
Ray PL Buse

2.6.2008

@author Ray PL Buse

@date 2.6.2008

@slide 3

 Exceptions: Why?
 Handling exceptions
 A look at existing practice in 10 popular Java

programs
 Hypothesis:

 We can automatically generate documentation
describing when exceptions are thrown that is, on
average, better than human-written documentation

 Evaluation
 Usage Considerations and Conclusions

@slide 4

 Language construct for transferring control
to a place where an event can be handled

 2 General Cases

 Legitimate environmental events

▪ e.g., the disk is full

 Checking invariants or preconditions

▪ e.g., argument must not be null

@slide 5

 Context

 Modules lead us to generic (reusable) code

 In general, error handling can’t be generic

saveDoc()

main() write()

Disk I/O module

logEvent()

@slide 6

@slide 7

More
Context

Exception!Less
Context …

Detect Event

@slide 8

More
Context

Exception!Less
Context …

Detect Event

Gather Context

Handle

@slide 9

 In real life we can “think up” solutions
on-the-fly

 In software, we have to anticipate
everything

 We have to understand the conditions
that can cause exceptions

@slide 10

 Mishandling or Not handling can lead to…

 Security vulnerabilities

▪ May disclose sensitive implementation details

 Breaches of API encapsulation

▪ Might want to change exceptions later

 Any number of minor to serious system failures

@slide 11

 Solution 1: No exceptions. Total functions
only.

 Solution 2: Pretend exceptions don’t happen.
 Solution 3: Keep track of all exceptions and

handle them appropriately.

@slide 12

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 13

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 14

When does this throw
an exception?

Here’s one spot

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 15

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

Must check here

and here

When does this throw
an exception?

@slide 16

 Need to check all the methods
that are reachable

 With subtyping and dynamic
dispatch there could be many
implementations of a method

 And what happens as the
system evolves?

@slide 17

 For Developers

 Easier to keep track of what’s going on

 For Maintenance

 90% of the total cost of a typical software project

 40% - 60% of maintenance is spent studying
existing software

 For Users

 Easier to integrate existing software libraries

@slide 18

Program Name Application Domain kLOC

Azureus Internet File Sharing 470

DrJava Development 131

FindBugs Program Analysis 142

FreeCol Game 103

hsqldb Database 154

jEdit Text Editor 138

jFreeChart Data Presentation 181

Risk Game 34

tvBrowser TV guide 155

Weka Machine Learning 436

Total 1944

@slide 19

 Exception Instance

 An Exception type and a method that can propagate it

 Each exception instance is an opportunity for a
documentation

 Depth of an Exception Instance

 Minimum number of dynamic method invocations
between the Exception Instance and a throw
statement of its type

 Intuitively, greater depth implies harder to figure out

@slide 20

@slide 21

@slide 22

Can we do better?
/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 23

/**

* Moves this unit to america.

*

* @exception IllegalStateException thrown when

* getLocation() is not a Europe.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 24

 We can create an automatic tool that
documents exceptions better than
developers have

 Better?

▪ More complete

▪ More precise

@slide 25

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 A simple example:

@slide 26

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 Find the throw
statements

@slide 27

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 Link method
invocations to
possible targets

 We use an off-the-
shelf call graph
generator

@slide 28

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Determine which
methods can
throw which
exceptions
 Use a fixpoint

worklist to deal
with cycles

 Must consider
catch and
finally blocks

@slide 29

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Enumerate control
flow paths that can
lead to exceptions

 Work backward
from exception
throwing
statements

@slide 30

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Symbolically
execute paths,
record predicates

 Use another
fixpoint worklist

@slide 31

 Predicates along
the path become
the documentation

@throws Exception if

x < 0 OR (x >= 0 AND x==4)

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

@throws Exception if

parameter:n == 4

sub(int n)

{

if(n == 4)

throw new Exception();

}

@slide 32

 Finally, some simplification & readability
enhancements

 TRUE becomes “always”

 FALSE OR x becomes “x”

 x != null becomes “x is not null"

 x instanceof T becomes “x is a T"

 x.hasNext() becomes “x is nonempty"

 x.iterator().next() becomes “x.{some
element}"

@slide 33

 Generate call graph
 Track all explicitly thrown exceptions by

concrete type
 Construct and symbolically execute all

(exponentially many) paths that can lead
to a throw

 Construct predicates and make them more
readable

@slide 34

 Baseline: Existing JavaDocs

 10 Benchmarks from earlier

 ~950 documentations

 Run tool on each program and create pairs

 <tool doc, existing doc>

 Bin each in: Worse, Same, Better

@slide 35

 Sometimes we do better:

 Sometimes we do about the same:

 Sometimes we do worse:

@slide 36

@slide 37

 throw statements are relatively rare
 Only have to execute paths that lead to a
throw

 We don’t follow back edges

 Some limit needed to guarantee termination

 Whole process takes about 10 min on average

@slide 38

 Exceptions that seem possible aren’t really

 Better call graph

 Exceptions contexts are deep and complex

 Could be a symptom of bad design

 Might want to ignore certain types or threshold
depth

 Same exception type stands for many error
conditions

 Increase granularity of exception type hierarchy

@slide 39

 External API

 System users

 Code Reviews

 Reading & Inspection

 Verification

 If we want to be more formal

@slide 40

 Exceptions probably aren’t going away
 Many exception instances remain poorly or

not documented in practice
 On average, we do at least as well as humans

83% of the time and are fully automatic
 We can scale to large programs

 Azureus has 470 kLOC, tool runs in ~25 min

@slide 41

throw new OutOfSlidesException();

