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Flight Control Software

● This demo's focus is on repairing flight data
● However, flight control software can contain 

security vulnerabilities as well as standard 
software engineering bugs
● No DO-187B or ISO-26262 for the flight software 

used in the demo, etc. (cf. COTS, SOUP)
● Version control logs reveal a striking number of 

bug fixes over time

● Subsequent demonstrations: source code
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Automated Program Repair

● Any of a family of techniques that generate 
and validate or solve constraints to synthesize 
program patches or run-time changes
● Typical Input: program (source or binary), notion 

of correctness (passing and failing tests)

● Program repair provides resiliency
● Powerful enough to repair serious issues like 

Heartbleed, format string, buffer overruns, etc.

● Efficient (dollars per fix via cloud computing)
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Program Repair Quality

● GenProg '09
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Program Repair Quality

● GenProg '09 – minimize

● Remove spurious 
insertions
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Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Mutation operations based 
on historical human edits
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Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● Experimental methodology 
has several issues

● Patch prettiness is not 
patch quality
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Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Solve constraints to 
synthesize expressions for 
conditionals

● Not just deletions
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Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Angelix '16 – SPR is wrong

● SPR still deletes

● Use semantics and 
synthesis
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Resilient but Untrusted

● Program repair does provide resiliency
● But the “quality” of repairs is unclear

● So they are not trusted
● Thus far: algorithmic changes (e.g., mutation 

operators, condition synthesis, etc.) 

● We are investigating a post hoc, repair-
agnostic approach to increasing operator trust
● Provide multiple modalities of evidence
● Approximate solutions to the oracle problem
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Trust Framework

● Augment repairs with three assessments that 
allow the human operator to trust in the post-
repair dependable operation of the system
● These assessments are aspects of the oracle 

problem for legacy systems
● Each features a training or analysis phase in which 

a model of correct behavior (oracle) is constructed
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Dynamic Execution Signals

● Insight: a program that produces unintended 
behavior for a given input often produces 
other observable inconsistent behavior
● cf. printf debugging

● Measure binary execution signals
● Number of instructions, number of branches, etc.

● In supervised learning, our models predict 
whether new program runs correspond to 
intended behavior quite accurately
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Targeted Differential Testing

● Code clones (intentional or not) are prevalent
● Repairs are often under-tested

● They may insert new code, etc. 

● Insight: We can adapt tests designed for code 
clones to become tests targeted at repairs
● Identify variants, transplant code, propagate data

● Successfully adapted tests in many examples
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Invariants and Proofs

● Insight: The post-repair system is not 
equivalent to the pre-repair system, but it 
may maintain the same invariants (or more). 

● Identify invariants, prove them correct
● No spurious or incorrect invariants remain

● We can infer 60% of the documented invariants 
necessary to prove functional correctness of 
the Advanced Encryption Standard
● Linear, nonlinear, disjunctive, and array invariants
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Example: Zune Bug

● Ex. Invariants in Buggy 
Program
● days_top > 365

● Ex. Correct Invariants
● days_top > 365
● days_bot < days_top
● year_bot = year_top + 1

“top”

“bot”



 Westley Weimer 16

Research Hypothesis

● Among test-equivalent program variants 
produced by mutation (e.g., among candidate 
repairs), those program variants that share 
common invariants respect program intent

● Why?
● Exploits our duality between generate-and-

validate program repair and mutation testing 
● “Mutation analysis” applied in reverse
● Competent programmer hypothesis
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Three-Phase Plan

● Given one candidate repair …

● Generate a large number of neutral (or test-
equivalent) alternate candidate repairs
● Via a special directed neutral walk

● Dynamically infer and statically verify 
invariants of those candidate repairs

● Select repairs that respect majority invariants
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Generating Alternate Repairs

● We can generate many neutral edits
● Changes to a program that retain behavioral 

equivalence with respect to a test suite
● But may behave differently for future attacks or 

unconsidered benign inputs

● Cheaply generate singleton neutral edits
● Then combine (or “cluster') many of them to 

make a single candidate repair
● But edits may depend on each other …
● We use a directed neutral walk 
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Directed Neutral Walk

Neutral edits
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Directed Neutral Walk

Neutral edits

Gather
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Directed Neutral Walk

random shuffle
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Directed Neutral Walk

random shuffle

not neutral
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Directed Neutral Walk

random shuffle

not neutral

neutral



 Westley Weimer 24

Directed Neutral Walk

random shuffle

not neutral

neutral

recombination

iterate
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From Repair Candidates 
to Invariants

● We now have a large number of repair 
candidates
● Each of which passes all test cases and contains a 

large number of neutral edits

● Next, we apply dynamic invariant generation
● Record the values of variables on execution traces
● Infer linear, non-linear polynomial, disjunctive and 

array invariants
● Prove that each invariant holds (is not spurious)
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 

Weak Test 
Suite:

lcm(1,1) = 1
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; u=b; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 

Weak Test 
Suite:

lcm(1,1) = 1

Candidate
Alternate
Repair
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 

Inferred Loop 
Invariant:

u*x + v*y == 2*a*b
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; u=b; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 

Weak Test 
Suite:

lcm(1,1) = 1

Loop Invariant
u*x + v*y == 2*a*b
rules out candidate
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Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

  x = a; y = b; u = b; v = a; 

  while (x != y) 

    if (x > y)

      x=x-y; u=b; v=v+u; 

    else

      y=y-x; u=u+v;

  return (u+v)/2; 

lcm(1,1) = 1
It's As If:

lcm(7,15) = 105
lcm(7,15) = 56

Loop Invariant
u*x + v*y == 2*a*b
rules out candidate
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Invariants and Trust

● In our experiments, 33% of lcm candidate 
repairs violate the invariant
● And each one fails a held-out benign input

● Manual inspection of the remainder reveals 
only trustworthy neutral edits

● In addition, by selecting those candidate 
repairs that respect majority invariants we 
simplify the implication proof
● The repair provably maintains key invariants from 

the original (and possibly adds more) 
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Evidence and Assessments

● Approximations to the Oracle Problem
● A post-repair system is correct when …

● It produces similar binary execution signals to 
previous known-good runs

● It passes tests adapted from similar known-good 
methods

● It provably maintains non-spurious known-good 
invariants

● These can be assessed regardless of how the 
software repair is produced
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Summary

● We desire trusted resilient systems
● Repair provides resilience but not trust
● We propose three modalities of evidence

● Models of Execution Signals
● Targeted Differential Testing 
● Proven Inferred Invariants

● These can provide an expanded assessment of 
trust in a resilient repaired system
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