + · · ·+ ĝn(x,w). (A.19)

By proposition A.8, ĝ0(x,w) = c0. By proposition A.11, ĝi(x,w) = cif̂i(x,w) for 1 ≤ i ≤ n. Substituting into

equation A.19, we have f̂(x,w) = c0 + c1f̂1(x,w) + · · ·+ cnf̂n(x,w).

Proposition A.13. Let f and k be partially multiplicatively separable functions of multiple dimensions such that

f = fY · fZ and k = kY · kZ , where kY and kZ are functions of disjoint subsets of the dimensions of k and fY and fZ

are functions of the same disjoint subsets. Then f̂ = f̂Y · f̂Z .
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Proof. Let

f(~x) = fY (~y) fZ(~z) and (A.20)

k(~x, ~w) = kY (~y, ~u) kZ(~z,~v), (A.21)

where ~x = {x1, . . . , xm+n}, ~y = {y1, . . . , ym}, ~z = {z1, . . . , zn}, ~w = {w1, . . . , wm+n}, ~u = {u1, . . . , um}, and

~v = {v1, . . . , vn} are ordered sets of variables such that ~y and ~z partition ~x and ~u and ~v partition ~w in the same way.

That is,

∀i, j ui = wj ⇐⇒ yi = xj and

∀i, j vi = wj ⇐⇒ zi = xj .

(A.22)

Let X , Y and Z be the domains of ~x, ~y, and ~z, respectively.

Starting with the (n+m)-dimensional extension of equation A.1,

f̂(~x, ~w) =

∫
X

f(~x) k(~x− ~x′, ~w) d~x′

=

∫
X

fY (~y) fZ(~z) kY (~y − ~y′, ~u) kZ(~z − ~z′, ~v) d~x′ substituting equations A.20 and A.21

=

∫
Z

∫
Y

fZ(~z) kZ(~z − ~z′, ~v) fY (~y) kY (~y − ~y′, ~u) d~y′ d~z′ by Fubini’s theorem [232]

=

∫
Z

∫
Y

fZ(~z) kZ(~z − ~z′, ~v)
(
fY (~y) kY (~y − ~y′, ~u) d~y′

)
d~z′.

(A.23)

Since fZ(~z) and kZ(~z − ~z′, ~v) are independent of ~y′, we can move them outside the ~y′ integrals, as follows,

f̂(~x, ~w) =

∫
Z

fZ(~z) kZ(~z − ~z′, ~v)

(∫
Y

fY (~y) kY (~y − ~y′, ~u) d~y′
)
d~z′

=

∫
Z

fZ(~z) kZ(~z − ~z′, ~v) f̂Y (~y, ~u) d~z′ substituting equation A.1.
(A.24)

Since f̂Y (~y, ~u) is independent of ~z′, we can move it outside the integral, giving us,

f̂(~x, ~w) = f̂Y (~y, ~u)

∫
Z

fZ(~z) kZ(~z − ~z′, ~v) d~z′

= f̂Y (~y, ~u)f̂Z(~z,~v) substituting equation A.1.
(A.25)

A.3 Shading Language Primitives

In this section, we derive band-limited expressions for primitive functions of a shading language. These expressions

constitute the basis elements from which more complicated band-limited shaders may be constructed using the results

in the previous section.
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A.3.1 Absolute Value

Proposition A.14. Let f(x) = |x|. Using the Gaussian band-limiting kernel,

f̂(x,w) = x erf

(
x

w
√

2

)
+ w

√
2

π
e−

x2

2w2 . (A.26)

Proof. We observe that,

|x− x′| =


x− x′ if x′ < x,

x′ − x otherwise.
(A.27)

This allows us to substitute into equation A.2, partition, and rearrange as follows,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞
|x− x′| e−

x′2
2w2 dx′

=
1

w
√

2π

∫ x

−∞
(x− x′) e−

x′2
2w2 dx′ +

1

w
√

2π

∫ ∞
x

(x′ − x) e−
x′2
2w2 dx′

=
x

w
√

2π

(∫ x

−∞
e−

x′2
2w2 dx′ −

∫ ∞
x

e−
x′2
2w2 dx′

)
+

1

w
√

2π

(∫ ∞
x

x′ e−
x′2
2w2 dx′ −

∫ x

−∞
x′ e−

x′2
2w2 dx′

)
.

(A.28)

Since the Gaussian kernel is an even function of x′, the integral from x to∞ is equal to the integral from −∞ to −x.

Thus,

f̂(x,w) =
x

w
√

2π

(∫ x

−∞
e−

x′2
2w2 dx′ −

∫ −x
−∞

e−
x′2
2w2 dx′

)
+

2w√
2π

e−
x2

2w2 by propositions A.6 and A.7

=
x

w
√

2π

∫ x

−x
e−

x′2
2w2 dx′ + w

√
2

π
e−

x2

2w2

=
x

2

(
erf

(
x

w
√

2

)
− erf

(
−x
w
√

2

))
+ w

√
2

π
e−

x2

2w2 by proposition A.5.

(A.29)

Since the error function is an odd function, we can simplify this to,

f̂(x,w) =
x

2

(
erf

(
x

w
√

2

)
+ erf

(
x

w
√

2

))
+ w

√
2

π
e−

x2

2w2

= x erf

(
x

w
√

2

)
+ w

√
2

π
e−

x2

2w2 .

(A.30)

A.3.2 Ceiling

Proposition A.15. Let f(x) = dxe. Then, assuming the band-limiting function is even, f̂(x,w) = fl̂oor(x,w) + 1.
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Proof. Note that when x is not an integer, dxe = bxc+ 1. Since the integers have zero measure and dxe is finite for all

finite x,

f̂(x,w) =

∫ ∞
−∞
dxe e−

(x−x′)2

2w2 dx′ =

∫ ∞
−∞

(bxc+ 1) e−
(x−x′)2

2w2 dx′. (A.31)

Thus, if g(x) = bxc+ 1, f̂(x,w) = ĝ(x,w). From proposition A.12, f̂(x,w) = ĝ(x,w) = fl̂oor(x,w) + 1.

A.3.3 Cosine

Proposition A.16. Let f(x) = cosx. Then, using the Gaussian band-limiting kernel, f̂(x,w) = cosx e−
w2

2 .

Proof. Using the identity cos(α− β) = cosα cosβ + sinα sinβ [232], we can substitute into equation A.2 to get,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

cos(x− x′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

(cosx cosx′ + sinx sinx′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

cosx cosx′ e−
x′2
2w2 dx′ +

1

w
√

2π

∫ ∞
−∞

sinx sinx′ e−
x′2
2w2 dx′

=
cosx

w
√

2π

∫ ∞
−∞

cosx′ e−
x′2
2w2 dx′ +

sinx

w
√

2π

∫ ∞
−∞

sinx′ e−
x′2
2w2 dx′.

(A.32)

Note that e−
x′2
2w2 is an even function of x′. Since sinx′ is an odd function of x′, their product is an odd function,

and the second integral evaluates to 0, since the portion from −∞ to 0 has the same magnitude but opposite sign as the

portion from 0 to∞. Since cosx′ is an even function of x′, the first integral is equal to twice the integral from 0 to∞.

Thus, we are left with

f̂(x,w) =
2 cosx

w
√

2π

∫ ∞
0

cosx′ e−
x′2
2w2 dx′. (A.33)

Gradshteyn and Ryzhik provide a solution for this integral [233, eq. 3.896-4], where β = 1
2w2 and b = 1,

f̂(x,w) =
2 cosx

w
√

2π

∫ ∞
0

cos bx′ e−βx
′2
dx′

=
2 cosx

w
√

2π

(
1

2

√
π

β
e−

b2

4β

)
=

cosx

w
√

2

√
2w2 e−

2w2

4

= cosx e−
w2

2 .

(A.34)

A.3.4 Floor

Proposition A.17. Let f(x) = bxc and let fract(x) = x − bxc. Then, assuming the band-limiting function is even,

f̂(x,w) = x− f̂ract(x,w).
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Proof. Rearranging the definition of fract , we have f(x) = bxc = x − fract(x). From propositions A.9 and A.12,

then, f̂(x,w) = x− f̂ract(x,w).

A.3.5 Fractional Part

As discussed in section 3.3.2, we derive the band-limited expression for the fract function (fract), defined as fract(x) =

x− bxc, using several band-limiting kernels. As with the other derivations in this appendix, we start with the Gaussian

kernel, but in this case we also include derivations for the rectangular and tent kernels.

Throughout this section, we adopt the notation fractn(x) to mean (fract(x))
n.

Gaussian Kernel (fractG)

Directly computing the integral of the product of the fract function with the Gaussian kernel is particularly challenging.

Instead, we apply the convolution theorem [105], which links the convolution of f and k with the Fourier transforms of

f and k. The Fourier transform is commonly used in signal processing and relates a function of position (e.g., f(x)) to

a function of frequency (e.g., f(ν)). Specifically, the theorem states that,

f̂(x,w) = F−1ν [Fx [f(x)] (ν) · Fx [k(x,w)] (ν)] , (A.35)

where Fx[f(x)](ν) is the Fourier transform of f(x) as a function of the frequency ν and F−1ν [f(ν)](x) is its inverse.

The Fourier transform and inverse are defined as,

Fx [f(x)] (ν) =

∫ ∞
−∞

f(x) e−2πiνx dx

F−1ν [f(ν)] (x) =

∫ ∞
−∞

f(ν) e2πiνx dν.

(A.36)

Proposition A.18. Let f(x) = fract(x) = x− bxc. With the Gaussian band-limiting kernel (equation A.5),

f̂(x,w) =
1

2
−
∞∑
n=1

e−2w
2π2n2

πn
sin(2πnx). (A.37)

Proof. We apply the convolution theorem to compute the convolution of fract(x) with a Gaussian kernel.

Rather than computing the Fourier transform of fract(x) directly, we first derive the expression for its Fourier series

expansion. The Fourier series expansion for a periodic function defines the function in terms of an infinite series of

sines and cosines. For any periodic function g(x) with T , the Fourier series is given by [105],

a0 +

∞∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
, (A.38)
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where

a0 =
1

T

∫ T

0

g(x) dx

an =
2

T

∫ T

0

g(x) cos

(
2πnx

T

)
dx

bn =
2

T

∫ T

0

g(x) sin

(
2πnx

T

)
dx.

(A.39)

Substituting with fract(x), for which T = 1,

a0 =

∫ 1

0

fract(x) dx

an = 2

∫ 1

0

fract(x) cos(2πnx) dx

bn = 2

∫ 1

0

fract(x) sin(2πnx) dx.

(A.40)

Since fract(x) = x over the interval [0, 1], we can replace fract(x) with x in each of the integrals in equation A.40.

Thus, a0 =
∫ 1

0
x dx = 1

2 . To solve for an, we let u = x and dv = cos(2πnx) dx. Then du = dx and v =

1
2πn sin(2πnx). Using integration by parts, we have,

an = 2
[ x

2πn
sin(2πnx)

]1
0
− 2

2πn

∫ 1

0

sin(2πnx) dx

= 0 +

[
cos(2πnx)

2π2n2

]1
0

= 0.

(A.41)

To solve for bn, we let u = x and dv = sin(2πnx) dx, so that du = dx and v = − 1
2πn cos(2πnx). Using

integration by parts again,

bn = 2
[
− x

2πn
cos(2πnx)

]1
0

+
2

2πn

∫ 1

0

cos(2πnx) dx

= − 1

πn
+

[
sin(2πnx)

2π2n2

]1
0

= − 1

πn
.

(A.42)

Substituting these coefficients back into equation A.38, we find,

fract(x) =
1

2
−
∞∑
n=1

sin(2πnx)

πn
. (A.43)
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From this, we can compute the Fourier transform of fract ,

Fx [fract(x)] (ν) =

∫ ∞
−∞

(
1

2
−
∞∑
n=1

sin(2πnx)

πn

)
e−2πνx dx

=
1

2

∫ ∞
−∞

e−2πνx dx−
∞∑
n=1

1

πn

∫ ∞
−∞

sin(2πnx) e−2πνx dx

=
1

2
Fx [1] (ν)−

∞∑
n=1

1

πn
Fx [sin(2πnx)] (ν)

=
1

2
δ(ν)−

∞∑
n=1

1

2πn
i (δ(ν + n)− δ(ν − n)) [105],

(A.44)

using the Dirac delta function (δ). The Fourier transform of our Gaussian kernel is,

Fx
[

1

w
√

2π
e−

x2

2w2

]
(ν) =

1

w
√

2π
w
√

2π e−2w
2π2ν2

[105]

= e−2w
2π2ν2

. (A.45)

We may now substitute equations A.44 and A.45 into equation A.35:

f̂(x,w) = F−1ν [Fx [f(x)] (ν) · Fx [k(x,w)] (ν)]

= F−1ν
[
Fx [fract(x)] (ν) · Fx

[
1

w
√

2π
e−

x2

2w2

]
(ν)

]
(x)

= F−1ν

[
e−2w

2π2ν2

2
δ(ν)−

∞∑
n=1

e−2w
2π2ν2

2πn
i(δ(ν + n)− δ(ν − n))

]
(x).

(A.46)

Since, by definition, δ(x) = 0 unless x = 0, we may replace the ν in each exponential with the value that causes the

argument of δ to be 0. In the first term, this means ν = 0; in the summation, ν = ±n, so ν2 = n2:

f̂(x,w) = F−1ν

[
1

2
δ(ν)−

∞∑
n=1

e−2w
2π2n2

2πn
i (δ(ν + n)− δ(ν − n))

]
(x)

=
1

2
−
∞∑
n=1

e−2w
2π2n2

πn
sin(2πnx) [105].

(A.47)

Rectangular Kernel (fractR)

The band-limited expression in equation A.47 includes an infinite sum. As discussed in section 3.3.2, this summation

may be truncated, but in some cases may still result in unacceptable run times or image quality. For this reason, in this

section, we consider band-limiting with the rectangular function,

k(x,w) =
1

w

(
step

(
x+

w

2

)
− step

(
x− w

2

))
, (A.48)
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where step is the Heaviside unit step (H), defined to equal 0 if x < 0 and 1 if x ≥ 0.

We use Heckbert’s technique of repeated integration [112] to derive the convolution of fract(x) with a rectangular

kernel. This technique is built upon the convolution theorem and states that the convolution of f and k is equal to the

convolution of the integral of f (i.e., the function F (x) =
∫ x
0
f(x′) dx′) and the derivative of k.

Proposition A.19. The derivative of the rectangular kernel (equation A.48) is 1
w

(
δ
(
x+ w

2

)
− δ

(
x− w

2

))
.

Proof. Since d
dxstep(x) = δ(x) [105], we can use the chain rule to get,

d

dx
k(x,w) =

1

w

(
δ
(
x+

w

2

)
− δ

(
x− w

2

))
. (A.49)

Proposition A.20. Let F (x) =
∫ x
0

fract(x′) dx′. Then, F (x) = 1
2

(
fract2(x) + bxc

)
.

Proof. We start with the definition of F (x) and compute the integrals between the discontinuities as follows,

F (x) =

∫ x

0

fract(x′) dx′

=

∫ bxc
0

fract(x′) dx′ +

∫ x

bxc
fract(x′) dx′

=

bxc−1∑
n=0

∫ n+1

n

fract(x′) dx′ +

∫ x

bxc
fract(x′) dx′.

(A.50)

Note that, since the period of fract(x) is 1, we can subtract any integer value from both bounds of integration without

changing the value of the integral. In particular, since n and bxc are both integers,

F (x) =

bxc−1∑
n=0

∫ 1

0

fract(x′) dx′ +

∫ x−bxc

0

fract(x′) dx′

= bxc
∫ 1

0

fract(x′) dx′ +

∫ x−bxc

0

fract(x′) dx′.

(A.51)

Since fract(x′) = x′ when 0 < x′ < 1, we can replace fract(x′) with x′ in both integrals, leaving us with,

F (x) = bxc
∫ 1

0

x′ dx′ +

∫ x−bxc

0

x′ dx′

=
bxc
2

+
(x− bxc)2

2

=
fract2(x) + bxc

2

(A.52)
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Proposition A.21. Let f(x) = fract(x) = x− bxc. With the rectangular band-limiting kernel (equation A.48),

f̂(x,w) =
fract2

(
x+ w

2

)
+
⌊
x+ w

2

⌋
− fract2

(
x− w

2

)
−
⌊
x− w

2

⌋
2w

. (A.53)

Proof. Let F (x) =
∫ x
−∞ f(x′) dx′. Then, using Heckbert’s technique of repeated integration,

f̂(x,w) =

∫ ∞
−∞

f(x− x′)k(x′, w) dx′ =

∫ ∞
−∞

F (x− x′) d

dx′
k(x′, w) dx′. (A.54)

If we substitute equations A.49 and A.52, we get,

f̂(x,w) =

∫ ∞
−∞

fract2(x− x′) + bx− x′c
2w

(
δ
(
x′ +

w

2

)
− δ

(
x′ − w

2

))
dx′

=

∫ ∞
−∞

fract2(x− x′) + bx− x′c
2w

δ
(
x′ +

w

2

)
dx′

−
∫ ∞
−∞

fract2(x− x′) + bx− x′c
2w

δ
(
x′ − w

2

)
dx′.

(A.55)

Since the delta function is zero everywhere except 0, the first and second integrals reduce to evaluating the fraction at

x′ = −w2 and x′ = w
2 , respectively:

f̂(x,w) =
fract2

(
x+ w

2

)
+
⌊
x+ w

2

⌋
− fract2

(
x− w

2

)
−
⌊
x− w

2

⌋
2w

. (A.56)

Tent Kernel (fractT )

The band-limited expression in equation A.56 permits noticeable aliasing. In this section, we consider band-limiting

with the tent function,

k(x,w) =
1

w
max

(
0, 1−

∣∣∣ x
w

∣∣∣) . (A.57)

We again use repeated integration to derive the convolution of fract(x) with a tent kernel.

Proposition A.22. The second derivative of the tent kernel (equation A.57) is 1
w2 (δ(x+ w)− 2δ(x) + δ(x− w)).

Proof. Observe that the tent kernel consists of four piece-wise linear segments. Addressing each piece separately,

k(x,w) =
1

w
max

(
0, 1−

∣∣∣ x
w

∣∣∣) =



0 if x < −w

1 + x
w2 if − w < x < 0,

1− x
w2 if 0 < x < w,

0 otherwise.

(A.58)
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The first derivative of k with respect to x is therefore,

d

dx
k(x,w) =



0 if x < −w

1
w2 if − w < x < 0,

− 1
w2 if 0 < x < w,

0 otherwise.

(A.59)

Note that this is equivalent to 1
w2 (step(x+ w)− 2step(x) + step(x− w)). Since the derivative of step(x) is δ(x),

the derivative of this expression (respectively, the second derivative of k(x,w)) is,

d2

dx2
k(x,w) =

1

w2
(δ(x+ w)− 2δ(x) + δ(x− w)) . (A.60)

Proposition A.23. Let F (x) =
∫ x
0

∫ x′
0

fract(x′′) dx′′ dx′ be the second integral of fract(x). Then,

F (x) =
1

12

(
3x2 + 2fract3(x)− 3fract2(x)− x+ fract(x)

)
. (A.61)

Proof. We start with the definition of F (x) and substitute the first integral of fract(x), as follows,

F (x) =

∫ x

0

∫ x′

0

fract(x′′) dx′′ dx′

=

∫ x

0

fract2(x′) + bx′c
2

dx′ by proposition A.20

=
1

2

∫ x

0

fract2(x′) dx′ +
1

2

∫ x

0

bx′c dx′.

(A.62)

We compute the two integrals separately, starting with the first.

As above, we partition the first integral at the discontinuities:

∫ x

0

fract2(x′) dx′ =

bxc−1∑
n=0

∫ n+1

n

fract2(x′) dx′ +

∫ x

bxc
fract2(x′) dx′. (A.63)
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Since the period of fract(x) is 1, so is the period of fract2(x). We can therefore subtract any integer value from both

bounds of integration without changing the value of the integral. In particular, since n and bxc are both integers,

∫ x

0

fract2(x′) dx′ =

bxc−1∑
n=0

∫ 1

0

fract2(x′) dx′ +

∫ x−bxc

0

fract2(x′) dx′

= bxc
∫ 1

0

fract2(x′) dx′ +

∫ x−bxc

0

fract2(x′) dx′.

(A.64)

Since fract(x) = x when 0 < x < 1, we can substitute into both integrals, leaving us with,

∫ x

0

fract2(x′) dx′ = bxc
∫ 1

0

x′2 dx′ +

∫ x−bxc

0

x′2 dx′

=
bxc
3

+
(x− bxc)3

3

=
bxc+ fract3(x)

3
.

(A.65)

Returning to the second integral of equation A.62, we have,

∫ x

0

bx′c dx′ =

∫ x

0

x′ − fract(x′) dx′ by definition of fract(x)

=

∫ x

0

x′ dx′ −
∫ x

0

fract(x′) dx′

=
x2

2
− fract2(x) + bxc

2
by proposition A.20

=
x2 − fract2(x)− bxc

2
.

(A.66)

Substituting equations A.65 and A.66 into equation A.62 gives us,

F (x) =
1

2

∫ x

0

fract2(x′) dx′ +
1

2

∫ x

0

bx′c dx′

=
bxc+ fract3(x)

6
+
x2 − fract2(x)− bxc

4

=
2fract3(x) + 2 bxc

12
+

3x2 − 3fract2(x)− 3 bxc
12

=
3x2 − 2fract3(x)− 3fract2(x)− bxc

12

=
3x2 − 2fract3(x)− 3fract2(x)− x+ fract(x)

12
.

(A.67)

Proposition A.24. Let f(x) = fract(x). With the tent band-limiting kernel (equation A.57),

f̂(x,w) =
F (x+ w)− 2F (x) + F (x− w)

w2
, (A.68)
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where F (x) is defined as in proposition A.23.

Proof. Let F (x) =
∫ x
0

∫ x′
0
f(x′′) dx′′ dx′. Then, using repeated integration twice,

f̂(x,w) =

∫ ∞
−∞

f(x− x′)k(x′, w) dx′ =

∫ ∞
−∞

F (x− x′) d2

dx′2
k(x′, w) dx′. (A.69)

If we substitute equation A.60, we get,

f̂(x,w) =
1

w2

∫ ∞
−∞

F (x− x′) (δ(x′ + w)− 2δ(x′) + δ(x′ − w)) dx′

=
1

w2

∫ ∞
−∞

F (x− x′)δ(x′ + w) dx′ − 2

w2

∫ ∞
−∞

F (x− x′)δ(x′) dx′ + 1

w2

∫ ∞
−∞

F (x− x′)δ(x′ − w) dx′.

(A.70)

Since the delta function is zero everywhere except 0, the three integrals reduce to evaluating F (x− x′) at x′ = −w,

x′ = 0, and x′ = w, respectively:

f̂(x,w) =
F (x+ w)− 2F (x) + F (x− w)

w2
. (A.71)

A.3.6 Saturate

Proposition A.25. Let f(x) = saturate(x) = max(0,min(1, x)). Using the Gaussian band-limiting kernel,

f̂(x,w) =
1

2

(
x erf

(
x

w
√

2

)
− (x− 1) erf

(
x− 1

w
√

2

)
+ w

√
2

π

(
e−

x2

2w2 − e−
(x−1)2

2w2

)
+ 1

)
. (A.72)

Proof. Substituting the definition of saturate into equation A.2,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

saturate(x− x′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

max(0,min(1, x− x′)) e−
x′2
2w2 dx′.

(A.73)

Note that min(1, x−x′) ≤ 0 when x ≤ x′; thus max(0,min(1, x−x′)) = 0 when x ≤ x′ <∞. We can therefore

reduce the upper bound of the integral to x without affecting its value. Conversely, min(1, x− x′) > 0 when x′ < x,

meaning max(0,min(1, x− x′)) = min(1, x− x′) over the remaining bounds of integration. Thus, we can rewrite the

integrand without the max function,

f̂(x,w) =
1

w
√

2π

∫ x

−∞
min(1, x− x′)e−

x′2
2w2 dx′. (A.74)
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Now note that when x′ ≤ x− 1, min(1, x− x′) = 1 and when x− 1 < x′ ≤ x, min(1, x− x′) = x− x′. Thus,

we can partition the integral into two terms without reference to the min function:

f̂(x,w) =
1

w
√

2π

∫ x−1

−∞
e−

x′2
2w2 dx′ +

1

w
√

2π

∫ x

x−1
(x− x′) e−

x′2
2w2 dx′

=
1

w
√

2π

∫ x−1

−∞
e−

x′2
2w2 dx′ +

1

w
√

2π

∫ x

x−1
x e−

x′2
2w2 dx′ − 1

w
√

2π

∫ x

x−1
x′ e−

x′2
2w2 dx′

=
1

2

(
1 + erf

(
x− 1

w
√

2

))
+
x

2

(
erf

(
x

w
√

2

)
− erf

(
x− 1

w
√

2

))
− 1

w
√

2π

∫ x

x−1
x′ e−

x′2
2w2 dx′.

(A.75)

The last line follows from propositions A.4 and A.5.

Looking at the remaining integral of this equation, we can extend the upper bound of the integral and apply

proposition A.7:

1

w
√

2π

∫ x

x−1
x′ e−

x′2
2w2 dx′ =

1

w
√

2π

∫ ∞
x−1

x′ e−
x′2
2w2 dx′ − 1

w
√

2π

∫ ∞
x

x′ e−
x′2
2w2 dx′

=
w√
2π

(
e−

(x−1)2

2w2 − e−
x2

2w2

)
.

(A.76)

Substituting back into equation A.75, we have,

f̂(x,w) =
1

2

(
1 + erf

(
x− 1

w
√

2

))
+
x

2

(
erf

(
x

w
√

2

)
− erf

(
x− 1

w
√

2

))
− w√

2π

(
e−

x−12

2w2 − e−
x2

2w2

)
=

1

2

(
1 + erf

(
x− 1

w
√

2

)
+ x erf

(
x

w
√

2

)
− x erf

(
x− 1

w
√

2

)
− w

√
2

π

(
e−

(x−1)2

2w2 − e−
x2

2w2

))

=
1

2

(
x erf

(
x

w
√

2

)
− (x− 1) erf

(
x− 1

w
√

2

)
+ w

√
2

π

(
e−

x2

2w2 − e−
(x−1)2

2w2

)
+ 1

)
.

(A.77)

A.3.7 Sine

Proposition A.26. Let f(x) = sinx. Then, using the Gaussian band-limiting kernel, f̂(x,w) = sinx e−
w2

2 .

Proof. Using the identity sin(α− β) = sinα cosβ − cosα sinβ [232], we can substitute into equation A.2 to get,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

sin(x− x′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

(sinx cosx′ − cosx sinx′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

sinx cosx′ e−
x′2
2w2 dx′ − 1

w
√

2π

∫ ∞
−∞

cosx sinx′ e−
x′2
2w2 dx′.

(A.78)
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Note that sinx′ is an odd function of x′ while e−
x′2
2w2 is an even function of x′. Therefore, the second integral evaluates

to 0, since the portion from −∞ to 0 has the same magnitude but opposite sign as the portion from 0 to∞. Thus, we

are left with,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

sinx cosx′ e−
x′2
2w2 dx′

=
sinx

w
√

2π

∫ ∞
−∞

cosx′ e−
x′2
2w2 dx′

=
2 sinx

w
√

2π

∫ ∞
0

cosx′ e−
x′2
2w2 dx′.

(A.79)

The final line follows, since cosx′ and e−
x′2
2w2 are both even functions of x′. Gradshteyn and Ryzhik provide a solution

for the integral [233, eq. 3.896-4], where β = 1
2w2 and b = 1,

f̂(x,w) =
2 sinx

w
√

2π

∫ ∞
0

cos bx′ e−βx
′2
dx′

=
2 sinx

w
√

2π

(
1

2

√
π

β
e−

b2

4β

)
=

sinx

w
√

2

√
2w2 e−

2w2

4

= sinx e−
w2

2 .

(A.80)

A.3.8 Squaring

Proposition A.27. Let f(x) = x2. Using the Gaussian band-limiting kernel, f̂(x,w) = x2 + w2.

Proof. Starting with equation A.2,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

(x− x′)2 e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

(x2 − 2xx′ + x′2) e−
x′2
2w2 dx′

=
x2

w
√

2π

∫ ∞
−∞

e−
x′2
2w2 dx′ − 2x

w
√

2π

∫ ∞
−∞

x′ e−
x′2
2w2 dx′ +

1

w
√

2π

∫ ∞
−∞

x′2 e−
x′2
2w2 dx′

= x2 − 2x

w
√

2π

∫ ∞
−∞

x′ e−
x′2
2w2 dx′ +

1

w
√

2π

∫ ∞
−∞

x′2 e−
x′2
2w2 dx′.

(A.81)

Note that, since x′ and e−
x′2
2w2 are odd and even functions of x′, respectively, their product is an odd function of x′.

Thus, the first integral evaluates to 0, since the portion from −∞ to 0 has the same magnitude but opposite sign as the

portion from 0 to∞. Since x′2 is an even function of x′, the integrand in the second integral is also an even function of

x′ and evaluates to twice the integral from 0 to∞. Thus, we are left with,

f̂(x,w) = x2 +
2

w
√

2π

∫ ∞
0

x′2 e−
x′2
2w2 dx′. (A.82)
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Gradshteyn and Ryzhik provide a solution for this integral [233, eq. 3.461-2], with p = 1
2w2 and n = 1:

f̂(x,w) = x2 +
2

w
√

2π

∫ ∞
0

x′2 e−px
′2
dx′

= x2 +
2

w
√

2π

(
1

4p

√
π

p

)
= x2 +

1

w
√

2π

2w2

2

√
2πw2

= x2 + w2.

(A.83)

A.3.9 Step Function

Proposition A.28. Let

f(x) = step(x) =


0 if x ≤ 0

1 otherwise.
(A.84)

Then f̂(x,w) = 1
2 + 1

2 erf
(

x
w
√
2

)
.

Proof. Starting with equation A.2,

f̂(x,w) =
1

w
√

2π

∫ ∞
−∞

f(x− x′) e−
x′2
2w2 dx′

=
1

w
√

2π

∫ ∞
−∞

step(x− x′) e−
x′2
2w2 dx′.

(A.85)

From the definition of f , we can see that step(x− x′) = 0 when x < x′ and step(x− x′) = 1 when x > x′. Thus, we

can simplify the integral without reference to the step function:

f̂(x,w) =
1

w
√

2π

∫ x

−∞
e−

x′2
2w2 dx′

=
1

2
+

1

2
erf

(
x

w
√

2

)
by proposition A.4.

(A.86)

A.3.10 Truncation

Proposition A.29. Let

f(x) = trunc(x) =


dxe if x ≤ 0

bxc otherwise.
(A.87)

Then f̂(x,w) = fl̂oor(x,w)− ŝtep(x,w) + 1.
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Proof. Starting with equation A.1, we split the integral to handle each case separately:

f̂(x,w) =

∫ ∞
−∞

f(x′) e−
(x−x′)2

2w2 dx′

=

∫ 0

−∞
dx′e e−

(x−x′)2

2w2 dx′ +

∫ ∞
0

bx′c e−
(x−x′)2

2w2 dx′

=

∫ 0

−∞
(bx′c+ 1) e−

(x−x′)2

2w2 dx′ +

∫ ∞
0

bx′c e−
(x−x′)2

2w2 dx′ by proposition A.15.

(A.88)

Observe that, if x < 0, then step(x) = 0 and if x > 0, then step(x)− 1 = 0. We substitute these expressions into the

first and second integrals, respectively:

f̂(x,w) =

∫ 0

−∞
(bx′c − step(x′) + 1) e−

(x−x′)2

2w2 dx′ +

∫ ∞
0

(bx′c − step(x′) + 1) e−
(x−x′)2

2w2 dx′

=

∫ ∞
−∞

(bx′c − step(x′) + 1) e−
(x−x′)2

2w2 dx′.

(A.89)

Thus, if g(x) = bxc − step(x) + 1, then f̂(x,w) = ĝ(x,w). From proposition A.12,

f̂(x,w) = ĝ(x,w) = fl̂oor(x,w)− ŝtep(x,w) + 1. (A.90)
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