
CSE PhD: Improving Programming Support for Hardware Accelerators Through Automata
Processing Abstractions

We propose designing programming models and maintenance tools for hardware accelerators
using finite automata as an intermediate representation. We focus on maintaining performance and
scalability while improving ease of use, expressive power, and legacy support with our tools.

Background and Motivation. Hardware accelerators are becoming more commonplace for ac-
celerating general-purpose computation due to increasing rates of data collection and increased
pressure for real-time analyses. While the performance of these devices show great promise, sup-
port for programming and maintenance tasks tend to be low-level or nonexistent, which places a
significant burden on developers and slows the adoption of this technology. Recent efforts to ac-
celerate applications with finite automata (DFAs and NFAs) on hardware accelerators have been
quite successful, and we propose leveraging this work as an intermediate representation to design
novel high-level programming models and maintenance tools.

Intellectual Merit. We propose four research efforts:

1. High-Level Languages for Automata Processing: We will design a high-level programming
language, RAPID, for accelerating sequential pattern-matching applications. We propose
extending a C- or Java-like language with three domain-specific parallel control structures
and creating algorithms to compile the language to a set of finite automata.

2. Interactive Debugging for High-Level Languages and Accelerators: To aid developers with
debugging-related maintenance tasks, we propose developing a high-throughput interac-
tive debugger that captures the low-level execution context on hardware accelerators and
bridges the semantic gap with high-level RAPID programs.

3. Expressive Power of In-Memory Automata Accelerators: Processing of tree-structured or
recursively-nested data is intrinsic to many applications, but is not directly supported by
finite automata. We will therefore design a new, in-cache accelerator architecture (and asso-
ciated compiler) that supports the richer computational model of pushdown automata.

4. Adapting Legacy Code for Execution on Hardware Accelerators: We propose combining
insights from automata learning and software model checking to design algorithms that
learn functionally-equivalent automata from legacy code for execution with accelerators.

Evaluation. We will compare the performance and scalability of applications written in our pro-
posed RAPID language with expert-crafted baselines for a collection of real-world benchmarks.
We will measure the ease of use of our proposed debugging system by conducting an IRB-approved
human study that measures accuracy and duration for indicative fault localization tasks. To evalu-
ate our proposed pushdown automata architecture, we will consider both expressive power as well
as performance using real-world case studies. Our evaluation of legacy support for our automata
learning algorithms is the most speculative and will measure performance for a benchmark suite
of legacy code as well as characterize approximation quality for learned automata.

Broader Impact. There is a growing need for effective programming models for hardware ac-
celerators as devices become more prevalent in general-purpose computing; this work seeks ease
the adoption of such devices through easy-to-use and performant tools. We also seek to train the
next generation of researchers and engineers by actively pursuing mentorship opportunities for
underrepresented undergraduates.

1



This page intentionally left blank.



Improving Programming Support for Hardware Accelerators
Through Automata Processing Abstractions

Ph.D. Dissertation Proposal
Kevin A. Angstadt

angstadt@umich.edu

December 4, 2018

1 Introduction

Writing software for hardware accelerators can be a difficult and error-prone process. However,
the confluence of several factors, including the rapid growth of data collection [32], demands
for real-time analyses by business leaders [29], and the lessening impact of Dennard Scaling
and Moore’s Law [76], have all led to the increased use of hardware accelerators, such as Field-
Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs), Google’s Tensor Pro-
cessing Unit (TPU) [52], Micron’s D480 Automata Processor (AP), and others for general-purpose
computing. Such accelerators trade off general computing capability for increased performance
on very specific workloads; however, these devices require additional architectural knowledge to
effectively program and configure.

While present in industry for prototyping and application-specific deployments for quite some
time, reconfigurable architectures, such as FPGAs, are now becoming commonplace in everyday
computing as well. In fact, FPGAs are in use in Microsoft datacenters and are also widely available
through Amazon’s cloud infrastructure [3, 25, 54, 67].

Current programming models are akin to assembly-level development on traditional CPU archi-
tectures. While these hardware solutions provide high throughputs, programming them can be
challenging. Consequently, programs written for these accelerators are tedious to develop and
challenging to write correctly. Additionally, these low-level representations do not lend them-
selves well to debugging and maintenance tasks. We hypothesize that this low level of abstraction
places a high burden on developers and is a key barrier for the adoption of hardware accelera-
tors. Higher levels of abstraction for programming FPGAs have been achieved with languages
such as OpenCL [84] and frameworks such as Xilinx’s SDAccel [101]; however, these models still
require low-level knowledge of the underlying architecture to allow for efficient implementation
and execution of applications [91, 109].

We argue that a successful programming model must satisfy the following criteria:

• Performance and Scalability. Maintaining the performance gains provided by hardware
accelerators is critical and is achieved by minimizing the overhead introduced by high-level
programming models and tools.

• Ease of Use. Tools must aid developers in effectively writing and maintaining software for
hardware accelerators by providing familiar abstractions and a shallow learning curve.

• Expressive Power. The underlying computational model must be rich enough to support
the applications that developers wish to accelerate with dedicated hardware.

• Legacy Support. Programming models must support the adaptation of existing software to
execute efficiently on hardware accelerators while placing a minimal burden on developers.

1

angstadt@umich.edu


We propose building programming models and software maintenance tools for hardware acceler-
ators using finite automata as an intermediate representation. The overarching hypothesis of the
proposed dissertation is:

Finite automata provide a suitable abstraction for bridging the gap between high-level
programming models and maintenance tools familiar to developers and the low-level
representations that execute efficiently on hardware accelerators.

Our approach leverages the following insights. First, finite automata are a good fit for represent-
ing a diversity of applications. Recently, researchers have successfully developed new algorithms
using the automata processing abstraction to accelerate analyses across many domains, includ-
ing: natural language processing [108], network security [73], graph analytics [72], high-energy
physics [99], bioinformatics [70, 71, 90], pseudo-random number generation and simulation [95],
data-mining [97, 98], and machine learning [89]. Second, finite automata maintain compact state,
which allows for program introspection tools to monitor a relatively small number of signals to
capture the execution of a program. Third, finite automata can be mapped efficiently to reconfig-
urable architectures [31, 102], allowing for scalability and performance. Finally, we observe that
support for the execution of existing software on hardware accelerators can make use of legacy
source code as an oracle for counterexample-guided approaches [7, 27] to learning functionally-
equivalent automata.

The expected main contributions of the proposed dissertation are the following:

1. A high level programming language, RAPID, for accelerating sequential pattern matching
applications on hardware accelerators.

2. A high-throughput, interactive debugging system for RAPID programs for maintenance
tasks on FPGAs and Micron’s D480 Automata Processor.

3. An in-cache accelerator and associated optimizing compilation algorithms for execution of
deterministic pushdown automata.

4. An automata synthesis system for porting legacy source code to execute on hardware accel-
erators by learning functionally-equivalent automata.

The remainder of this proposal is as follows. In Section 2, we discuss background material and
related research efforts. Next, we describe our proposed research and associated technical ap-
proaches in Section 3, and in Section 4, we detail our evaluation of the proposed research. In
Section 5, we present results of preliminary experiments for our first three efforts. Finally, we
finish with a discussion of the broader impact in Section 6, our proposed schedule of research in
Section 7, and concluding thoughts in Section 8.

2 Background and Related Work

In this section, we present definitions, background material, and related work in the context of
our proposed research efforts.

2.1 Finite Automata

Deterministic and non-deterministic finite automata (DFAs and NFAs) provide useful models of
computation for identifying patterns in a string of symbols. A DFA, formally, is defined as a five-
tuple, (Q,Σ, q0, δ, F ), where Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial

2



state, δ : Q × Σ → Q is a transition function, and F ⊆ Q is the set of accepting states. The finite
alphabet defines the allowable symbols within the input string. The transition function takes, as
input, the currently active state and a symbol, and the function returns a new active state.

q0start

q1

q2 q3

q4
a

a

a
a

c b

(a)

c

astart

astart a

a

b

(b)

Figure 1: A behaviorally-equivalent NFA and homoge-
neous NFA (both accept exactly aa, aab, and aaca). Note
that there is a singleton start state in (a) (i.e.,Qstart = {q0}),
but there are two start states in (b).

An NFA modifies this five-tuple to be
(Q,Σ, Qstart, δ, F ), where Qstart ⊆ Q is a
set of initial states and δ : 2Q × Σ → 2Q

is the transition function.1 NFAs have the
same representative power as DFAs, but
have the advantage of being more spa-
tially compact [78]. In this proposal, we
use an alternate form of NFAs known as
homogeneous NFAs. These automata re-
strict the possible transition rules such
that all incoming transitions to a state
must occur on the same symbol [23]. Be-
cause all transitions to a state occur on
the same symbol, we can label states with
symbols rather than labeling the transitions. We refer to these combined states and labels as state
transition elements (STEs), following the nomenclature adopted by Dlugosch et al. [31]. Figure 1
depicts an NFA and a behaviorally-equivalent homogeneous NFA.

2.2 Accelerating Automata Processing

ST
E 0

ST
E 1

ST
E 2

ST
E 3

ST
E n

−
4

ST
E n

−
3

ST
E n

−
2

ST
E n

−
1

8-Bit
Input

Symbol

R
ow

D
ec

od
er

Activation Bits

Reconfigurable Routing Matrix

Figure 2: AP architecture. STEs are
stored in a memory array, and edges
are encoded in a reconfigurable rout-
ing matrix.

As improvements in semiconductor technology have slowed,
but demand for increased throughput for complex algorithms
remains, there is a trend in hardware design toward special-
ized accelerator architectures [68, 77]. A recent body of work
studies the acceleration of finite automata (NFA and DFA)
processing across multiple architectures. Becchi et al. have
developed a set of tools and algorithms for efficient CPU-
based automata processing [17]. Several regular-expression-
matching and DFA-processing application-specific architec-
tures have also been proposed [35, 38, 87, 94]. Some (e.g.,
UDP [36]) incorporate regular expression matching into an
extract-transform-load pipeline, supporting a richer set of
applications. There have been several efforts to develop
memory-centric architectures for automata processing, such
as Micron’s D480 Automata Processor (AP) [31], Parallel Au-

tomata Processor (PAP) [85], Subramaniyan et al.’s Cache Automaton (CA) [86], and Xie et al.’s
REAPR [102].

We briefly describe two architectures that accelerate automata processing applications: Micron’s
D480 AP and commodity FPGAs. These architectures are indicative of those we target in our
proposed research efforts detailed in Section 3.

1NFAs traditionally support ε-transitions between a source and target state without consuming a symbol. These are
not present in our definition of an NFA. An ε-transition may be removed by duplicating all incident transitions to the
source state on the target state [31].

3



The AP is a hierarchical, memory-derived architecture for execution of homogeneous NFAs de-
veloped by Dlugosch et al. [31]. The processing core of the AP consists of a DRAM array and a
reconfigurable routing matrix, representing the STEs and edges respectively. The architecture is
depicted in Figure 2. In-cache automata processing architectures, such as Subramaniyan et al.’s
Cache Automaton (CA) [86], implement a similar datapath.

Field-Programmable Gate Arrays are reconfigurable fabrics of look-up tables (LUTs), flip-flops
(FFs), and block RAMs (BRAMs). LUTs can be configured to compute arbitrary logic functions
and are connected together with memory using a reconfigurable routing fabric. This model al-
lows FPGAs to form arbitrary circuits, which can be useful for prototyping. Xie et al. propose
an AP-style processing model for NFA execution in which LUTs are used in place of columns of
memory, flip-flops are used to store the activation bits for STEs, and transition signals are prop-
agated through the FPGA’s reconfigurable routing matrix [102]. Because of the general nature of
the AP-style datapath, this proposal assumes such an architecture unless otherwise noted.

2.3 Software Maintenance

Software maintenance tasks are varied and account for a significant proportion of developer ef-
fort [65, 75]. In our proposed dissertation, we focus on the task of debugging, including aiding
fault localization. Fault localization is an aspect of debugging that attempts to implicate particular
statements or expressions as the likely source of undesirable behavior [104]. The development of
debugging tools has a lengthy history [43, 56, 74, 106], and software debuggers are commonplace
in development toolchains [59]. Ungar et al. argue that immediacy is important for debugging
tasks [92]. There has also been significant effort devoted to improving the efficiency of debug-
ging tools, such as quickly transferring control when a breakpoint is reached [53] and efficiently
supporting large numbers of watchpoints [107]. Breakpoints allow a developer to begin interact-
ing with a debugger by specifying locations in the program source at which to pause execution
for inspection. These approaches provide debugging support for general purpose processors and
languages. The technique proposed in this work is in the same spirit: we will provide immedi-
acy for debugging big data pattern-matching applications through low-overhead breakpoints on
specialized hardware and interactive, step-through program inspection.

Previous research has considered debugging for specialized hardware, including support for dis-
tributed sensor networks [81] and energy-harvesting systems [28]. Hou et al. developed a debug-
ger for general-purpose GPU programs which leverages automatic dataflow recording to allow
users to analyze errors after program execution [48]. Similarly, there are approaches for debug-
ging FPGA applications [5, 40]; however, these techniques typically focus on inspection of the un-
derlying hardware description, rather than programs written in high-level languages. We propose
further developing the area of debugging for specialized processors by designing a technique for
inspecting source-level program state during program execution on automata processing engines.

2.4 Program Synthesis and Verification

Program synthesis is a holistic term for automatically generating software from some input de-
scription. Recent efforts have focused on different applications of synthesis, such as sketch-
ing [4, 79, 80], programming by example [42], and automated program repair [61, 62]. Many of
these approaches employ counterexample-guided inductive synthesis (CEGIS) to produce a final so-
lution [80]. CEGIS is an iterative technique that constructs candidate solutions that are tested
(typically via formal methods) for equivalence. A counterexample, or model of undesirable behav-

4



ior, is provided if the candidate solution is incorrect, and this is used to begin the next iteration
of synthesis. Further, there have been many efforts to synthesize state machines from held-out
oracles or example data [83, 93], including Angluin’s L* and associated algorithms [7, 21], which
learn finite automata from a held-out teacher. There has also been related efforts to understand
the the number of queries of an oracle needed to learn a language as well as approximate learning
of languages [6, 7, 39, 50].

Program verifiers and software model checkers prove that a program adheres to a provided speci-
fication or produce counterexamples that violate the specification [18]. These tools typically inter-
leave the control flow graph (CFG) and a given specification automaton and explore the resulting
graph to determine if any path leads to an error state in the specification. There has been signif-
icant research and engineering effort applied to making these techniques scalable and applicable
to real-world applications [15, 19, 27, 45, 60].

We propose combining and adapting insights from CEGIS, automata learning, and software model
checking to synthesize behaviorally-equivalent automata from legacy source code in Section 3.4.

3 Proposed Research and Technical Approach

Our goal is to design new programming models and maintenance tools that ease the adoption
and use of hardware accelerators in data processing pipelines. We propose using finite automata
as an intermediate representation of computation, and will design high-level languages and tools
as well as hardware backends that support this abstraction. Concretely, we propose four research
efforts for this dissertation, designing the following:

1. A high-level programming language, RAPID, for sequential pattern search applications.

2. A high-speed, interactive debugging system for the RAPID language that supports break-
points and variable introspection.

3. An in-cache accelerator and associated optimizing compiler for execution of deterministic
pushdown automata.

4. A system for porting existing software for use on hardware accelerators by automatically
learning functionally-equivalent finite automata.

The remainder of this section is dedicated to describing each research effort and detailing our
proposed technical approaches, but does not describe our proposed evaluation. A discussion of
metrics and experiments may be found in Section 4.

3.1 Research: High-Level Languages for Automata Processing

The goal of this research thrust is to establish the feasibility of compiling an imperative, high-
level programming language to a set of finite automata for execution on hardware accelerators.
We propose extending a simple C- or Java-like language with domain-specific parallel control
structures and developing algorithms to lower programs written in this language to an automata-
based representation. We hypothesize:

A high-level programming language will improve the conciseness of representing an
algorithm while maintaining the performance of hand-crafted applications for hard-
ware accelerators.

5



The work in this subsection was performed in collaboration with other researchers and is de-
scribed in detail in [11, 12].

Approach. The output of this research effort is an initial prototype of the RAPID programming
language, including a compiler that generates a set of finite automata from an input program. We
propose supporting execution of RAPID programs on CPUs, GPUs, FPGAs, and Micron’s D480
AP. The AP provides direct hardware support for processing automata [31]; for the remaining
architectures, we propose adapting existing automata processing engines and execution cores to
work with the RAPID language.

RAPID programs will be written in a combination of imperative and declarative styles, and we
will design code abstractions similar to functions or procedures that allow for efficient reuse while
mapping naturally to pattern-matching problems and the underlying automata computational
model, which we refer to as macros and networks. A macro uses sequential control flow to define
an algorithm for matching patterns in an input data stream. Macros in RAPID are similar to C-
style macros and macros in low-level Automata Processor programs. The network contains a list
of macros that are instantiated in parallel, allowing for simultaneous recognition of many patterns
in data streams (e.g., [73, 97, 98, 108]).

We propose accelerating RAPID programs on a hardware accelerators by leveraging insights from
staged computation, which is an approach for performing a portion of computation at compile time
and leaving “holes“ that are filled in at runtime to handle support for dynamic inputs [41, 66].
With respect to RAPID, imperative statements in the code will be executed at compile time to aid
in generating finite automata, while declarative statements related to the input data stream will
then be executed at runtime on the hardware accelerator.

We propose three parallel control structures (foreach, some, and whenever) to facilitate common
pattern-matching tasks. These allow the concise specification of multiple, simultaneous compar-
isons against a single data stream and provide high-level support for variable-offset sliding win-
dow comparisons that are integral to many pattern-recognition problems (e.g., [37, 96, 108]).

Our proposed control structures, code abstraction, compilation strategy will allow RAPID pro-
grams to be written at a high level of abstraction while also achieving high throughputs when
executed on hardware accelerators.

3.2 Research: Interactive Debugging for High-Level Languages and Accelerators

Although debugging support for CPUs is mature and fully-featured (e.g., including standard
tools [82], successful technology transfer [15] and annual conferences [51]), the throughput of
automata processing applications on CPUs is typically orders of magnitude slower than execu-
tion on hardware accelerators [63,96], making CPUs too slow for effective debugging of automata
processing. Unfortunately, current debugging techniques are limited or nonexistent for hardware
accelerators. For architectures where there is no instruction stream, such as in FPGAs, the tra-
ditional method of inserting breakpoints is not available. Instead, debugging on FPGAs is often
performed at the signal level using logic analyzers or scan chains [14, 55, 88, 100], exposing low-
level state to software. The AP also provides no explicit debugging support, but does expose
low-level state through APIs.

We propose designing an interactive, source-level debugger by building upon low-level signal
inspection on hardware accelerators. We hypothesize that:

6



The automata abstraction reduces the program state that must be monitored at the
signal level on hardware accelerators while still allowing for program semantics to be
lifted to higher levels of abstraction and meaningfully supporting debugging.

Approach. In this research effort, we propose designing a prototype debugging system on top of
the RAPID programming language described in the previous subsection. Our debugging system
will include support for breakpoints and program data inspection. We propose supporting de-
bugging on both the AP and Xilinx FPGAs without modifying the underlying accelerators. While
we focus our presentation on RAPID, the general techniques we develop for exposing state from
low-level accelerators to provide debugging support lay out a general path for providing such
capabilities for other accelerators and languages. Our approach will leverage a combined hard-
ware accelerator and CPU-software simulation system design to allow for both high-speed data
processing as well as interactive debugging.

Hardware accelerators already contain much of the low-level hardware support needed to inspect
the state of executing automata. For example, Micron’s Automata Processor contains context-
switching hardware resources, which are often left unused. Additionally, FPGA manufacturers
provide logic analyzer APIs to inspect the values of signals during data processing. We will re-
purpose these hardware features to transfer control from the execution context on the accelerator
to an interactive debugger on the host system.

We propose lifting captured automata state to the semantics of the source-level program through
a series of mappings generated at compile time. We will design the RAPID compiler (proposed
in Section 3.1) such that the mapping from source-level expressions to architecture-level automata
states is traceable; our approach will also be applicable to any high-level programming language
for which such a mapping from expressions to hardware resources may be inferred.

Finally, we propose a new form of breakpoints for data-processing applications. Setting break-
points on particular expressions in a program is not directly supported by the automata process-
ing paradigm. Instead, we will set and trigger breakpoints on input data, pausing execution after
processing a fixed number of bytes. We can leverage these pauses to transparently provide the
abstraction of more traditional breakpoints set on lines of code.

3.3 Research: Expressive Power of In-Memory Automata Accelerators

Processing of tree-structured or recursively-nested data is intrinsic to many computational ap-
plications. Data serialization formats such as XML and JSON are inherently nested (with open-
ing and closing tags or braces, respectively), and structures in programming languages, such as
arithmetic expressions, form trees of operations. Unfortunately, the expressive power of finite
automata is not adequate for recognizing these recursively-nested structures [78].

We observe that deterministic pushdown automata (DPDA) provide a general-purpose computa-
tional model for processing tree-structured data. Pushdown automata extend basic finite au-
tomata with a stack. State transitions are determined by both the next input symbol and also the
top of stack value. Determinism precludes stack divergence (i.e., simultaneous transitions never
result in different stack values) and admits efficient hardware implementation. While somewhat
restrictive, DPDAs are powerful enough to parse most programming languages and serialization
formats. We hypothesize that:

An in-cache accelerator architecture supporting pushdown automata computation will

7



support a rich class of applications, such as XML parsing, and allow for improved
performance over state-of-the-art baselines.

Approach. We propose designing ASPEN, an Accelerated in-SRAM Pushdown ENgine that is a
realization of deterministic pushdown automata in Last Level Cache (LLC). Our design is based
on the insight that much of DPDA processing can be architected as LLC SRAM array lookups
without involving the CPU. By performing DPDA computation in-cache, ASPEN avoids conven-
tional CPU overheads such as random memory accesses and branch mispredictions. Execution of
a DPDA with ASPEN will be divided into five stages: (1) input symbol match, (2) stack symbol
match, (3) state transition, (4) stack action lookup, and (5) stack update, with each stage making
use of SRAM arrays to encode matching and transition operations.

To scale to large DPDAs with thousands of states, ASPEN will adopt a hierarchical architecture
while still processing one input symbol in one cycle. Further, ASPEN will support processing of
hundreds of different DPDAs in parallel, as any number of LLC SRAM arrays can be re-purposed
for DPDA processing.

To support direct adaptation of a large class of legacy parsing applications, we propose designing
a compiler for converting existing grammars for common parser generators to DPDAs executable
by ASPEN. We propose two key optimizations for improving the runtime of parsers on ASPEN.
First, the architecture will support popping a reconfigurable number of values from the stack in
a single cycle, a feature we call multipop. Second, our compiler will implement a state merging
algorithm that reduces chains containing ε-transitions. Both of these optimizations are designed
to reduce stalls in input symbol processing.

We have published, in collaboration with other researchers, a prototype architecture in [8]. We
demonstrated that it is possible to implement a DPDA-based architecture with low overhead in
LLC. Our proposed research will expand on this existing work by exploring additional use-cases
for in-memory automata processing accelerators, such as their application to security problems.

3.4 Research: Adapting Legacy Code for Execution on Hardware Accelerators

As companies and individuals adopt hardware accelerators into their application workflows, they
will need to port existing code to these new programming models. We wish to reduce the burden
on developers tasked with porting legacy code. We hypothesize that:

An algorithm that learns a set of finite automata from a legacy source code kernel, us-
ing a combination of automata learning and formal methods, can correctly synthesize a
functionally-equivalent kernel computation, reduce the manual annotation and refac-
toring efforts of human developers, and efficiently represent real-world applications.

Approach. The output of this research effort is an algorithm that, given an input function de-
ciding a regular language (written in a high-level language), produces a set of finite automata
with functionally-equivalent behavior. At a high level, we propose employing a counterexample-
guided inductive synthesis approach in this algorithm (see Section 2.4). We observe that an
Angluin-style learning algorithm, such as L*, falls within this category and learns a state ma-
chine that represents a language, L, using queries to a minimally adequate teacher [7]. For learning
a finite automaton, this teacher must answer (1) membership queries (e.g., is string s ∈ L?) and (2)
equivalence queries (e.g., is the language, L′, of the candidate machine equivalent to L?).

8



Our insight is that the legacy kernel can be used as the basis for the minimally adequate teacher
in our algorithm. For membership queries, we will execute the function on the given input and
return the result. We will apply formal methods to answer equivalence queries, which we note
is equivalent to the test input generation problem: given the kernel and a candidate automaton, are
there any inputs for which the outputs differ? If no inputs satisfy this constraint, then we conclude
that the automaton is functionally equivalent to the kernel code. We propose using software model
checking and counterexample-guided abstraction refinement [27] to find these inputs. While these
refinement semi-algorithms may not converge, previous work provides evidence that convergence
is frequently achieved in a few iterations on methods of similar scale [16].

Because of the speculative nature of this research, we take several steps to mitigate risk. First,
we will initially assume that input kernel functions decide a regular language (i.e., could be re-
written as a regular expression). Time permitting, we will extend our algorithm to support ap-
proximate solutions for non-regular languages. We will study how user-provided input examples
can guide our automata synthesis algorithm and the resulting quality of the approximation. Addi-
tionally, the software model checking algorithms we propose to use can be challenging to scale to
real-world applications. We will allow developers to annotate their legacy code to aid the model
checker and explore approaches to minimizing the annotation burden. We may also explore alter-
nate approaches that attempt to directly infer automata from the control- or data-flow graphs of
the legacy kernels.

4 Proposed Experiments and Evaluation

In this section we outline our proposed experiments and evaluation of the technical approaches
detailed in Section 3. Taken collectively, the proposed research improves the programming sup-
port for—and performance of—hardware accelerators by leveraging an automata processing ab-
straction. Our evaluation will be conducted with respect to our stated goals of performance, scala-
bility, ease of use, expressiveness, and legacy support.

4.1 Experiments: High-Level Languages for Automata Processing

This subsection outlines the experimental plan for evaluating the feasibility of compiling a high-
level language (RAPID) to a set of finite automata for execution on hardware accelerators. Much
of the work for this research effort has previously been published, and the techniques for eval-
uating the efficiency, scalability and expressiveness of the RAPID language follow those in our
preliminary work [11, 12].

To perform our evaluation, we will employ a benchmark suite of at least five real-world appli-
cations previously accelerated by automata processing [20, 71, 96, 98, 108]. By selecting from the
recent literature, we ensure that we evaluate RAPID on indicative applications and baselines.

We will evaluate the expressiveness of the RAPID programming language by re-implementing
the benchmark suite using our proposed language. To be successful, RAPID must be able to rep-
resent real-world applications; we will measure the number of benchmarks we can successfully
implement. The RAPID versions of the benchmarks will then be used to conduct further experi-
ments.

Due to the lock-step execution of automata on reconfigurable hardware accelerators, runtime per-
formance of loaded designs is linear in the length of a given input stream. Therefore, we focus
on evaluating the spatial performance of RAPID programs. On hardware accelerators, automata

9



require physical hardware resources (i.e., STEs on the AP and LUTs and registers on FPGAs) for
each state, in addition to signal routing resources. We will measure the overhead incurred by com-
piling RAPID benchmarks to hardware accelerator configurations compared with hand-crafted
baselines. We wish to minimize the quantity of additional resources required by RAPID; keeping
these overheads under 15% will demonstrate the success of our approach. We derive our success
metric from the upper bound for overheads presented by Cong et al. for high-level synthesis on
FPGAs [30].

Scalability, with regard to a programming language, measures how program size grows with re-
spect to the size of the application being represented. We propose measuring total lines of code
(LOC) for our benchmarks. For the hand-crafted, optimized baselines, we will measure the LOC
needed to generate the automata, or—where the automata were built by hand—LOC in a com-
mercial automata serialization format, which is roughly equivalent to the number of actions taken
within a design tool. To be successful, RAPID must use significantly fewer LOC to represent a
benchmark than the baseline implementation. Ultimately, a successful program representation
will remain constant in size—or grow sublinearly—as application instances grow in size.

4.2 Experiments: Interactive Debugging for High-Level Languages and Accelerators

We propose using human studies to evaluate the ease of use of our interactive debugging tools
for the RAPID language. Ultimately, we wish to understand how our technique affects a devel-
oper’s abilities to localize faults in pattern-matching applications. We will formulate the study as
an online survey that presents participants with a sequence of fault localization tasks, similar to
the study in [64]. Participants will be shown ten RAPID programs (adapted from real-world ap-
plications) containing indicative bugs along with associated input data exposing these bugs. For
half of these programs, we will also provide our debugging system for the participants to use. We
will record the time needed for participants to identify the location of the bug in the program and
record their responses. After conducting the study, we will analyze our collected data to identify
if there is a statistically significant improvement in localization accuracy and/or time taken. Our
proposed debugging system will be successful if there is a demonstrable improvement in either
accuracy or time. We have already received IRB approval for the study described above.

Further, we propose evaluating the scalability of our prototype FPGA-based debugger imple-
mentation. We will measure both the time and space overheads of adding debugging support to
applications in the ANMLZoo benchmark suite, a collection of diverse automata-based applica-
tions [96]. Our technique will be successful if the additional hardware resources do not exceed the
capacity of a server-grade FPGA and if the runtime performance does not degrade below that of
automata execution on CPU-based software engines.

4.3 Experiments: Expressive Power of In-Memory Automata Accelerators

For this research effort, we will evaluate the expressive power, scalability, and performance of
our proposed in-cache hardware accelerator architecture and associated optimizing compiler. We
will collect a suite of context-free grammars for common programming languages and serializa-
tion formats (e.g., [33, 34, 44]). We will use these to test the expressive power and scalability of
our compiler. We will measure the hardware resources (e.g., STEs and SRAM arrays) needed to
configure our proposed architecture to recognize inputs conforming to each grammar. Further,
to evaluate the architecture, we will seek a collection of real-world applications that stress the
hardware resources, including benchmarks that contain few large, highly-connected pushdown

10



automata (e.g., XML parsing), as well as benchmarks with many small automata (e.g., packet
filtering or signature-based intrusion detection). Such benchmarks support evaluation of the scal-
ability of our datapath, including the reconfigurable routing matrix (see Section 2.2) and stack
memory. Additionally, we will measure the performance (both in terms of modeled application
throughput and energy) of these applications in comparison with state-of-the-art implementa-
tions for CPUs and other hardware accelerators. We will be successful if ASPEN outperforms the
state-of-the-art for indicative applications, such as XML parsing, while also not exceeding power
thresholds for modern CPUs.

4.4 Experiments: Adapting Legacy Code for Execution on Hardware Accelerators

To evaluate our new finite automata synthesis algorithms, we will seek a collection of existing ker-
nel functions that map strings to Boolean values. For example, we may use applications from the
ANMLZoo benchmark suite [96] or kernels used to evaluate string decision procedures (e.g., [47]).
We will measure the annotation burden (in terms of the number and/or complexity) required to
apply our algorithms to legacy code. Initially, we wish to determine whether it is possible for our
proposed algorithm to successfully generate behaviorally-equivalent finite automata. As such,
these experiments measure the legacy support provided by our technical approach. Further, we
will measure the scalability of our algorithms by measuring the time needed to automatically
synthesize a set of finite automata and the size (measured in number of states) of the resulting
automata. To be successful, our algorithms must be able to run over the weekend [49, 69] and the
resulting automata should not exceed the capacity of commercial FPGAs. Because our algorithms
may produce approximate solutions for some applications, we propose measuring the accuracy
of the synthesized automata using test cases (either provided as part of the original software or
synthetically generated using a test-input generation tool [22,57,105]). We will be successful if our
approach of using example inputs improves the accuracy of our approximate results for the given
test data.

5 Preliminary Results

In this section, we present preliminary results from ongoing research. We focus on results for
the proposed research on programming models (Section 3.1), debugging tools (Section 3.2), and
in-cache automata accelerators (Section 3.3).

5.1 Results: High-Level Languages for Automata Processing

We evaluate RAPID against hand-crafted designs and parameter settings for five real-world bench-
mark applications Association Rule Mining (ARM) [98], Brill part-of-speech tagging (Brill) [108], Exact
match DNA search (Exact) [20], DNA string search with gaps (Gappy) [20], and MOTOMATA [71]. The
authors of the ARM [98] and Brill [108] benchmarks provided us with their automated scripts for
generating automata. We recreated the remaining benchmarks, using algorithms and specifica-
tions published in previous work.

Table 1 lists design statistics for the benchmarks. We compare the lines of code needed to gen-
erate the automata. For ARM, the RAPID code requires six times fewer lines to represent, and
Brill requires about half of the lines of the hand-crafted solution. For the Gappy, Exact, and MO-
TOMATA benchmarks, we present the lines of code in a commercial automata format, which is
roughly equivalent to the number of actions taken within the design tool. In all cases, the RAPID
program is significantly more compact than the automata it generates.

11



Table 1: Comparison between RAPID and hand-crafted code with respect to lines of code (LOC) and space
utilization on AP and FPGA targets. Lower values for AP States, FPGA LUTs and FPGA registers indicate
a smaller footprint; lower values for AP MBRA indicate less stress on the routing network.

Source Automata AP AP AP FPGA FPGA
Benchmark LOC LOC STEs STEs MBRA Clk LUTs Reg

ARM H 118 301 79 58 20.8% 1 73 76
R 18 214 58 56 20.8% 1 83 65

Brill H 1,292 9,698 3,073 1,514 65.4% 1 201 1483
R 688 10,594 3,322 1,429 52.6% 1 358 1360

Exact H –† 193 28 27 4.2% 1 6 25
R 14 85 29 27 4.2% 1 28 27

Gappy H –† 2,155 675 123 77.1% 1 73 123
R 30 2,337 748 399 70.8% 1 52 399

MOTOMATA H –† 587 150 149 75.0% 0.5 114 148
R 34 207 53 72 75.0% 1 85 60

R – RAPID H – Hand-coded † Automata were directly hand-coded

As an approximation for the size of the resulting automaton, we measure the number of STEs
generated and the number of STEs loaded to the AP after placement and routing. For most bench-
marks, RAPID-generated automata contain fewer device STEs, taking up less space on the device.

In Table 1, we also present the performance of RAPID programs compared to hand-crafted au-
tomata based on placement and routing statistics for the AP. The placement and routing tools
modify the original automaton to better match the architectural design of the AP. The final count
of STEs is given by AP STEs. Mean BR allocation (AP MBRA) is a metric provided by the AP SDK
that approximates the routing complexity of the design. Here, a lower number is better, signifying
lower congestion within the routing matrix. RAPID does not appear to introduce any additional
routing congestion. The AP Clk column indicates whether the clock cycle of the AP must be re-
duced to accommodate a design. In one instance (the RAPID MOTOMATA program), the clock
cycle must be halved due to a limitation in signal propagation between counters and combina-
torial elements in the current generation AP. However, the RAPID version is four times more
compact. Although this is a performance loss for a single instance, it is a net performance gain for
a full problem, which will fill the AP board: four times as many instances execute in parallel at
half the speed, for a net improvement factor of two. Although RAPID provides a higher level of
abstraction than automata, the final device binaries are more compact, using fewer resources on
the AP.

Finally, we evaluate the space efficiency of the FPGA engines our tools produce. We synthesize
our designs for a Xilinx Kintex UltraScale XCKU060. Table 1 also lists the number of LUTs and
registers needed to implement the hardware description of the benchmark. Lower numbers in-
dicate smaller footprints for the circuits, which allows for more widgets to be run in parallel. As
with the AP results, RAPID programs do not incur significant space overheads on the FPGA.

These preliminary results demonstrate that our proposed RAPID programming language is ex-
pressive enough—and scales—to support real-world applications, while incurring performance
overheads well within our 15% threshold.

12



5.2 Results: Interactive Debugging for High-Level Languages and Accelerators

In this subsection we evaluate our debugging system using a human study by presenting par-
ticipants with code snippets and asking them to localize seeded defects (see Section 2.3). Our
IRB-approved human study2 was formulated as an online survey that presented participants with
a sequence of fault localization tasks. We presented each participant with ten randomly-selected
and ordered fault localization tasks from a pool of twenty; stimuli were presented following the
design described in Section 4.2.

Participants were all voluntary and predominantly from the University of Virginia, including in-
termediate and upper-level undergraduate students, graduate students, and members of the D480
AP professional development team. In total, 61 users participated in our survey each completing
ten fault localization tasks, resulting in over 600 individual data points.

To measure the effect of debugging information on programmer performance, we used the follow-
ing metrics: accuracy and time taken. We defined accuracy as the number of correctly-identified
faults. We manually assessed correctness after the completion of the survey, taking into account
both the marked fault location and justification text provided. Using Wilcoxon signed-rank tests,
we did not observe a statistically significant difference in time taken to localize faults (p = 0.55);
however, we determined that there is a statistically significant increase in accuracy when partic-
ipants were given our debugging information (p = 0.013). Mean accuracy increased from 45.1%
to 55.1%, meaning participants were 22% more accurate when using our tool. Thus, our proposed
debugging system improves ease of use by increasing fault localization accuracy with no loss of
time.3

5.3 Results: Expressive Power of In-Memory Automata Accelerators

In this subsection, we evaluate ASPEN on real-world applications with indicative workloads.
First we evaluate the generality of ASPEN and our proposed optimizations by compiling sev-
eral parsers for the architecture. Second, we evaluate runtime performance for one motivating
application.

5.3.1 Parsing Generality

We demonstrate compilation of four different languages: Cool, an object oriented programming
language [2]; DOT, the language used by the GraphViz graph visualization tool [34]; JSON [33];
and XML [44]. We selected these benchmarks because grammar specifications were readily avail-
able. Importantly, no modification to existing legacy grammars was necessary to support compila-
tion to ASPEN. The architecture is general-purpose enough to support these diverse applications,
and our prototype compiler supports a large class of existing parsers. The grammar specifications
ranged from 19–61 productions.

We measured the average time across ten runs of our compiler and optimizations. Compilation
of all grammars, including optimization, is well below 5 seconds, meaning that compilation of
grammars is not a significant bottleneck with ASPEN. With both our multipop and epsilon re-
duction optimizations enabled, we observe a 47%, on average, decrease in the number of states.
The number of epsilon states is reduced by 65% on average. Reducing epsilon states increases the

2University of Virginia IRB for Social and Behavioral Sciences #2016-0358-00. (This study was conducted before
transferring to The University of Michigan.)

3For additional analyses and a discussion of threats to validity, please see [24].

13



runtime performance of parsing on ASPEN. These preliminary results give us confidence that the
ASPEN compiler scales to—and has the expressive power to represent—real-world grammars.

5.3.2 Performance of XML Parsing

Low (< 0.3) Medium (0.3− 0.7) High (> 0.7) Average
0

10

20

Markup Density
Sp

ee
du

p
(N

or
m

al
iz

ed
to

X
er

ce
s)

Xerces Expat
ASPEN ASPEN-MP

Figure 3: Aggregate speedup (relative to Xerces) of AS-
PEN over CPU-based parsers. Performance of ASPEN was
modeled for 23 benchmarks. Markup density measures
the frequency at which tokens appear in the input. Per-
formance of ASPEN with and without multipop (MP) is
shown.

We evaluate ASPEN against the base-
line XML tools Expat (v.2.0.1) [26],
a non-validating parser, and Xerces-C
(v.3.1.1) [13], a validating parser and part
of the Apache project. We assume that
input data is already loaded into main
memory when modeling performance.
Our 23 XML benchmarks are derived
from Parabix [58], Ximpleware [103] and
the UW XML repository [1].

Figure 3 compares ASPEN’s performance
against Expat and Xerces; speedups are
normalized to Xerces. We evaluate two
DPDA configurations: (1) ASPEN-MP has
both multipop and epsilon merging opti-
mizations enabled and (2) ASPEN, which
only enables epsilon merging. We group
our XML datasets based on markup den-
sity which is an indirect measure of XML
document complexity. There is a noticeable trend in performance benefits of ASPEN-MP over
ASPEN as markup density increases. As the density increases, tokens are generated more fre-
quently, and ε-transition stalls are less likely to be masked by the tokenization stage of the pipeline.
ASPEN-MP reduces the number of stalling cycles during parsing, thus improving performance
with high markup density. Additionally, the speedup of ASPEN over Expat and Xerces increases
with the markup density of the input XML document, because the CPU-based parsers perform
more poorly as token density increases. ASPEN-MP achieves 30% improvement in both per-
formance and energy over ASPEN. Overall, averaged across the datasets evaluated, ASPEN-MP
takes 704.5 ns/kB. When compared with Expat, a 14.1× speedup is achieved. ASPEN-MP also
achieves 18.5× speedup over Xerces. In summary, ASPEN outperforms state-of-the-art CPU-
based XML parsers, and our proposed multipop optimization produces additional performance
gains.

6 Broader Impact

The ultimate goal of this proposed dissertation is to improve the programmability of—and ease
the adoption of—hardware accelerators in data processing pipelines. To be successful, we need
not only new technologies and approaches, but also to educate and mentor the next generation of
programmers, scientists, and engineers.

Tools to Promote Adoption. In an effort to ease the adoption of hardware accelerators and to
promote further—and reproducible—research on the automata abstraction, we will make the pro-
totype tools developed as part of the proposed research efforts freely available. We have previ-
ously developed and released MNCaRT, a unified ecosystem for automata processing accelerator

14



2014 2015 2016 2017 2018 2019 2020

RAPID Language [ASPLOS’16]

RAPID Multi-Architecture [TPDS’18]

Debugging System [ASPLOS’19]

ASPEN [MICRO’18]

ASPEN Security Application

Automata Learning

Primary Instructor

Undergraduate Mentorship

Today Graduation

Research Period

Publication Lag

Other

Figure 4: Proposed dissertation work schedule.

research [9,10]. We will extend this collection of tools with the new artifacts we develop as part of
the research effort.

Mentorship and Diversity. To train the next generation of researchers and engineers, we will in-
volve undergraduate students in the proposed research agenda. Mentorship is a first-order desire
for this dissertation. We are particularly interested in attracting and mentoring students from gen-
ders and groups typically underrepresented in computer science. Such undergraduate researchers
have contributed to the preliminary results, including Matthew Casias (UVA ’19), first author on a
peer-reviewed publication detailing interactive debugging for automata processing and hardware
accelerators [24]. We have mentored an additional five undergraduate students (including two fe-
males as well as students with limited computing background) on projects related to autonomous
vehicle resiliency [46], the use of automata processing in kinesiology, and modeling hard disk fail-
ures. For work proposed in this dissertation, we will recruit students from the University’s Un-
dergraduate Research Opportunity Program (UROP) and the Girls Encoded Explore Computer
Science Research program as well as targeted invitations to students in courses we have taught.
These activities are synergistic with our recent efforts to organize a speaker series highlighting the
diverse research, careers, and backgrounds within the computer science discipline. We success-
fully proposed and received funding—with 50% matching departmental support—through the
Rackham Faculty Allies Diversity Grant program.

7 Schedule

Figure 4 outlines the research timeline for the proposed dissertation. We anticipate completing
the proposed research efforts in 1.5 years, with an expected graduation in May 2020. We have
completed the research described in Section 3.1 to develop a high-level language for automata
processing. The results of this effort have been published in [11, 12]. We have developed a work-
ing prototype and conducted an initial human study for our research on interactive debugging
(Section 3.2), and a manuscript detailing our findings has been accepted for publication [24]. For
the expressive power of in-cache automata processors (Section 3.3), we have completed design of
a prototype compiler and architecture, which has been published in [8]. We are currently con-

15



ducting additional research on the use of our prototype architecture for use in intrusion detection
systems, and we expect to complete this work by April 2019. Finally, we have begun very prelim-
inary work on the synthesis of automata from legacy source code (Section 3.4), and we anticipate
completing this effort by December 2019.

Our proposed schedule includes considerable slack for teaching and mentorship related to these
projects (see Section 6), as well as research and engineering for projects outside the scope of this
dissertation. Such projects include collaborative research (with multiple university and industry
partners) on increasing the resiliency of autonomous vehicle systems through the use of online
monitoring, binary transformations, redundant hardware, and automated program repair. We
leave open the possibility of additional teaching activities and course design, occurring concomi-
tantly with the proposed dissertation research.

We have previously targeted venues such as the International Symposium on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), the International Symposium on Mi-
croarchitecture (MICRO), and Transactions on Parallel and Distributed Systems (TPDS). We propose
targeting similar venues for the remaining work, as well as other top-tier venues in architectures,
software engineering, and programming languages such as the International Conference on Software
Engineering (ICSE), the Symposium on Principles of Programming Languages (POPL), and the Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).

8 Conclusion

Data is being collected at increasing rates, and the demand from business and research leaders
for real-time analyses often necessitates the use of dedicated hardware accelerators in processing
pipelines. However, these accelerators are often very difficult to program and debug. In this
proposal, we present a multi-faceted approach to easing the adoption of hardware accelerators
through the use of finite automata. We hypothesize that automata processing provides a suitable
abstraction for new programming models on reconfigurable hardware accelerators.

We propose four research efforts to simultaneously maintain the scalability and performance of hard-
ware accelerators, while also improving their ease of use, expressive power, and legacy support. First,
we propose developing a high-level language that compiles to finite automata to accelerate se-
quential pattern-matching applications. Second, we propose a technique for high-speed, interac-
tive debugging on reconfigurable accelerators that bridges the semantic gap between low-level
automata state and a high-level programming language. Third, we propose extending the expres-
sive power of automata processing hardware architectures to support deterministic pushdown
automata computations, such as parsing. Fourth, we propose a CEGIS- and formal methods-
based approach to automatically synthesizing finite automata from legacy source code. Together,
these components help ease the adoption and use of hardware accelerators for data analysis ap-
plications, while supporting high-performance computation.

16



References

[1] XML Data Repository. http://aiweb.cs.washington.edu/research/projects/xmltk/
xmldata/www/repository.html.

[2] A. Aiken. Cool: A portable project for teaching compiler construction. SIGPLAN Not.,
31(7):19–24, July 1996.

[3] G. Alonso. FPGAs in data centers. Queue, 16(2):60:52–60:57, Apr. 2018.

[4] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, pages 1–8, Oct 2013.

[5] H. Angepat, G. Eads, C. Craik, and D. Chiou. NIFD: Non-intrusive FPGA debugger – de-
bugging FPGA ‘threads’ for rapid HW/SW systems prototyping. In International Conference
on Field Programmable Logic and Applications, pages 356–359, Aug 2010.

[6] D. Angluin. A note on the number of queries needed to identify regular languages. Infor-
mation and Control, 51(1):76 – 87, 1981.

[7] D. Angluin. Learning regular sets from queries and counterexamples. Information and Com-
putation, 75(2):87–106, Nov. 1987.

[8] K. Angstadt, A. Subramaniyan, E. Sadredini, R. Rahimi, K. Skadron, W. Weimer, and R. Das.
Cache automaton. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-51. IEEE, 2018. To appear.

[9] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer, M. Stan, and K. Skadron.
MNCaRT: An open-source, multi-architecture automata-processing research and execution
ecosystem. IEEE Computer Architecture Letters, 17(1):84–87, Jan 2018.

[10] K. Angstadt, J. Wadden, W. Weimer, and K. Skadron. MNRL and MNCaRT: An open-
source, multi-architecture state machine research and execution ecosystem. Technical Re-
port CS2017-01, University of Virginia, 2017.

[11] K. Angstadt, J. Wadden, W. Weimer, and K. Skadron. Portable programming with RAPID.
IEEE Transactions on Parallel and Distributed Systems, 2018. To appear.

[12] K. Angstadt, W. Weimer, and K. Skadron. RAPID programming of pattern-recognition pro-
cessors. In Architectural Support for Programming Languages and Operating Systems, pages
593–605, 2016.

[13] Apache Software Foundation. Xerces C++ XML parser. http://xerces.apache.org/
xerces-c/.

[14] Z. K. Baker and J. S. Monson. In-situ FPGA debug driven by on-board microcontroller. In
2009 17th IEEE Symposium on Field Programmable Custom Computing Machines, pages 219–222,
April 2009.

[15] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and static driver verifier: Technology
transfer of formal methods inside Microsoft. In E. A. Boiten, J. Derrick, and G. Smith, editors,
Integrated Formal Methods, pages 1–20, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

1

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/


[16] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In Proceedings of the 8th International SPIN Workshop on Model Checking of Software, SPIN ’01,
pages 103–122, Berlin, Heidelberg, 2001. Springer-Verlag.

[17] M. Becchi. Retular expression processor. http://regex.wustl.edu, 2011. Accessed 2017-
04-06.

[18] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker Blast.
International Journal on Software Tools for Technology Transfer, 9(5):505–525, Oct 2007.

[19] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-block
encoding. In Proceedings of the 2010 Conference on Formal Methods in Computer-Aided Design,
FMCAD ’10, pages 189–198, Austin, TX, 2010. FMCAD Inc.

[20] C. Bo, K. Wang, Y. Qi, and K. Skadron. String kernel testing acceleration using the Micron
Automata Processor. In Workshop on Computer Architecture for Machine Learning, 2015.

[21] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of NFA. In Inter-
national Joint Conference on Artificial Intelligence, 2009.

[22] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA,
2008. USENIX Association.

[23] P. Caron and D. Ziadi. Characterization of Glushkov automata. Theoretical Computer Science,
233(1):75–90, 2000.

[24] M. Casias, K. Angstadt, T. Tracy II, K. Skadron, and W. Weimer. Debugging support for
pattern-matching languages and accelerators. In Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19. ACM, 2019. To appear.

[25] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,
M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,
L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale acceleration architecture. In
The 49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-49, pages
7:1–7:13, Piscataway, NJ, USA, 2016. IEEE Press.

[26] J. Clark. The Expat XML parser. http://expat.sourceforge.net.

[27] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, Sept. 2003.

[28] A. Colin, G. Harvey, B. Lucia, and A. P. Sample. An energy-interference-free hardware-
software debugger for intermittent energy-harvesting systems. In Architectural Support for
Programming Languages and Operating Systems, pages 577–589, 2016.

[29] Computer Sciences Corporation. Big data universe beginning to explode. http://www.csc.
com/insights/flxwd/78931-big_data_universe_beginning_to_explode, 2012.

[30] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-level synthesis
for fpgas: From prototyping to deployment. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 30(4):473–491, April 2011.

2

http://regex.wustl.edu
http://expat.sourceforge.net
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode


[31] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and
scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 25(12):3088–3098, 2014.

[32] DNV GL. Are you able to leverage big data to boost your productivity and value cre-
ation? https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.
html, 2016.

[33] ECMA Technical Committee 39. The JSON Data Interchange Format. Technical Report
ECMA-404 1st Edition, ECMA, Oct. 2013.

[34] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. Description, and L. Technolo-
gies. Graphviz — open source graph drawing tools. In Lecture Notes in Computer Science,
pages 483–484. Springer-Verlag, 2001.

[35] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien. Fast support for unstructured data process-
ing: the unified automata processor. In International Symposium on Microarchitecture, pages
533–545, 2015.

[36] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien. UDP: a programmable accelerator for extract-
transform-load workloads and more. In International Symposium on Microarchitecture, pages
55–68. ACM, 2017.

[37] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix processes.
In Proceedings of the IEEE Symposium on Security and Privacy, SP ’96, pages 120–, Washington,
DC, USA, 1996. IEEE Computer Society.

[38] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch. HARE: hardware accel-
erator for regular expressions. In International Symposium on Microarchitecture, pages 1–12,
2016.

[39] E. M. Gold. Language identification in the limit. Information and Control, 10(5):447 – 474,
1967.

[40] P. Graham, B. Nelson, and B. Hutchings. Instrumenting bitstreams for debugging FPGA
circuits. In Field-Programmable Custom Computing Machines, 2001. FCCM ’01. The 9th Annual
IEEE Symposium on, pages 41–50, March 2001.

[41] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. DyC: An expressive
annotation-directed dynamic compiler for C. Theoretical Computer Science, 248(1-2):147–199,
Oct. 2000.

[42] S. Gulwani. Programming by examples: Applications, algorithms, and ambiguity resolu-
tion. In Proceedings of the 8th International Joint Conference on Automated Reasoning, pages 9–14,
Berlin, Heidelberg, 2016. Springer-Verlag.

[43] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. VIDA: Visual interactive debugging. In
International Conference on Software Engineering, pages 583–586, May 2009.

[44] E. R. Harold and W. S. Means. XML in a Nutshell, Third Edition. O’Reilly Media, Inc., 2004.

[45] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02,
pages 58–70, New York, NY, USA, 2002. ACM.

3

https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html


[46] K. Highnam, K. Angstadt, K. Leach, W. Weimer, A. Paulos, and P. Hurley. An uncrewed
aerial vehicle attack scenario and trustworthy repair architecture. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W),
pages 222–225, June 2016.

[47] P. Hooimeijer and W. Weimer. StrSolve: solving string constraints lazily. Automated Software
Engineering, 19(4):531–559, Dec 2012.

[48] Q. Hou, K. Zhou, and B. Guo. Debugging GPU stream programs through automatic
dataflow recording and visualization. In SIGGRAPH Asia, pages 153:1–153:11, 2009.

[49] S. Hou, L. Zhang, T. Xie, and Jia-Su Sun. Quota-constrained test-case prioritization for
regression testing of service-centric systems. In IEEE International Conference on Software
Maintenance, pages 257–266, Sept 2008.

[50] F. Howar, B. Steffen, and M. Merten. From ZULU to RERS. In T. Margaria and B. Steffen,
editors, Leveraging Applications of Formal Methods, Verification, and Validation, pages 687–704,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[51] IEEE Computer Society. 2017 IEEE International Workshop on Program Debugging (IWPD),
Symposium on Software Reliability Engineering Workshops, ISSRE Workshops, Toulouse, France,
Oct 2017. IEEE.

[52] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bha-
tia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross,
M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor processing unit.
In Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17,
pages 1–12, New York, NY, USA, 2017. ACM.

[53] P. B. Kessler. Fast breakpoints: Design and implementation. In Programming Language Design
and Implementation, pages 78–84, 1990.

[54] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach. Sharing,
protection, and compatibility for reconfigurable fabric with amorphos. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’18, pages
107–127, Berkeley, CA, USA, 2018. USENIX Association.

[55] G. Knittel, S. Mayer, and C. Rothlaender. Integrating logic analyzer functionality into VHDL
designs. In 2008 International Conference on Reconfigurable Computing and FPGAs, pages 127–
132, Dec 2008.

[56] T. J. Leblanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay.
IEEE Transactions on Computers, C-36(4):471–482, April 1987.

4



[57] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz
testing coverage. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, pages 475–485, New York, NY, USA, 2018. ACM.

[58] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R. D. Cameron. Parabix: Boosting the
efficiency of text processing on commodity processors. In International Symposium on High
Performance Computer Architecture, pages 373–384, 2012.

[59] N. Matloff and P. J. Salzman. The Art of Debugging with GDB, DDD, and Eclipse. No Starch
Press, San Francisco, CA, USA, 2008.

[60] K. L. McMillan. Lazy abstraction with interpolants. In Proceedings of the 18th International
Conference on Computer Aided Verification, CAV’06, pages 123–136, Berlin, Heidelberg, 2006.
Springer-Verlag.

[61] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch syn-
thesis via symbolic analysis. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 691–701, New York, NY, USA, 2016. ACM.

[62] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair via
semantic analysis. In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 772–781, Piscataway, NJ, USA, 2013. IEEE.

[63] M. Nourian, X. Wang, X. Yu, W. Feng, and M. Becchi. Demystifying automata processing:
GPUs, FPGAs, or Micron’s AP? In Proceedings of the International Conference on Supercomput-
ing, ICS ’17, pages 1:1–1:11, New York, NY, USA, 2017. ACM.

[64] C. Parnin and A. Orso. Are automated debugging techniques actually helping program-
mers? In International Symposium on Software Testing and Analysis, pages 199–209, 2011.

[65] S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2nd edition, 2001.

[66] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and
compiler for dynamic code generation. ACM Transaction Programming Languages and Systems,
21(2):324–369, Mar. 1999.

[67] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y.
Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.
A reconfigurable fabric for accelerating large-scale datacenter services. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages 13–24, Pis-
cataway, NJ, USA, 2014. IEEE Press.

[68] B. Reagen, R. Adolf, Y. S. Shao, G. Y. Wei, and D. Brooks. MachSuite: Benchmarks for
accelerator design and customized architectures. In International Symposium on Workload
Characterization, pages 110–119, Oct 2014.

[69] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression
testing. IEEE Transactions on Software Engineering, 27(10):929–948, Oct 2001.

[70] I. Roy. Algorithmic Techniques for the Micron Automata Processor. PhD thesis, Georgia Institute
of Technology, 2015.

5



[71] I. Roy and S. Aluru. Finding motifs in biological sequences using the Micron Automata
Processor. In Proceedings of the 28th IEEE International Parallel and Distributed Processing Sym-
posium, pages 415–424, 2014.

[72] I. Roy, N. Jammula, and S. Aluru. Algorithmic techniques for solving graph problems on the
Automata Processor. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium, IPDPS ’16, pages 283–292, May 2016.

[73] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru. High performance pattern
matching using the automata processor. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, IPDPS ’16, pages 1123–1132, 2016.

[74] E. Satterthwaite. Debugging tools for high level languages. Software: Practice and Experience,
2(3):197–217, 1972.

[75] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Software Technologies,
Engineering Process and Business Practices. Addison-Wesley Longman Publishing Co., Inc.,
2003.

[76] J. M. Shalf and R. Leland. Computing beyond Moore’s law. IEEE Computer, 48(12):14–23,
Dec 2015.

[77] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks. Aladdin: A pre-RTL, power-performance
accelerator simulator enabling large design space exploration of customized architectures.
In International Symposium on Computer Architecture, pages 97–108, June 2014.

[78] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2nd edi-
tion, 2006.

[79] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching concurrent data structures. In Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’08, pages 136–148, New York, NY, USA, 2008. ACM.

[80] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketching
for finite programs. In Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XII, pages 404–415, New York,
NY, USA, 2006. ACM.

[81] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse. Macrodebugging: Global
views of distributed program execution. In Conference on Embedded Networked Sensor Systems,
pages 141–154, 2009.

[82] R. Stallman, R. Pesch, and S. Shebs. Debugging with GDB. Free Software Foundation, 2002.

[83] B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning from a practi-
cal perspective. In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal Networked
Software Systems: 11th International School on Formal Methods for the Design of Computer, Com-
munication and Software Systems, SFM 2011, pages 256–296, Bertinoro, Italy, 2011. Springer
Berlin Heidelberg.

[84] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for heteroge-
neous computing systems. Computing in Science Engineering, 12(3):66–73, May 2010.

[85] A. Subramaniyan and R. Das. Parallel automata processor. In International Symposium on
Computer Architecture, pages 600–612, New York, NY, USA, 2017. ACM.

6



[86] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw, D. Sylvester, and R. Das.
Cache automaton. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50, pages 259–272, New York, NY, USA, 2017. ACM.

[87] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch. HAWK: hardware support for
unstructured log processing. In International Conference on Data Engineering, pages 469–480,
2016.

[88] A. Tiwari and K. A. Tomko. Scan-chain based watch-points for efficient run-time debugging
and verification of FPGA designs. In Proceedings of the ASP-DAC Asia and South Pacific Design
Automation Conference, 2003., pages 705–711, Jan 2003.

[89] T. Tracy II, Y. Fu, I. Roy, E. Jonas, and P. Glendenning. Towards machine learning on the
Automata Processor. In Proceedings of ISC High Performance Computing, pages 200–218, 2016.

[90] T. Tracy II, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, and G. Robins. Nondeter-
ministic finite automata in hardware—the case of the Levenshtein automaton. Architectures
and Systems for Big Data (ASBD), in conjunction with ISCA, 2015.

[91] L. D. Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio. The role of CAD frame-
works in heterogeneous FPGA-based cloud systems. In 2017 IEEE International Conference
on Computer Design (ICCD), pages 423–426, Nov 2017.

[92] D. Ungar, H. Lieberman, and C. Fry. Debugging and the experience of immediacy. Commu-
nications of the ACM, 40(4):38–43, Apr. 1997.

[93] F. Vaandrager. Model learning. Communications of the ACM, 60(2):86–95, Jan. 2017.

[94] J. van Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu. Designing a
programmable wire-speed regular-expression matching accelerator. In International Sympo-
sium on Microarchitecture, pages 461–472, 2012.

[95] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan, and K. Skadron. Gener-
ating efficient and high-quality pseudo-random behavior on automata processors. In 2016
IEEE 34th International Conference on Computer Design (ICCD), pages 622–629, Oct 2016.

[96] J. Wadden, V. Dang, N. Brunelle, T. T. II, D. Guo, E. Sadredini, K. Wang, C. Bo, G. Robins,
M. Stan, and K. Skadron. ANMLzoo: a benchmark suite for exploring bottlenecks in au-
tomata processing engines and architectures. In International Symposium on Workload Char-
acterization, IISWC ’16, pages 1–12, Sept 2016.

[97] K. Wang, E. Sadredini, and K. Skadron. Sequential pattern mining with the Micron Au-
tomata Processor. In Proceedings of the ACM International Conference on Computing Frontiers,
CF ’16, pages 135–144, New York, NY, USA, 2016. ACM.

[98] K. Wang, M. Stan, and K. Skadron. Association rule mining with the Micron Automata Pro-
cessor. In Proceedings of the 29th IEEE International Parallel & Distributed Processing Symposium,
2015.

[99] M. H. Wang, G. Cancelo, C. Green, D. Guo, K. Wang, and T. Zmuda. Using the Automata
Processor for fast pattern recognition in high energy physics experiments — a proof of con-
cept. Nuclear Instruments and Methods in Physics Research, 2016.

[100] T. Wheeler, P. Graham, B. E. Nelson, and B. Hutchings. Using design-level scan to improve
FPGA design observability and controllability for functional verification. In Proceedings of

7



the 11th International Conference on Field-Programmable Logic and Applications, FPL ’01, pages
483–492, London, UK, UK, 2001. Springer-Verlag.

[101] L. Wirbel. Xilinx SDAccel: A unified development environment for tomorrow’s data center.
Technical report, The Linley Group, 2014.

[102] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan. REAPR: Reconfigurable engine for
automata processing. In 27th International Conference on Field Programmable Logic and Appli-
cations, FPL ’17, pages 1–8, Sept 2017.

[103] XimpleWare. Ximpleware XML dataset. http://www.ximpleware.com/xmls.zip.

[104] C. Yilmaz, A. Paradkar, and C. Williams. Time will tell: Fault localization using time spectra.
In Proceedings of the 30th International Conference on Software Engineering, ICSE ’08, pages 81–
90, New York, NY, USA, 2008. ACM.

[105] M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl, 2014. Accessed
2018-11-30.

[106] P. T. Zellweger. Interactive Source-level Debugging for Optimized Programs (Compilation, High-
level). PhD thesis, University of California, Berkeley, 1984.

[107] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong. How to do a million
watchpoints: Efficient debugging using dynamic instrumentation. In Compiler Construction,
pages 147–162, Berlin, Heidelberg, 2008.

[108] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron. Brill tagging on the Micron
Automata Processor. In Proceedings of the 9th IEEE International Conference on Semantic Com-
puting, pages 236–239, 2015.

[109] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka. Evaluating and
optimizing opencl kernels for high performance computing with fpgas. In High Performance
Computing, Networking, Storage and Analysis, pages 35:1–35:12, 2016.

8

http://www.ximpleware.com/xmls.zip
http://lcamtuf.coredump.cx/afl

	Summary
	Introduction
	Background and Related Work
	Finite Automata
	Accelerating Automata Processing
	Software Maintenance
	Program Synthesis and Verification

	Proposed Research and Technical Approach
	Research: High-Level Languages for Automata Processing
	Research: Interactive Debugging for High-Level Languages and Accelerators
	Research: Expressive Power of In-Memory Automata Accelerators
	Research: Adapting Legacy Code for Execution on Hardware Accelerators

	Proposed Experiments and Evaluation
	Experiments: High-Level Languages for Automata Processing
	Experiments: Interactive Debugging for High-Level Languages and Accelerators
	Experiments: Expressive Power of In-Memory Automata Accelerators
	Experiments: Adapting Legacy Code for Execution on Hardware Accelerators

	Preliminary Results
	Results: High-Level Languages for Automata Processing
	Results: Interactive Debugging for High-Level Languages and Accelerators
	Results: Expressive Power of In-Memory Automata Accelerators
	Parsing Generality
	Performance of XML Parsing


	Broader Impact
	Schedule
	Conclusion
	References

