
Trusted Software
Repair for System

Resiliency

(future work in this award)
Westley Weimer, Stephanie Forrest,

Miryung Kim, Claire Le Goues

 Westley Weimer 2

Flight Control Software

● This demo's focus is on repairing flight data
● However, flight control software can contain

security vulnerabilities as well as standard
software engineering bugs
● No DO-187B or ISO-26262 for the flight software

used in the demo, etc. (cf. COTS, SOUP)
● Version control logs reveal a striking number of

bug fixes over time

● Subsequent demonstrations: source code

 Westley Weimer 3

Automated Program Repair

● Any of a family of techniques that generate
and validate or solve constraints to synthesize
program patches or run-time changes
● Typical Input: program (source or binary), notion

of correctness (passing and failing tests)

● Program repair provides resiliency
● Powerful enough to repair serious issues like

Heartbleed, format string, buffer overruns, etc.

● Efficient (dollars per fix via cloud computing)

 Westley Weimer 4

Program Repair Quality

● GenProg '09

 Westley Weimer 5

Program Repair Quality

● GenProg '09 – minimize

● Remove spurious
insertions

 Westley Weimer 6

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Mutation operations based
on historical human edits

 Westley Weimer 7

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● Experimental methodology
has several issues

● Patch prettiness is not
patch quality

 Westley Weimer 8

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Solve constraints to
synthesize expressions for
conditionals

● Not just deletions

 Westley Weimer 9

Program Repair Quality

● GenProg '09 - minimize

● PAR '13 – human changes

● Monperrus '14 – PAR is wrong

● SPR '15 – condition synthesis

● Angelix '16 – SPR is wrong

● SPR still deletes

● Use semantics and
synthesis

 Westley Weimer 10

Resilient but Untrusted

● Program repair does provide resiliency
● But the “quality” of repairs is unclear

● So they are not trusted
● Thus far: algorithmic changes (e.g., mutation

operators, condition synthesis, etc.)

● We are investigating a post hoc, repair-
agnostic approach to increasing operator trust
● Provide multiple modalities of evidence
● Approximate solutions to the oracle problem

 Westley Weimer 11

Trust Framework

● Augment repairs with three assessments that
allow the human operator to trust in the post-
repair dependable operation of the system
● These assessments are aspects of the oracle

problem for legacy systems
● Each features a training or analysis phase in which

a model of correct behavior (oracle) is constructed

 Westley Weimer 12

Dynamic Execution Signals

● Insight: a program that produces unintended
behavior for a given input often produces
other observable inconsistent behavior
● cf. printf debugging

● Measure binary execution signals
● Number of instructions, number of branches, etc.

● In supervised learning, our models predict
whether new program runs correspond to
intended behavior quite accurately

 Westley Weimer 13

Targeted Differential Testing

● Code clones (intentional or not) are prevalent
● Repairs are often under-tested

● They may insert new code, etc.

● Insight: We can adapt tests designed for code
clones to become tests targeted at repairs
● Identify variants, transplant code, propagate data

● Successfully adapted tests in many examples

 Westley Weimer 14

Invariants and Proofs

● Insight: The post-repair system is not
equivalent to the pre-repair system, but it
may maintain the same invariants (or more).

● Identify invariants, prove them correct
● No spurious or incorrect invariants remain

● We can infer 60% of the documented invariants
necessary to prove functional correctness of
the Advanced Encryption Standard
● Linear, nonlinear, disjunctive, and array invariants

 Westley Weimer 15

Example: Zune Bug

● Ex. Invariants in Buggy
Program
● days_top > 365

● Ex. Correct Invariants
● days_top > 365
● days_bot < days_top
● year_bot = year_top + 1

“top”

“bot”

 Westley Weimer 16

Research Hypothesis

● Among test-equivalent program variants
produced by mutation (e.g., among candidate
repairs), those program variants that share
common invariants respect program intent

● Why?
● Exploits our duality between generate-and-

validate program repair and mutation testing
● “Mutation analysis” applied in reverse
● Competent programmer hypothesis

 Westley Weimer 17

Three-Phase Plan

● Given one candidate repair …

● Generate a large number of neutral (or test-
equivalent) alternate candidate repairs
● Via a special directed neutral walk

● Dynamically infer and statically verify
invariants of those candidate repairs

● Select repairs that respect majority invariants

 Westley Weimer 18

Generating Alternate Repairs

● We can generate many neutral edits
● Changes to a program that retain behavioral

equivalence with respect to a test suite
● But may behave differently for future attacks or

unconsidered benign inputs

● Cheaply generate singleton neutral edits
● Then combine (or “cluster') many of them to

make a single candidate repair
● But edits may depend on each other …
● We use a directed neutral walk

 Westley Weimer 19

Directed Neutral Walk

Neutral edits

 Westley Weimer 20

Directed Neutral Walk

Neutral edits

Gather

 Westley Weimer 21

Directed Neutral Walk

random shuffle

 Westley Weimer 22

Directed Neutral Walk

random shuffle

not neutral

 Westley Weimer 23

Directed Neutral Walk

random shuffle

not neutral

neutral

 Westley Weimer 24

Directed Neutral Walk

random shuffle

not neutral

neutral

recombination

iterate

 Westley Weimer 25

Effective Combination

Directed Neutral
Walk

Baseline Recursive
Selection

C
om

bi
ne

d
N

eu
tr

al
 E

di
ts

(o
ut

 o
f

50
)

 Westley Weimer 26

From Repair Candidates
to Invariants

● We now have a large number of repair
candidates
● Each of which passes all test cases and contains a

large number of neutral edits

● Next, we apply dynamic invariant generation
● Record the values of variables on execution traces
● Infer linear, non-linear polynomial, disjunctive and

array invariants
● Prove that each invariant holds (is not spurious)

 Westley Weimer 27

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

 Westley Weimer 28

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

Weak Test
Suite:

lcm(1,1) = 1

 Westley Weimer 29

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; u=b; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

Weak Test
Suite:

lcm(1,1) = 1

Candidate
Alternate
Repair

 Westley Weimer 30

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

Inferred Loop
Invariant:

u*x + v*y == 2*a*b

 Westley Weimer 31

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; u=b; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

Weak Test
Suite:

lcm(1,1) = 1

Loop Invariant
u*x + v*y == 2*a*b
rules out candidate

 Westley Weimer 32

Invariant Example

Least Common Multiple program:
int lcm(int a, int b)

 x = a; y = b; u = b; v = a;

 while (x != y)

 if (x > y)

 x=x-y; u=b; v=v+u;

 else

 y=y-x; u=u+v;

 return (u+v)/2;

lcm(1,1) = 1
It's As If:

lcm(7,15) = 105
lcm(7,15) = 56

Loop Invariant
u*x + v*y == 2*a*b
rules out candidate

 Westley Weimer 33

Invariants and Trust

● In our experiments, 33% of lcm candidate
repairs violate the invariant
● And each one fails a held-out benign input

● Manual inspection of the remainder reveals
only trustworthy neutral edits

● In addition, by selecting those candidate
repairs that respect majority invariants we
simplify the implication proof
● The repair provably maintains key invariants from

the original (and possibly adds more)

 Westley Weimer 34

Evidence and Assessments

● Approximations to the Oracle Problem
● A post-repair system is correct when …

● It produces similar binary execution signals to
previous known-good runs

● It passes tests adapted from similar known-good
methods

● It provably maintains non-spurious known-good
invariants

● These can be assessed regardless of how the
software repair is produced

 Westley Weimer 35

Summary

● We desire trusted resilient systems
● Repair provides resilience but not trust
● We propose three modalities of evidence

● Models of Execution Signals
● Targeted Differential Testing
● Proven Inferred Invariants

● These can provide an expanded assessment of
trust in a resilient repaired system

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

