Towards a Cognitive Model of Dynamic
Debugging: Does Identifier Construction Matter?

Danniell Hu, Priscila Santiesteban, Madeline Endres, Westley Weimer

Abstract—Debugging is a vital and time-consuming process in software engineering. Recently, researchers have begun using
neuroimaging to understand the cognitive bases of programming tasks by measuring patterns of neural activity. While exciting, prior
studies have only examined small sub-steps in isolation, such as comprehending a method without writing any code or writing a
method from scratch without reading any already-existing code. We propose a simple multi-stage debugging model in which
programmers transition between Task Comprehension, Fault Localization, Code Editing, Compiling, and Output Comprehension
activities. We conduct a human study of n = 28 participants using a combination of functional near-infrared spectroscopy and standard
coding measurements (e.g., time taken, tests passed, etc.). Critically, we find that our proposed debugging stages are both neurally
and behaviorally distinct. To the best of our knowledge, this is the first neurally-justified cognitive model of debugging.

At the same time, there is significant interest in understanding how programmers from different backgrounds, such as those
grappling with challenges in English prose comprehension, are impacted by code features when debugging. We use our cognitive
model of debugging to investigate the role of one such feature: identifier construction. Specifically, we investigate how features of
identifier construction impact neural activity while debugging by participants with and without reading difficulties. While we find
significant differences in cognitive load as a function of morphology and expertise, we do not find significant differences in end-to-end
programming outcomes (e.g., time, correctness, etc.). This nuanced result suggests that prior findings on the cognitive importance of
identifier naming in isolated sub-steps may not generalize to end-to-end debugging. Finally, in a result relevant to broadening
participation in computing, we find no behavioral outcome differences for participants with reading difficulties.

Index Terms—software engineering, debugging, fNIRS, reading ability, cognitive processes, identifier naming

1 INTRODUCTION

Software debugging is the multi-step process of finding and
fixing bugs in code. Debugging is a critical activity within
software engineering, consuming 35-50% of developers’
time [1]. Despite advances in development tools designed
to prevent or fix errors in code [2], [3], debugging remains
a programmer-driven process. Understanding the cognition
of debugging could inform both debugging interventions
and practices, as well as lead to cognitively-informed de-
bugging tools that better support developers.

Researchers are increasingly using neuroimaging to un-
derstand cognition during programming [4]. Such stud-
ies produce cognitive models of programming tasks by
identifying patterns of neural activity. These studies have
informed pedagogical interventions to improve novices’
programming outcomes [5], [6] and helped broaden partic-
ipation in computing by identifying if trainable skills (such
as spatial ability [7], [8]) are relevant to programming.

Debugging-related programming tasks, such as program
comprehension, code editing, and bug detection, have been
separately studied using neuroimaging [9]-[13]. However,
to the best of our knowledge, the cognition of debugging
has not been studied as an integrated and dynamic process.
This is important because debugging involves transitions
between multiple interconnected programming tasks.

We desire a cognitive model of debugging that cap-
tures multiple debugging stages, is applicable to real-world
code, and accounts for human differences. When a model
generalizes to realistic code, it increases ecological validity,
thereby improving practical applicability and facilitating

better training and tool development [14]. In addition, mod-
ern software engineering involves developers from diverse
neurological and linguistic backgrounds [15]. Psychological
research has shown that individuals with reading difficulties
(such as non-native speakers or people with dyslexia) can
face pronounced challenges reading prose [16], [17]. It is cru-
cial to investigate if such challenges extend to debugging.
We propose a dynamic debugging model that links
software engineering activities (e.g., fault localization, code
editing, etc.) to patterns of neural activity. We validate
our model via an experimentally-controlled neuroimaging
study of n = 28 programmers. To identify debugging
stages, we captured programming keystrokes, window-
switching, response accuracy, and response time data. To
measure neural activity, we used functional near-infrared
spectroscopy (fNIRS). Participants were asked to debug 13
Python Leetcode-style programs presented in Visual Studio
Code, a standard IDE. While Leetcode problems may not
be fully indicative of industrial development [18], they are
commonly faced by junior developers entering the work-
force [19]. Participants were given a problem prompt, defect-
seeded code, test cases, and test case results (including any
error messages). Tasked with fixing the defect-seeded code,
participants then read the code, made fixes and ran tests
until either the test cases passed or a time limit was reached.
Secondarily, to incorporate a partial understanding of the
role of linguistic differences into our model, we also pre-
sented tasks with systematically replaced identifier names.
We scope our focus to morphemes, the smallest meaningful
unit of a linguistic expression. Following research in Psy-
chology that multi-morpheme words can aid comprehen-

Failed Test
' Cases ﬁ

Fault Localization Code Ediling [Compiting |-{55%

; p—— J
2.87%
228%

N Passed Test
Output Comprehension l+

t e
3.31%

Figure 1: Proposed neurally-motivated five-stage debugging model. Participants begin in Task Comprehension and
transition between stages. Edge labels indicate empirical transition frequencies. This model is intentionally direct: the
novelty is not in the stages themselves but in our finding that they are neurally and behaviorally distinct.

sion in people with reading challenges [16], we investigate

single- and multi-morpheme variable names (chosen from

an established corpus [20]), as well as pseudoword variable
names, and measure their impacts on behavioral and cogni-
tive outcomes during debugging.

We present the following primary (1,2) and secondary

(3, 4) contributions and findings:

1) The first medical imaging study of the debugging pro-
cess as a whole.

2) We propose a direct five-stage model of debugging (Sec-
tion 2) and find that those stages are both behaviorally
and neurologically distinct (Section 6.1).

3) Critically, we find no correlation between reading dif-
ficulty, morpheme complexity, or experience on behav-
ioral outcomes (e.g., time or accuracy). This suggests that
prior findings about variable names in isolation may not
generalize to end-to-end debugging (Section 6.2.1).

4) Increased English reading difficulty leads to higher cog-
nitive load in debugging. More years of experience leads
to a decrease. This agrees with prior work (Section 6.3).

2 DyNAMIC DEBUGGING MODEL

We propose a direct, staged model of end-to-end dynamic
debugging. In this model, programmers transition between
the following distinct stages: (1) Task Comprehension, (2)
Fault Localization, (3) Code Editing, (4) Compiling, and
(5) Output Comprehension. Notably, while prior work has
investigated individual stages in isolation (e.g., behav-
iorally [21] or cognitively [9]), debugging has not been
investigated neurologically as a dynamic activity. Stage dy-
namics are illustrated in Figure 1.

We define each proposed debugging stage in more detail.
To start, Task Comprehension involves the programmer under-
standing the purpose of the program through a prose de-
scription. During Fault Localization, programmers navigate
to problematic code and seek to identify and understand the
defect. Code Editing is the process of changing the text of the
program to repair the defect. Compiling includes building or
running the program with the proposed fix. Finally, Output
Comprehension involves inspecting the result of running the
program (e.g., viewing test reports or stack traces, etc.).

We hypothesize that these tasks are both behaviorally
and neurologically distinct, meaning the debugging stages
in our model all correlate with different behavioral out-
comes and neurological activity. For this reason, it is mean-
ingful to model debugging in terms of transitions between
distinct stages. We note that our model is intentionally
direct: we claim no novelty in the stages, and instead focus
on measuring distinctions for end-to-end debugging.

3 BACKGROUND

We provide relevant background on how reading ability
may impact debugging, the fNIRS neuroimaging technique,
and applicable neuroscience terms.

3.1 {NIRS and Functional Neuroimaging

Functional Near-Infrared Spectroscopy (fNIRS) is a non-
invasive neuroimaging technique that captures brain activ-
ity and cognitive processes. {NIRS is commonly used in
psychology to study brain regions and cognitive tasks [22]-
[25], including cognitive load [26]-[28]. Cognitive load refers
to the mental effort required to perform a particular task
or activity, encompassing the demands placed on working
memory, attention, and overall cognitive processing. fNIRS
is also increasingly used in software engineering to study
correlations between brain activity and specific program-
ming tasks (see Section 9).

fNIRS uses light to capture brain activity via source
and detector nodes on a cap (see Figure 2). fNIRS mea-
sures changes in neural blood flow, called the hemodynamic
response. Specifically, oxygenated (e.g., oxygen-rich) and
deoxygenated (e.g., oxygen-poor) hemoglobin reflect light
differently. When a brain region is active, it needs more oxy-
genated blood to fuel its metabolic demands. {NIRS captures
changes in this response in real-time on channels between
nearby source and detector pairs. The ratio of oxygenated
and deoxygenated blood is the BOLD (blood oxygen level
dependent) signal. Because of the way blood is delivered to
active neural tissue, the BOLD signal and fNIRS are more
accurate for the first 30 seconds of an activity [29], [30].
The BOLD signal thus places a constraint on experimental
design that we return to in Section 4.2.

In contrast to other neuroimaging approaches, f{NIRS is
particularly appealing for studying interactive debugging
because it supports ecologically-valid study designs [8].
fNIRS is non-invasive (cf. electrocorticography) and allows
participants to respond to stimuli on a standard computer
while sitting at a desk (cf. fMRI). Additionally, the technique
does not require ionizing radiation—which can cause harm
to tissue—to capture brain function (cf. PET and CT). When
studying interactive debugging, {NIRS has the additional
advantages of relatively high spatial resolution compared to
EEG and higher temporal resolution than fMRI. fNIRS can
thus be used accurately determine how activity in specific
brain regions changes throughout the stages of debugging.

3.2 Identifiers, Morphemes, and Reading Difficulties

Identifier naming may impact debugging efficacy, particu-
larly in individuals with lower English reading abilities. We

investigate this through varying the structure of one textual
programming feature: variable identifier names. Specifically,
we investigate if the morphological structure of identifiers
impacts debugging efficacy.

Morphemes are the smallest linguistic units of mean-
ing [17] Words can have one or more morphemes. For exam-
ple, words such as “reach” feature a single unit of meaning
while words such as “unhappy” have two units of meaning
(e.g., “un-" + “happy”). Psychology research has found
that multi-morpheme words aid the prose reading ability
of individuals with reading difficulties [16], [17] Notably,
this includes both non-native speakers [31], and individuals
with dyslexia [16], [17], [32] (i.e., a disorder that impedes
specific skills such as reading [33]). We are interested in if
prose-related reading inefficiencies also impact debugging
at the cognitive or behavioral level. Prior investigations have
found that non-word (an unpronounceable word with no
meaning) identifier names induce higher cognitive loads in
code comprehension [34], but did not consider morpheme
structure or end-to-end debugging.

We examine whether changes in the morpheme struc-
tures of identifiers elicit detrimental responses neurolog-
ically or in end-to-end debugging outcomes for people
with lower reading ability. We include four identifier condi-
tions in our experiment: original, single-morpheme, multi-
morpheme, and pseudoword variable names (Section 4.2.2).
We hypothesize that morpheme-varied identifiers will illicit
an effect on people with reading inefficiencies.

3.3 Neuroscience Vocabulary and Notation

Vocabulary. The human brain has two hemispheres, left and
right (e.g., Figure 5 shows both), and four primary lobes:
frontal, temporal, parietal, and occipital. The frontal lobe is
at the front of each hemisphere, the temporal lobe is on the
side, the parietal lobe is at the top, and the occipital lobe is at
the back. We focus on the cerebral cortex, the outer layer of
neural tissue across all lobes. This layer is often conceptually
divided into 52 distinct regions known as Broadmann Areas
(BAs) [35]. Areas are often associated with specific cognitive
functions. For example, BA 41 and 42 are associated with
auditory processing. Some sets of BA regions are known by
a common name, such as Broca’s area (BA 44 and 45), which
is located on the left hemisphere and lower frontal lobe.
In this paper, we focus on the union of the brain regions
identified in two previous fNIRS studies of computing [8],
[9], as well as those identified as relevant in participants
with reading difficulties [36].

Notation. Medical imaging analyses are typically presented
in terms of contrasts in which activity measured during one
condition or activity is compared against (subtracted from)
activity measured during another (written A > B). Activi-
ties are often contrasted with a resting state measurement in
which the participant is neither reading nor taking actions
(e.g., the participant is waiting for a run to finish).

We report these contrasts in Section 6 as statistical ¢-
values corresponding to each fNIRS channel. A positive ¢-
value indicates that the specified brain area was more active
during activity A than activity B, while a negative t-value
indicates that the specified brain area was less active during
activity A than activity B. Values farther from zero represent

3

stronger activation contrasts between the two tasks. We
report only areas with significant contrast (p < 0.01) after
correction for multiple comparisons (¢ < 0.05).

4 RESEARCH METHODOLOGY

We conducted a neuroimaging study of interactive debug-
ging with n = 28 participants.! We design our experiment
to address three research questions:

RQ1: Does each stage of our proposed dynamic debugging
model correlate with specific patterns in behavioral
outcomes and neural activity?

RQ2: During debugging, how do morpheme-varied identi-
fier names correlate with specific patterns in behavioral
outcomes and neural activity?

RQ3: During debugging, how do individual skills (i.e. read-
ing ability and programming experience) correlate with
patterns of neural activity?

Our experimental protocol has three parts: (1) a demo-
graphic survey and initial programming assessment, (2) a
reading skill test to proxy reading ability, and (3) a series
of interactive debugging problems completed with fNIRS.
Participants debugged between 6 and 13 Python programs
with varied identifier names in a 50-minute session while
wearing an fNIRS cap (Section 3.1). We also instrumented
the debugging environment to collect key programming
actions (e.g., keystrokes, window switching, etc.).

This protocol lets us capture the relevant data to address
our research questions in a controlled manner. By using
fNIRS, we collect neural activity needed for all three ques-
tions. By instrumenting the development environment, we
can correlate this activity with the phases of our dynamic
debugging model (RQ1). By including controlled variations
of identifier names in the buggy programs, conducting
a reading skill test, and collecting demographic data, we
can also correlate neural activity with morepheme-related
differences (RQ2) and individuals’ skills (RQ3). In the rest of
this section, we discuss our experimental design (including
our fNIRS setup and debugging experiment), debugging
stimuli, and recruitment in more detail.

4.1 Experimental Design

Our design focuses on three main goals: collecting relevant
behavioral and neurological data to model debugging cog-
nition, capturing participant reading ability, and maximiz-
ing ecological validity. We describe each in more detail.

4.1.1 Demographic Survey and Assessments

Demographic Survey and Programming Assessment. Be-
fore the fNIRS scan, we surveyed participants’ demo-
graphic data (age, occupation, years of experience, etc.). We
also asked if participants were native English speakers or
had been diagnosed with a reading-related condition (e.g.,
dyslexia). We augmented this potentially unreliable self-
reporting with a validated assessment of reading efficiency
in the next stage. Additionally, participants completed a
short programming quiz to assess eligibility. This assess-
ment allowed us to control for data quality and perform
statistical comparisons within participants.

1. University of Michigan IRB protocol HUM00229664.

Figure 2: Image of our fNIRS cap on a participant. The cap
goes around the head covering frontal and temporal regions.

Reading Ability Assessment. To capture English reading
ability, we administered two Test of Word Reading Efficiency
(TOWRE) assessments [37]. The TOWRE test is a validated
measure of reading ability, widely used in psychology [38]-
[40], and can distinguish English reading abilities, irrespec-
tive of reading disability diagnosis or native language.

We first use the Sight Reading Efficiency TOWRE test,
in which participants read aloud a series of increasingly-
complex English words as fast as possible without er-
rors. We then use the Phonemic Decoding TOWRE test,
in which participants read a list of increasingly-complex
pseudowords (pronounceable words with no meaning). We
used the standard scoring sheet [41] for these tests. To en-
sure scoring consistency, two authors independently scored
recordings of participants for accuracy and then met to
resolve any disagreement. We aggregate those scores into a
Total Word Reading Efficiency (TWRE) standard score for each
participant [40], [41]. Higher TWRE scores generally corre-
late with reading efficiency in the English language, while
lower scores suggest reading difficulties or impairments.

4.1.2 Interactive Debugging

The core of our study is a 50-minute session in which par-
ticipants debug a series of Python programs. For any given
program, participants had at most 10 minutes to fix the bug.
The debugging problems are described in Section 4.2.
Programs were displayed in Visual Studio Code (VS
Code) [42], and participants could freely edit and run code.
VS Code is used widely by computing students and profes-
sional developers [43], increasing the ecological validity of
our experiment. Figure 3 shows our VS Code setup. Partic-
ipants had access to only three files at a time per problem:
a program-specific natural language task description, the
buggy source code, and an output window holding testing
results. After fixing the bug or reaching the 10-minute limit,
participants moved to the next problem by closing the
current files and opening the files related to the next task.
To minimize potential confounding variables, we did
not allow participants to use a debugger, the split window
editor, the internet, or revisit past problems. Prior to each
study session, we showed participants a training video to
acquaint them with the setup and environment restrictions.

4.1.3 Capturing Debugging Stages
To map participant neural and behavioral activity to a stage

4

in our debugging model, we define key programmer behav-
iors that indicate the start and end of each non-overlapping
phase based on the model description in Section 2. We
define the beginning of the Task Comprehension (TC) stage
to be when the participant first views the prose problem
description window. The Fault Localization (FL) stage
begins (and the TC stage ends) when participants view the
problem code window. The Code Editing (CE) stage begins
(and the previous stage ends) when participants press a
non-navigational key (e.g., not an arrow key) while in the
problem code window. The Compiling stage begins (and the
previous stage ends) when participants instruct VS Code
to run the program (either through the run button, menu
option, or keyboard shortcut). The Output Comprehension
(OC) stage begins (and the previous stage ends) when
participants view the terminal output window.

If the participant produces a successful fix (i.e., passes
all tests), the current problem session ends and the cycle
restarts with the next problem. However, if a fix is not suc-
cessful, the participant returns to the CE stage and continues
until succeeding or reaching a time limit.

We used a custom VS Code extension and build-process
interception to capture relevant data such as the active file
window, keystrokes, and the outcomes of program runs in
real time. To ensure precise tracking of the active window
(e.g., problem description vs. source code), participants
were only able to view one of the three files at a time.
For example, this restriction uniquely determines when a
participant exits the TC phase and enters FL. In a small
number of instances participants engaged in not-directly-
relevant activities, such as closing multiple windows at the
same time or waiting for the problem description to load.
These other activities are not included in our analysis.

4.1.4 fNIRS Device, Scan and Cap Design

fNIRS Device and Scans. We measured neural activity
using a 16 x 16 NIRSport 2 system. This system contains
two laser diodes at 760 nm and 830 nm with fiber optic
cables to transmit light between the instrument and a sensor
probe on the participant’s head. This system is well suited
for studying debugging, capturing data of similar or higher
quality than that in other fNIRS studies of programming
(cf. [24]). In addition, this system supports 38 light detection
channels, allowing us to capture activation from more of the
brain than in many published fNIRS studies (cf. [44], [45]).
Signals were sampled at 50 Hz and then resampled to 2 Hz
for analysis, a common best practice [46].

fNIRS Cap Design. {NIRS experiments must select brain
regions to measure. As we are interested in language-
related correlates of debugging for this study, we prioritized
capturing data from language-associated regions (e.g., left-
hemisphere temporal lobe, Broca’s region, etc.). We also
covered regions identified in previous neuroimaging studies
of program comprehension, data structure manipulation,
and prose reading [8], [13], [36]. Our cap is a symmetrical
band around the head that captures bilateral activation from
lateral parts of the frontal, temporal, and parietal lobes,
ultimately capturing 20 Broadmann areas (see Section 3.3).
Figure 2 has a side view of the cap. We constructed four caps
to accommodate different head sizes (circumference: 56 cm,

8_prompttxt @ @ 8 terminaltxt @

1 Given an array nums of size n, return the majority element
3 The majority el

the element that appears more than [n / 2] times
4 You may assume It he arra

enent is the
that the majority element always exists in the array

6 Input: nums = [3,2,3] 10
output: 3 n

Input:

nums = [2,2,1,1,1,2,2] n

7 def test_case

def test_case2():

2 assert (majorityElement([2,2,1,1,1,2,2]) =

(b) Program Code

(a) Task Description

0:
1B asser t(majorityElement ((3,2,3]) ==

/8.py", line 14, in majorityElement
ighiums1) if nums[i] = left) 1

highNums1) if nuns[i] == right)

p/stinuli/g_problen/8.py*, line 9, in majority element_rec

left* is not defined

3)

2)

(c) Terminal Output Window

Figure 3: Debugging setup. Participants navigated through three windows while debugging: (a) problem description, (b)
program source code, and (c) terminal window displaying testing output.

58 cm 60 cm, 62 ¢cm) based on the international 10—20 sys-
tem [47]-[49]. To fit the fNIRS cap to each participant [47],
we aligned the cap’s center with the 10—20 point fPZ [48]
(above the bridge of the nose). Beyond our choices of which
brain regions to cover, our cap construction and fitting are
standard and we claim no novelty in cap design details.

4.2

When constructing our debugging task stimuli, we had
four goals: (1) Participants should be assessed on familiar
computer science topics, (2) Time taken to complete stim-
uli should be appropriate for fNIRS, (3) Defect seeding
should be experimentally controlled, and (4) Morphemes
should be experimentally varied across multi-morpheme,
single-morpheme, and pseudoword (following psychology
research, see Section 3.2). Because we are studying debug-
ging and identifier morphology in the same experiment, the
defect seeding and morpheme constraints were intertwined.

Interactive Debugging Stimuli

4.2.1 Adapting Interview-style LeetCode Problems

We wanted our stimuli to incorporate core concepts with
real-world applicability, be answered within an appropriate
time frame for fNIRS, and have adequate experimental
control. To do so, we adapted programming stimuli from
LeetCode 2, a widely-recognized online platform that pro-
vides a repository of programming problems commonly en-
countered in job interviews. It offers a collection of problems
and solutions categorized according to difficulty levels and
topics. We chose to use LeetCode as a source of stimuli due
to the availability of program solutions, its large database
of problems organized by difficulty, and its emphasis on
fundamental programming concepts.

To keep tasks from being too complex and to maintain
consistency across stimuli, we only considered LeetCode
problems with Python solution lengths from 9 to 14 lines
of code, plus additional lines for tests (see Figure 3b).
We further restricted attention to problems admitting both
controlled variation to a relevant identifier’s morphological
structure (Section 4.2.2) and defect seeding involving that
same identifier (Section 4.2.3).

4.2.2 Selecting Identifiers to Vary Morphologically

We desire debugging scenarios in which a single relevant
variable’s morphological structure can be experimentally

2. https:/ /leetcode.com/

controlled. At a high level, we favor changing an identifier
in a way that both follows established research in psychol-
ogy and also maintain relevance to the code and defect (e.g.,
it appears frequently, is involved in fixing the bug, etc.).

To investigate the impact of the morphological structure
on participant debugging outcomes, we consider four cat-
egories of morphemes: original, single-morpheme, multi-
morpheme, and pseudoword. Original words are the un-
changed LeetCode-provided identifiers, such as “target”
or “total”. Single-morpheme words feature a single unit
of meaning, such as “reach” or “color”. Multi-morpheme
words involve two units of meaning, such as “replay” (“re-
” + “play”) or “unhappy” (“un-" + “happy”). Pseudowords
are devoid of inherent meaning but are pronounceable, such
as “buned” or “binsping”. Pseudowords are serve a similar
function as nonwords (such as those used by Siegmund et
al. [34]), but lend the ability to contain morphemes while
still being meaningless, thus acting as a stronger control.

In consultation with psychology researchers who study
morphological processing, we used a validated list of mor-
phemes from the established corpus of Marks et al. [20].
Their corpus contains multiple pairs of words within +1
length of each other such as “reuse” and “reach” (of length
five), “flavor” and “visitor” (of length six and seven),
etc. This allowed for controlled variation in which one
morpheme is retained across the single-morpheme, multi-
morpheme and pseudoword cases. For example, the single-
morpheme category word “speed”, the multi-morpheme
category word “tried”, and the pseudoword “buned” all fea-
ture the morpheme “-ed” (but only in the multi-morpheme
case does it carry meaningful semantic significance). Such
shared morphemes are important because neurological dif-
ferences are especially notable for derivational morphology
involving analytically-demanding and semantically-abstract
units (e.g., “-ed”, “un-", "-ly”, etc.) [20].

For each word length, we filtered applicable LeetCode
solutions to those containing an identifier within +1 of that
length that also appears in close to 50% of the solution lines.
In our final dataset, the average percentage of lines featuring
the selected identifier was 47% (minimum 36%, maximum
64%). Once found, we change the identifier uniformly in
both the code solution and also the problem description
by replacing it with the single-morpheme, multi-morpheme
and pseudoword elements from the Marks et al. corpus. For
each defect scenario, a participant is shown one randomly-
assigned variant from one of the four categories (original,
single-morpheme, multi-morpheme, and pseudoword: see

def singleNumber(nums): def singleNumber(nums):

1stDup = [] brunly = []
for 1 in nums: for 1 in nums:
--- # #---
1stDup.append(1) brunly.append (i)

1stDup. remove (i)
return LstDup.pop()

brunly. remove (i)
return brunly.pop(ﬂ

(a) Original variable name (b) Pseudoword

def singleNumber(nums):

(c) Single-morpheme

def singleNumber(nums):

family = [] mostly = []
for 1 in nums: for 1 in nums:
--- # # ---
family.append(i) mostly.append (i)
else: else:

family. remove (i)
return family.pop(ﬂ

mostly. remove(i)
return mostly.pop()

(d) Multi-morpheme

Figure 4: Example stimuli with experimentally-controlled variations corresponding to identifier morphology.

Figure 4). A participant is never shown the same defect sce-
nario twice. In total, participants were assigned 13 problems
across all four identifier conditions (i.e., 3-4 problems in
each). However, due to problem order randomization and
timing constraints, not all participant saw all conditions.

To observe the impact of morphemes on the interactive
debugging process, we also ensure that the defect (see Sec-
tion 4.2.3) contains the identifier: participants must engage
directly with that identifier name to fix the bug.

4.2.3 Defect Seeding

LeetCode solutions do not contain defects. Because we
focus on studying participant behavior while debugging,
we require consistent defects across problems (precluding
approaches in which participants write code from scratch,
since that code may or may not contain defects and two
participants may or may not create defects of similar com-
plexity). For consistency of analysis and to admit com-
parison to prior work [9], we seeded each defect by delet-
ing a program line. For each stimulus, we removed one
line of code that both contained an identifier suitable for
morphological mutation and was also part of a control or
data-flow dependency (e.g., an assignment or conditional
statement). This ensured that participants interacted with
the morphological mutation, and resulted in varied types of
errors and non-trivial fixes across the stimuli. Each deletion
was indicated with three consecutive dashes (see Figure 4).

While numerous operators are available for defect seed-
ing [50], we used line-deletion defect seeding. This method
is easy to understand and produces a number of different
errors. Figure 4(c) produces an indentation error, but other
errors such as “UnboundLocalError: cannot access local
variable ’total’ where it is not associated with a value,”
“AssertionError,” and “NameError” were also produced.

At the same time, we know it is possible to fix each
defect with a single line addition. This aligns with our
need for participants to complete tasks quickly. Because
we use the BOLD signal to measure neural activity (see
Section 3.1), we desire stimuli where each debugging stage
can be completed rapidly. Extended periods of engagement
on the same activity can also lead to mental fatigue and
reduced behavioral outcomes [51], [52].

4.3 Recruiting and Population Contextualization

We recruited using email lists, posters, and professional
contacts. To reach students, we advertised at the University
of Michigan via in-class presentations and online forums.
To recruit participants with varying reading abilities, we

collaborated with Michigan’s Office of Services for Students
with Disabilities to email students registered to receive
accommodations for learning disabilities. This allowed us to
reach students with various degrees of experience outside of
computer science. We also created Chinese versions of our
posters to facilitate recruiting non-native English speakers.

Participants were eligible if they were at least 18, right-
handed, and had completed or were enrolled in a data
structure and algorithms course. Since we studied the im-
pact of reading ability, we gave priority to subjects who
self-reported a diagnosis of dyslexia or were non-native
English speakers. Potential participants were emailed a de-
mographic survey and a link to schedule their fNIRS scan
(see Section 4.1). Participants that completed the study in
full were compensated $50. One participant withdrew from
the study during the brain scan and was compensated $20.

35 participants completed the demographics form and
fNIRS scan. However, 7 participants were removed from
analysis due to corrupted data (n = 4), opting to drop out
(n = 1), or failing to follow instructions (n = 2). Of the
remaining 28 valid participants, 19 were undergraduates,
8 were graduate students, and 1 was a full-time software
engineer. Programming experience ranged from 1 year to
over 10 years with an average of 2-5 years. 6 participants
identified as women, 21 as men, and 1 chose not to disclose.

Additionally, 7 participants self-identified as non-native
English speakers, while 3 were diagnosed with dyslexia.
This broad spectrum of language backgrounds enables us to
explore English prose reading ability as a potential predictor
of behavioral and neural debugging outcomes.

5 ANALYSIS APPROACH

We detail our approach to analyzing neural and behavioral
outcomes. We used fNIRS (Section 3.1) to measure neural
activity and used standard instrumentation (e.g., recording
keystrokes, timing) to measure behavioral outcomes. Criti-
cally, using the delimiters from Section 4.1.3, we associated
each measurement with one stage in our debugging model.

5.1 {NIRS Data Analysis

We claim no novelty in our fNIRS analysis methodology
and instead rely on established best practices from Psy-
chology [46]. In this section, we detail the steps we took
to analyze our data, including pre-processing, individual
subject analysis and group-level analysis.

Preprocessing. The raw fNIRS data is in the form of light in-
tensity values. This was converted into optical density data

(a measurement of changes in hemoglobin concentration in
the brain) by calculating light absorption fluctuations associ-
ated with either oxygenated (HbO) or deoxygenated (HbR)
blood. The optical density data were then converted into an
HbO/HDR signal using the Modified Beer-Lambert law. We
ran a general linear model (GLM) with pre-whitening and
robust least squares to fit the data [53].

Individual Subject Analysis. Individual subject analysis (or
first-level analysis) involves fitting general linear models
(GLMs) to each subject’s data independently. We specified
within subject, first-level GLMs to model f{NIRS optical den-
sity measurements in all the channels that were statistically
related to the timing of the hemodynamic responses (as
determined by the convolving timeseries of stimulus events
with the canonical response function).

In fNIRS, systemic physiology and motion-induced ar-
tifacts are major sources of noise and false positives. We
therefore fit our models using autoregressive-whitened ro-
bust regression [54], which controls for such confounds
during parameter estimation. Then, we applied ¢-tests to
the regression coefficients describing the task-related brain
activations modeled for every participant. We addition-
ally separated tasks by morphological structure (original,
single-morpheme, multi-morpheme, pseudoword) and con-
structed GLMs to analyze the effect of morpheme category
on neural activity for each participant.

Contrasts and Subject-Group Analysis. We computed pair-
wise contrasts to determine mean differences in activity
between conditions on a within-participant basis. Next, we
conducted a group-level analysis to summarize the first-
level regression coefficients. We used a mixed effects model
for the average group-level response, with individual partic-
ipants treated as random effects. We used a false discovery
rate threshold (¢ < .05) to control for multiple comparisons.

5.2 Behavioral Data Analysis

We used accuracy (i.e., test cases passed), window-switching
frequency, and timing data to assess how identifier condi-
tions, reading ability, and programming experience affect
behavioral outcomes within dynamic debugging. Specif-
ically, we used multi-level regression models (i.e., mixed-
effects modeling) to examine relationships between our
response variables (data) and independent variables (con-
ditions and skills). We claim no novelty in the analysis
methods employed themselves, and instead follow estab-
lished best practices. Our use of this analysis approach [55],
[56] follows that of another software engineering paper
evaluating programming and cognition [57].

5.2.1 Multi-Level Regression Modeling

A mixed-effects model can have independent variables
whose effects are systematic (fixed effects), heterogeneous
(random effects), or both. Interactions of fixed effects al-
low for modeling effects that are systematic within specific
groups of observations. We hypothesize morpheme-varied
identifier will affect programming and neural outcomes of
those with varied reading ability (based on prior work,
see Section 3.2). Furthermore, random effects can model
heterogeneity in the data. This is relevant for our analysis
as there is a possibility that some participants may perform
better or worse with varying identifier conditions.

5.2.2 Model Specifications

The dependent variables we consider are per-task accuracy
(i.e., did the participant fix the bug), window-switching
count, and debugging time. To ensure participants at-
tempted multiple problems, participants moved on to the
next problem after 10 minutes, even if they had not fixed
the bug. In psychometrics, this is known as “right censor-
ing”, where the true time needed to solve the problem is
unknown due to a time limit [58]. We mitigate censoring-
related concerns by separating our time observations into:
(1) per-task total response time of correctly-fixed problems,
and (2) per-task total time interacting with the variable name
across all observations (i.e., sum of time spent in Fault Local-
ization, Code Editing, and Output Comprehension stages).
We apply square root transformation to response times
to address skew, and fit models using maximum likelihood
estimation (MLE). To find the best-fitting model for each de-
pendant variable, we optimize Akaike Information Criterion
(AIC), a widely-used model selection metric [59], [60].
During model selection, we consider effect structures
for the following independent variables: morpheme-varied
identifier condition, total TWRE scores (i.e., validated sur-
rogate for reading ability), and self-reported programmer
experience. Each could be a fixed or a random effect. If
the best-fitting model has a fixed (systematic) effect for
morpheme-varied identifier condition, TWRE scores, or ex-
perience, we explicitly verify statistical significance via a
likelihood ratio “omnibus” test relative to a model without
the fixed effect [56]. We pinpoint the source using post-hoc
pairwise contrasts, with Benjamini-Hochberg adjustment
for multiple comparisons. Alternatively, if the best-fitting
model has a random (heterogeneous) identifier condition
effect, we explicitly verify statistical significance using pro-
file likelihood analysis [55] and parametric bootstrap meth-
ods [61] to find the 95% confidence bounds of the statistic.

6 RESULTS

We present results of our investigation of the behavioral
and neural correlates of interactive dynamic debugging (see
section 4 for our three primary research questions).

6.1 RQ1 — Model of Dynamic Debugging

We first investigate if there is behavioral and neural distinc-
tion across the phases of our proposed debugging model
(Section 2). That is, do the debugging stages in our model
correlate with different behavioral outcomes and patterns
of neural activity. This is important because previous ap-
proaches have considered activities such as code reading or
code writing in isolation. For each model stage, we consider
(1) behavioral distinction, and (2) neural distinction.

6.1.1 Behavioral Distinction of Model Stages

To test if our debugging model captures behaviorally-
distinct stages (i.e., the debugging stages in our model all
correlate with different behavioral outcomes), we analyzed
duration and keystroke behavior during each debugging
stage (Section 4.1). The average times spent in each stage
were: 26.4s for Task Comprehension, 63.7s for Fault Local-
ization, 40.7s for Code Editing, 5.9s for Compiling, and 19.2s

Brain Region TC > Rest FL > Rest CE > Rest OC > Rest TC>CE TC>0C OC>CE |
Frontal Cortex
Left DLPFC (BA 46) - - - - - - 2.54
Right DLPFC (BA 46) - - - 2.75 -2.44 - 2.69 — 2.13
Brocas Area (Left BA 44, 45) 341 - - - 2.43 2.96 2.54
IFG (Right BA 44, 45) 3.74 -2.02 -2.12 -2.60 2.72 2.09 -2.51 2.08 2.13
Left BA9 - - - 2.05 - - -
Right BA 9 - - 2.91 2.75 - — -
Temporal Cortex
Wernike’s Area (Left BA 22, 40) -255-248 -425--2.23 - -323--272 | 247-3.02 22-255 -2.64
Right BA 21 1.98 - - 2.06 - - -
Left Auditory Cortex (BA 41, 42) 2.48 - - - 247-3.02 22-255 -
Right Auditory Cortex (BA 41, 42) 1.98 - - 2.06 2.69 - 2.89
Left BA 52 2.48 - - - 2.47 22 -
Right BA 52 2.03 - - - - - 2.89
Parietal Cortex
Left Angular Gyrus (BA 39) - - 2.05 - -3.23 -2.36 -2.63
Right Angular Gyrus (BA 39) - - 291 2.75 - - 2.62
Right BA 40 -235--436 -5.79--2.17 - - -3.53 - -
Occipital Cortex
Left BA 19 - -2.23 - -3.23--2.72 - - -2.63
Right BA 19 - -3.30 - - - - -

Table 1: Statistically significant ¢ statistics (p < 0.05) for each stage of our debugging model, compared to both a resting
state and each other stage. “T” is “Task Comprehension”, “FL” is “Fault Localization”, “CE” is “Code Editing”, and “OC”
is “Output Comprehension”. All reported values are statistically significant. Shaded cells have significant activation in the
specified brain area, while non-shaded cells denote significant correlations of less activation. “BA” means Brodmann area.

for Output Comprehension. Participants spent a statistically
different time in each phase (p < 0.001).

Keystrokes were also distinct between phases. In Code
Editing, we identified 37 distinct behaviors (typing letters,
deletes, keyboard shortcuts, indents, etc.). Compiling had
13 unique keyboard behaviors, and Output Comprehension
had 5 unique behaviors. No keyboard activity was recorded
in either Task Comprehension or Fault Localization.

Within Code Editing, the most prevalent keystrokes in-
cluded typing letters (36.6% of recorded keystrokes) and
deleting text (delete key, 41.0% of recorded keystrokes), to-
taling 4,543/12,417 and 5,098/12,417 instances respectively.
In contrast, participants typed only very minimally during
Compiling (226/360 keystrokes) and Output Comprehen-
sion (9/20 keystrokes). These differences between stages
are strongly significant. For example, a proportion z-test
reveals a significant difference in the proportion of typing
letters to all keystrokes between Code Editing and Com-
piling (p < 0.00001), as well as the proportion of deletes
to all keystrokes between Code Editing and Compiling
(p < 0.00001). Participants behaved very differently across
debugging stages, both in terms of time and keystrokes.

6.1.2 Neural Distinction of Model Stages

We analyzed neural activity to assess if our debugging
model captures neurally-distinct stages.(i.e.,the debugging
stages in our model correlate with different neurological
activity). Since Compiling only involved clicking a button
in our study (see Section 4), we focused attention on the
other four stages: Task Comprehension, Fault Localization,
Code Editing, and Output Comprehension.

To determine neural distinction between stages, for each
debugging stage we identify brain activity that is statisti-
cally different between that stage and a resting state (e.g.,
Task Comprehension > Rest, Fault Localization > Rest, etc.),
where > denotes contrast (Section 3.3). Figure 5 shows the
physical locations of these distinct activation areas in the

a) Task Comprehension > Rest b) Fault Localization > Rest

oo b wora |ostn |
il 9 NI s Y Y
o' ¥ Lo %'y » ol
o | \%fﬁ g‘w}/ﬂ \N"ﬂ

L

O @ W %
k“uu | \N‘ﬁﬂ gmx)/l W|

- cSrCode Editing > Rest d) Output Comprehension > Rest

Figure 5: Contrast of debugging stages with resting state
activity. 'R’ is right hemisphere and 'L’ left. Red indicates
significant neural activation (in contrast to rest) while blue
indicates significant correlation of less neural activation.

brain per debugging stage. The left half of Table 1 sum-
marizes our results per Broadmann Area (BA) (Section 3.3).
Critically, we find that our debugging stages are correlated
to different patterns of neural activity. Each stage of our
debugging model presents patterns of neural activity that
vary from each other in a statistically-significant manner.
We now describe how these stages differ.

During Task Comprehension (TC) (when compared to
rest), we observe substantial activation in the temporal cor-
tex, including in Wernicke’s area, right BA 21, the auditory
cortex, and BA 52. Notably, this is statistically different from
Code Editing (CE) (¢ > 2.47) and Output Comprehension
(OC) (t > 2.20) which exhibit significantly less to no neural
activation in the same area. TC also has more brain activa-
tion in Broca’s Area. This is important as both Wernike’s and
Broca’s area are associated with language comprehension
which we define as the main activity in TC (e.g., participants
make sense of the task by parsing prose descriptions).

During Code Editing (CE), we find no activation in

Wernike’s area, matching prior work [5]. However, there is
neural activation of the angular gyrus (t > 2.05) which is
not present in the other stages. This is a region commonly
associated with spatial cognition, spatial attention, and nu-
merical manipulation, tasks typically connected to problem
solving, which we conceptualize as the main activity in
debugging. This finding highlights CE as the main phase
in which problem solving takes place during debugging.

Conversely, Output Comprehension (OC) has height-
ened activity in the frontal cortex, with an emphasis on
the right hemisphere. Interestingly, this is the only stage
with significant activation in the right dorsolateral pre-
frontal cortex (DLPFC), a region linked to working memory
(t = 2.75). We hypothesize that during OC, participants may
be mentally stepping through the code (i.e., visualizing what
step in the code caused the error), thus requiring more use
of working memory. However, more investigation is needed
on the neural aspects of OC for more concrete conclusions.

Intriguingly, during Fault Localization (FL) we observe
no significant neural activation compared to resting state
cognition. We have two hypotheses. The first is that our
single-missing-line fault localization task may be easier than
more general fault localization, considering participants are
told where the fault is located (Section 4.2.3). The second is
that FL was the longest-duration stage (64 seconds vs. 41
for CE), and it may thus represent the “default” debugging
activity, with other specialized stages showing specific acute
activation (e.g., OC driving activation in regions associated
with working memory as participants compare the visible
output to their remembered expectations). While fault lo-
calization has been investigated using eye tracking [62] or
behavioral outcomes [63], [64], it has not been investigated
alone using neuroimaging. A more thorough investigation
of Fault Localization at the neurological level is merited.

In summary, the distinctions in behavioral activity and
neural activation patterns observed during Task Compre-
hension, Fault Localization, Code Editing, and Output Com-
prehension all differ from each other in a statistically-
significant manner. This provides a robust neurological
foundation for our proposed end-to-end debugging model.

The stages of our debugging model are behaviorally and
neurally distinct. Task Comprehension is more active in
temporal regions associated with language and memory,
compared to programming-intensive stages (p < 0.01,
g < 0.05). Code Editing has more activation in the
parietal cortex (p < 0.004, ¢ < 0.05), which is associated
reading and writing. Output Comprehension involves
the DLPFC, associated with memory retrieval and work-
ing memory (p < 0.04, ¢ < 0.05).

6.2 RQ2 — Morpheme-Varied Identifiers

We assess if identifier variations correlate with behav-
ioral outcomes or neural activity (Section 4.2.2). This is rel-
evant since identifiers with varied morphemes may impact
programmers with reading difficulties (Section 3.2).

6.2.1 Behavioral Distinction of Morpheme-varied Identifiers
We investigate the effect of morpheme-varied identifiers
on debugging behavior outcomes during dynamic debug-
ging. Specifically, we are interested in assessing if there

a) Pseudoword > Original

. ‘o‘\. C
wobs) e n
LT &

Figure 6: Contrast of neural
| activity during Code
Editing between identifier
types (single-morpheme,
multi-morpheme and
b) Single-Morpheme > Original pseudoword) vs. original

’ . identifiers. 'R’ indicates
A &5 I right hemisphere and 'L’
%’é’ L‘\;:;fj left. Red spots indicate
vV | & | significant positive neural
L - R . . .
activation =~ while blue
¢) Multi-Morpheme > Original
2 |

spots indicate significant
it L

activation ~ when the
condition is compared to

| correlation of less neural
' R the control (i.e., original).

is a identifier condition effect on participants with read-
ing difficulties (Section 5.2.2). We use TWRE scores as a
validated measure for reading difficulty. As described in
Section 4.1.1, the TWRE score is calculated as the sum of the
Sight Reading Efficiency and Phonemic Decoding TOWRE
tests. Our observed TWRE scores ranged from 150 to 223,
with an average score of 189.9 (in the average score range
for the TWRE [65]). Lower Reading Efficiency scores signify
increased challenges in reading English prose. This question
is directly relevant to issues of accessibility within the field,
such as recruitment of non-native English speakers.

Overall, we find no statistically-significant differences
in behavioral outcomes as a function of reading ability
(p > 0.09). That is, we find no identifier condition for which
accuracy, response times, or window-switching frequency
are statistically significantly different within TWRE scores
or programmer experience. While absence of evidence is not
evidence of absence, this finding is interesting. For example,
the participants with dyslexia in our study, or in the bottom
category of TWRE scores, did no worse than other partic-
ipants in our study. Previous studies have suggested that
individuals with reading difficulties may face challenges
with morpheme-complicated prose words in the context of
reading comprehension. Our findings give confidence that
participants with reading difficulties, as measured by TWRE
scores, may not experience negative impacts on their end-to-
end debugging speed or accuracy. This has implications for
skills assessments and their use in hiring.

We find no statistically-significant differences in speed
or accuracy for end-to-end debugging as a function of
Total Word Reading Efficiency score (p > 0.09). Over
the entire debugging process, participants with reading
challenges did no worse than those without.

6.2.2 Neural Distinction of Morpheme-Varied Identifiers

We investigated changes in neural activity based on
identifier name morphology (Section 4.2.2). We focused on
brain region activity during the Code Editing stage, as this is
when participants primarily engaged with the variable iden-
tifier (Section 4.2.3). Figure 6.1.2 shows significant differ-

ences in neural activity of each treatment (single-morpheme,
multi-morpheme, pseudoword) compared to original.

All three treatment conditions have significant activa-
tion. This suggests that all three treatments induce more
cognitive load than the original identifier. All conditions
exhibit significant neural activation concentrated on BA
brain regions associated with Wernike and Broca’s areas
when compared to the original condition (¢-value = 2.71
— 5.75). These regions are commonly known to be related
to language. These results can be viewed as a replication of
prior studies, such as those of Siegmund et al., that investi-
gated code comprehension and found that less meaningful
identifiers lead to increased cognitive load [34].

We believe this is a very interesting result. The treat-
ment conditions all induce more neural activation than the
original condition. However, we found that the contrast
between single-morpheme and original was more signifi-
cant than the other two pairs (i.e., pseudoword > original
and multi-morpheme > original). This is visualized in Fig-
ure 6.1.2. This implies that single-morpheme words induce
a more uniform cognitive load than pseudowords or multi-
morpheme words. This is somewhat surprising, because one
might intuitively guess that single-morpheme words (like
“family” or “color”) would be easier to reason about than
pseudowords (like “brunly” or “binsping”).

We speculate that this is because the single-morpheme
condition replaces an identifier name with another that has
some atomic meaning, but that also means the wrong thing in
context, while pseudowords can be viewed as abstract labels
and multi-morpheme identifiers can still be broken down.
Informally, for example, in Figure 4, if the original identifier
is “IstDup”, replacing it with “family” can be viewed as
wrong or misleading (the variable does not hold elements
with a family relation), while replacing it with “brunly”,
which has no meaning, is harder to reason about but is not
actively misleading. In this light, our results replicate and
extend those of Fakhoury et al., who studied variable name
“antipatterns” and found negative effects [62], [66].

We view this as an important and novel result. Prior
studies have focused on meaningless identifier naming [34]
or contrasted standard words to other tasks (such as find-
ing syntax errors [13]). Our findings align with, and pro-
vide strong evidence for, hypotheses related to identifier
semantics from prior work (e.g., [34, Sec. 3.1] or [62],
[66]). For example, an identifier such as “bubbleSort” gives
hints about purpose and sets expectations. A misleading or
antipattern single-morpheme identifier gives the wrong hint
or expectation. This strongly motivates further investigation
of morphology, which was not explicitly considered in pre-
vious CS studies, to tease apart differences between single-
morpheme and multi-morpheme conditions.

All three conditions (pseudoword, single-morpheme,
multi-morpheme) show increased neural activity com-
pared to original variables in language regions. No-
tably, we find that single-morpheme replacements (like
“family” or “color”) show a unique pattern of neural
activity. Our preliminary hypothesis is that our findings
align with the notions of semantic cues, beacons and
antipatterns in code comprehension.

10

yor, o Fels

< NI 'p 4 e (o
W e ey WG L\}X}J
Tl | Y| e | YT |
a) Years of Experience b) Reading Efficiency (TWRE)

Figure 7: Correlative neural activity for participants with
high experience or TWRE scores. ‘R’ is right hemisphere and
‘L" left. Blue spots indicate significantly less brain activation.

6.3 RQ3 — Neural Impact of Skills

We also examine the neural differences between partici-
pants with various years of experience and reading ability.
Participants completed a demographic survey that included
self-reported programming experience (Section 4.1.1).

As years of experience and TWRE scores increase, there
is less neural activation (see Figure 7). Brain regions less as-
sociated with significant activation as experience increased
and reading ability increased are concentrated on the right
hemisphere in left BA 39, right BA 22, right BA 44 and 45,
and right BA 41 and 42, with ¢ value —2.07 — —5.35. These
results align with classic neuropsychology findings that the
brains of experts show lower metabolic activity (i.e., less
energy required) to produce the same amount of neural
activity [67]. They also align with prior findings (e.g., Floyd
et al. [68]) that increased experience with computing results
in distinct patterns of neural activity.

Interestingly, participants with more years of experience
exhibit less widespread neural activation than those with
higher TWRE scores, suggesting that computing expertise
may have a more pronounced impact in reducing cognitive
load during debugging than does reading efficiency. We
view this as a positive result for broadening participation in
computing, since it suggests that programmers with lower
incoming reading efficiencies (such as non-native speakers
or developers with dyslexia) can still obtain increased effi-
ciency and reduced cognitive load. This is best interpreted
in light of our results in RQ2 and RQ3 that participants
with lower TWRE scores showed no statistically-significant
differences in end-to-end debugging outcomes.

Years of experience and higher TWRE scores (i.e., read-
ing efficiency in prose English) statistically-significantly
decrease cognitive load in novice programmers (p <
0.001,t = —=5.35 — —2.38 and p < 0.001, t = —4.46
— —2.073, respectively). These results align with prior
medical imaging findings on expertise and suggest that
both computing and natural language expertise can de-
crease cognitive load during debugging.

7 THREATS TO VALIDITY

We consider several relevant threats to validity.

Construct Validity. Our identifier conditions may not reflect
the meaningful names emphasized in conventional software
development. We prioritized using morphological-focused
words as identifier names. We used a validated list of
morphemes from the established corpus of Marks et al. [20].

In addition, the programs used in our stimuli are smaller
than typical industrial software and may not generalize to

industrial practice. To address this risk, we chose to use in-
terview questions used in software developer hiring, which
are still indicative of a programming task (job-seeking).

Internal Validity. Assessments of “reading inefficiency”
and “experience” may introduce threats to internal validity,
as self-reporting is not always perfectly reliable. We mit-
igated the risk of inaccurate self-reported reading ability
by administering a validated reading ability assessment to
participants (see Section 4.1.1). For self-reported experience
levels, we acknowledge the difficulty in verifying accuracy.
However, our findings related to neural activity patterns
based on self-reported computing experience align with
prior work [68] that examined self-reported courses and
grades. This consistency increases our confidence in the
reliability of self-reported experience levels for this study.

Ecological Validity. Participants could only view one win-
dow in the editor (see Section 4.1.3), unlike real-world prac-
tices. This restriction added confidence that brain activation
was due to a specific task and not from viewing multiple
windows simultaneously. Participants were also allowed
to switch back and forth between windows as frequently
as they wished, which is closer to real-world practice. We
hope future research will explore designs incorporating split
editor windows to further enhance ecological validity.

Generalizability of Results. Our defect seeding method
may not encompass all types of software bugs, affecting
generalizability. We aimed to enhance generalizibility by
designing stimuli that generated a wide range of error mes-
sages. In addition, we vary the complexity of the problems
to encompass wider skills required by software engineers.
This approach allowed us to present participants with di-
verse debugging scenarios, thus broadening the applicabil-
ity of our findings. A detailed explanation of our defect
seeding process is discussed in Section 4.2.3. Additionally,
since only one participant was a professional developer
(Section 4.3), our results may be most relevant to novices.

Debugging Model Limitations. Our cognitive model for
debugging focuses on aspects of task comprehension, fault
localization of a single bug, code editing, and output com-
prehension. It does not consider factors such as program-
ming languages, development environments, or other bi-
ases, which may significantly impact the results. We hope
that future work explores these additional factors.

fNIRS Cap Design. There may have been significant dif-
ferences in brain regions not covered by our fNIRS cap. To
mitigate this, we adapted a validated cap design used by
Huang et al. for a software engineering study [8]. We also
considered areas identified in other medical imaging studies
(e.g. with fMRI [13], [34]). Our modern fNIRS system, with
its large number of channels, allowed us to consider the
union of all relevant brain regions reported in related work.

8 DISCUSSION

We discuss how our findings relate to prior work, as well
implications for developers with reading impairments.

8.1 Alignment with Prior Work

We found statistically-significant neural distinctions across
the phases of our debugging model, aligning with existing

11

research. First, our Task Comprehension stage (where par-
ticipants engage with English program descriptions) aligns
with prior work on the neural correlates of prose reading [5].
Similarly, neural activity observed during Code Editing
corroborates prior findings from Kruger ef al. [9]. Together,
these strengthen the growing understanding that neural
processes during reading and code editing are distinct.

Our Code Editing stage, where participants edit buggy
code with the goal of finding a fix, shows neural activation
in areas often associated with spatial cognition. Prior work
in software engineering has found that data structure ma-
nipulation is also heavily linked to spatial cognition. These
findings led to studies [6], [69], which used training regimes
like mentally rotating objects to see if the training transfers
to other skills, such as data structure manipulation. We
recommend similar studies focused on the skill of editing.

Our Output Comprehension stage, in which participants
review testing output, presents an intriguing intersection of
neural behaviors reminiscent of both Task Comprehension
and Code Editing. We speculate that this is because Output
Comprehension involves both code-related interpretation
(e.g., stack traces) and reasoning about the (prose) problem
description (i.e., what the correct output should be).

Our results extend beyond understanding neural distinc-
tions, holding potential implications for CS pedagogy. For
example, prior work has found that technical prose reading
training can improve CS outcomes, especially in activities
such as tracing through code [5], [6]. Our results directly
suggest such training may also benefit students or program-
mers during testing and test output comprehension.

8.2 Reading Ability and Variable Naming

While we did observe significant differences in patterns of
neural activity as a function of identifier morphology or
TWRE scores, we did not find that to carry through to end-
to-end behavioral outcomes such as debugging speed or
accuracy. This observation holds true across varying levels
programming experience. We view this as an important
distinction between our work and prior work, and one
that stems from our consideration of end-to-end, integrated
debugging. Prior studies reported increased cognitive load
(and differing neural activity) with changes to variable
names, a finding we replicate, but did not delve as deeply
into end-to-end accuracy or speed. While cognitive load
findings inform the design of better support for program-
mers, we ultimately find that participants with less English
reading efficiency perform just as well overall as those with
more reading efficiency. This has the potential to partially
dispel harmful prejudices about hiring or collaborating with
non-native speakers or those with reading challenges.

9 RELATED WORK

We overview prior research on the study of software engi-
neering using medical imaging, the consequences of inade-
quate identifier naming, and programmers with dyslexia.

9.1 Software Engineering and Neuroimaging

In recent years, interest in using neuroimaging as a method
to understand various software engineering tasks at the

cognitive level has increased. Studies have investigated
the neural correlates of various software engineering tasks
such as code comprehension, code reading, and code writ-
ing. Siegmund et al. investigated the neurological patterns
associated with programming comprehension, specifically
focusing on short snippets of Python code that included
embedded syntax errors to observe corresponding neural
responses [13]. Siegmund et al. further investigated the role
of semantic cues in code comprehension [34]. Kreguer et al.
investigated code writing and prose writing, finding these
tasks to be neurally distinct [9], with subsequent work also
finding differences at the connectivity level [70].
Neuroimaging studies have also looked into the rela-
tionship between data structure manipulation and mental
rotation. Yu et al. compared data structure manipulation
to mental rotation using both fMRI and fNIRS [8], finding
significant overlap. Endres et al. investigated the impact of
technical reading training and spatial skills training on CS1
student performance, including using fNIRS [5], [6].
Researchers have also been interested in understanding
the neural correlates of bug detection in isolation using
fMRI. Duraes et al. examined the neural correlates associated
with code comprehension before bug detection and at the
time the programmer found a bug [12]. Their findings on
code comprehension further supported previous evidence
that code comprehension involves brain regions associated
with language processing and mathematics. Castelhano ef al.
found that the insula, a region deep within the brain and as-
sociated with emotional processing and interception, plays
a distinct role in bug monitoring and bug detection [11].
Alternatively, our study focuses on the debugging pro-
cess as a whole, including comprehension, code writing,
code reading, and bug detection. The stimuli used in many
of prior studies were smaller and less reflective of real-
world programming due to the constraints of fMRI. Our
participants use VS Code, mirroring a real-world scenario
and enhancing the applicability of our findings. In general,
our per-stage findings agree with prior studies that focused
on each stage alone. However, these differences in patterns
of neural activity and cognitive load, while statistically
significant, did not result in end-to-end speed or accuracy
differences — an observation that requires considering de-
bugging as a whole, rather than on stages in isolation.

9.2

Researchers have investigated what makes good software
engineering identifiers. Short identifiers have been com-
pared to long identifiers [71], [72] and abbreviated identi-
fiers have been compared to full-length identifiers [73]-[75].

Different identifier styles have been compared, particu-
larly camelCase vs. snake_case [76]-[78]. Al Madi and Zang
looked at the effect of lexically-similar names on debug-
ging [79], [80]. By contrast, we consider morphologically-
different identifiers. In psychology, prior work has high-
lighted the role of morphological awareness in the devel-
opment of reading skills and how morphological skills can
uniquely predict reading efficiency [81], [82].

Fakhoury et al. used fNIRS and eye tracking to study
the effects of linguistic antipatterns in identifier names on
neural activity for software comprehension tasks in [62] and

Identifier Naming Conventions

12

for debugging in [66]. Identifiers which follow linguistic
antipatterns are perceived negatively by developers. The
identifiers usually have a misleading name (e.g., an integer
variable named “numbers”). Our findings related to single-
morpheme words (but semantically incorrect) identifiers
strongly agree with those of Fakhoury et al..

9.3 Empirical Analysis of Debugging

Two early models of debugging are in Katz et al. [83] and
Vessey [84]. Both have similar basic components (e.g., test,
locate, and repair). Gilmore presented a new model [85],
integrating the debugging into a larger model of normal
programming activities. Many more recent models of de-
bugging also consider debugging as part of the overall de-
velopment process [86], [87]. We do not consider debugging
as part of an overall development process, instead focusing
on the activities within debugging itself. To the best of
our knowledge, prior models do not include neurological
evidence that their stages are cognitively distinct. Ahrens et
al. used eye tracking, but not medical imaging, to investigate
debugging [88]. Their study focused on attention, rather
than modeling debugging stages. By contrast, we consider
a direct model of debugging and provide evidence that its
stages are both behaviorally and neurologically distinct.

10 CONCLUSION

We propose a simple debugging model in which program-
mers transition between Task Comprehension, Fault Local-
ization, Code Editing, Compiling, and Output Comprehen-
sion. We conduct a human study of n = 28 participants
using fNIRS and standard coding measurements (e.g., time
taken, tests passed, etc.). We also consider the role of iden-
tifier morphology, a concept used in psychology, to assess
participants with dyslexia and other reading inefficiencies.
We considered the four morpheme conditions of original,
single-morpheme, multi-morpheme, and pseudoword.

We find that our proposed stages of debugging correlate
with distinct neural activity and behavioral outcomes. To the
best of our knowledge, this is the first neurally-justified cogni-
tive model of debugging as a whole. Second, we replicate prior
neuroimaging results about individual stages of debugging,
including observing that misleading identifiers induce a
higher cognitive load, while increasing years of experience
is associated with a lower cognitive load. Third, we find
no speed or accuracy differences in end-to-end debugging as
a function of English reading efficiency. We see this as
an important result that may help dispel some prejudices
related to broader participation in computing, such as non-
native speakers or participants with reading inefficiencies.

11 ACKNOWLEDGMENTS

This work was partially supported by NSF grant #2211749.
We thank Ioulia Kovelman for generously allowing us to use
her fNIRS device. We thank her students, James and Rachel,
for their expertise on reading ability, morphemes, and brain
activity. Our thanks extend to Chi-lin for his assistance in
shaping the experimental design. We thank Frank for his
support in the analysis of the fNIRS data and in generating
results. Lastly, we also thank Emma for her valuable insights
into multi-level regression.

REFERENCES

(1]

(2]
(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

D. H. O’Dell, “The debugging mindset: Understanding the psy-
chology of learning strategies leads to effective problem-solving
skills.” Queue, vol. 15, no. 1, pp. 71-90, 2017.

C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Commun. ACM, vol. 38, no. 04, p. 5665, 2019.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software Engi-
neering, vol. 42, no. 8, pp. 707-740, 2016.

M. Endres, A. Brechmann, B. Sharif, W. Weimer, and J. Siegmund,
“Foundations for a new perspective of understanding program-
ming (#22402),” Dagstuhl Reports, vol. 12, no. 10, pp. 61-83, 2022.
M. Endres, Z. Karas, X. Hu, I. Kovelman, and W. Weimer, “Re-
lating reading, visualization, and coding for new programmers:
A neuroimaging study,” in International Conference on Software
Engineering, 2021, pp. 600-612.

M. Endres, M. Fansher, P. Shah, and W. Weimer, “To read or to
rotate? comparing the effects of technical reading training and spa-
tial skills training on novice programming ability,” in Foundations
of Software Engineering. ACM, 2021, pp. 754-766.

D. H. Uttal, N. G. Meadow, E. Tipton, L. L. Hand, A. R. Alden,
C. Warren, and N. S. Newcombe, “The malleability of spatial skills:
A meta-analysis of training studies.” Psychological bulletin, vol. 139,
no. 2, p. 352, 2013.

Y. Huang, X. Liu, R. Krueger, T. Santander, X. Hu, K. Leach, and
W. Weimer, “Distilling neural representations of data structure ma-
nipulation using fmri and fnirs,” Proceedings of the 41st International
Conference on Software Engineering, vol. 1, p. 396-407, 2019.

R. Krueger, Y. Huang, X. Liu, T. Santander, W. Weimer, and
K. Leach, “Neurological divide: An FMRI study of prose and code
writing,” in International Conference on Software Engineering, 2020,
p- 678-690.

Z. Sharafi, Y. Huang, K. Leach, and W. Weimer, “Toward an objec-
tive measure of developers’ cognitive activities,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 30, no. 3,
pp- 140, 2021.

J. Castelhano, I. C. Duarte, C. Ferreira, J. Duraes, H. Madeira,
and M. Castelo-Branco, “The role of the insula in intuitive expert
bug detection in computer code: an fmri study,” Brain imaging and
behavior, vol. 13, no. 3, pp. 623637, 2019.

J. Duraes, H. Madeira, J. Castelhano, C. Duarte, and M. C. Branco,
“Wap: Understanding the brain at software debugging,” in 2016
IEEE 27th International Symposium on Software Reliability Engineer-
ing (ISSRE). Piscataway, NJ, USA: IEEE, 2016, pp. 87-92.

J. Siegmund, C. Késtner, S. Apel, C. Parnin, A. Bethmann, T. Le-
ich, G. Saake, and A. Brechmann, “Understanding understanding
source code with functional magnetic resonance imaging,” in
International Conference on Software Engineering, 2014, pp. 378-389.
D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in em-
pirical software engineering,” in Automated Software Engineering,
2011, pp. 362-371.

W. Aspray, F. Mayadas, and M. Y. Vardi, “Globalization and
offshoring of software,” in The Innovation Imperative. ~ Edward
Elgar Publishing, 2009, pp. 171-173.

J. M. Law, A. Veispak, J. Vanderauwera, and P. Ghesquiere,
“Morphological awareness and visual processing of derivational
morphology in high-functioning adults with dyslexia: An avenue
to compensation?” Applied Psycholinguistics, vol. 39, no. 3, pp. 483-
506, 2018.

J. M. Law, J. Wouters, and P. Ghesquiere, “Morphological aware-
ness and its role in compensation in adults with dyslexia,”
Dyslexia, vol. 21, no. 3, pp. 254-272, 2015.

M. Behroozi, C. Parnin, and T. Barik, “Hiring is broken: What do
developers say about technical interviews?” in IEEE Symposium on
Visual Languages and Human-Centric Computing, 2019, pp. 1-9.

J. Harper, “Interview insight: How to get the job,” in A Software En-
gineer’s Guide to Seniority: A Guide to Technical Leadership. Berkley,
CA: Apress, 2022, pp. 19-28.

R. A. Marks, R. L. Eggleston, X. Sun, C.-L. Yu, K. Zhang, N. Nick-
erson, X.-S. Hu, and I. Kovelman, “The neurocognitive basis of
morphological processing in typical and impaired readers,” Annals
of Dyslexia, vol. 72, no. 2, pp. 361-383, 2022.

Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in ISSTA. ACM, 2012, pp. 177-187.

M. M. Arredondo, “Shining a light on cultural neuroscience:
Recommendations on the use of fnirs to study how sociocultural

(23]

[24]

(25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]
[36]

[37]
[38]

[39]

(40]

[41]
[42]

(43]

[44]

13

contexts shape the brain.” Cultural Diversity and Ethnic Minority
Psychology, vol. 29, no. 1, p. 106, 2023.

R. Adorni, A. Gatti, A. Brugnera, K. Sakatani, and A. Compare,
“Could fnirs promote neuroscience approach in clinical psychol-
ogy?” p. 456, 2016.

X. Hu, C. Zhuang, F. Wang, Y.-J. Liu, C.-H. Im, and D. Zhang,
“fnirs evidence for recognizably different positive emotions,”
Frontiers in human neuroscience, vol. 13, p. 120, 2019.

M. Soltanlou, M. A. Sitnikova, H.-C. Nuerk, and T. Dresler, “Appli-
cations of functional near-infrared spectroscopy (fnirs) in studying
cognitive development: The case of mathematics and language,”
Frontiers in psychology, vol. 9, p. 277, 2018.

S. Karmakar, S. Kamilya, P. Dey, P. K. Guhathakurta, M. Dalui,
T. K. Bera, S. Halder, C. Koley, T. Pal, and A. Basu, “Real time
detection of cognitive load using fnirs: A deep learning approach,”
Biomedical Signal Processing and Control, vol. 80, p. 104227, 2023.
N. Taylor, M. Wyres, M. Bollard, and R. Kneafsey, “Use of func-
tional near-infrared spectroscopy to evaluate cognitive change
when using healthcare simulation tools,” BM] Simulation & Tech-
nology Enhanced Learning, vol. 6, no. 6, p. 360, 2020.

M. A. Khan, H. Asadi, T. Hoang, C. P. Lim, and S. Nahavandi,
“Measuring cognitive load: Leveraging fnirs and machine learning
for classification of workload levels,” in International Conference on
Neural Information Processing. Singapore: Springer, 2023, pp. 313—
325.

M. A. Lindquist,]. Meng Loh, L. Y. Atlas, and T. D. Wager,
“Modeling the hemodynamic response function in fmri: Efficiency,
bias and mis-modeling,” Neurolmage, vol. 45, no. 1, Supplement 1,
pp. S187-5198, 2009, mathematics in Brain Imaging.

A. Bonilauri, F. Sangiuliano Intra, G. Baselli, and F. Baglio, “As-
sessment of fnirs signal processing pipelines: Towards clinical
applications,” Applied Sciences, vol. 12, no. 1, p. 316, 2022.

Y. Hayashi and V. Murphy, “An investigation of morphological
awareness in japanese learners of english,” Language Learning
Journal, vol. 39, no. 1, pp. 105-120, 2011.

M. Leikin and E. Z. Hagit, “Morphological processing in adult
dyslexia,” Journal of psycholinguistic research, vol. 35, pp. 471-490,
November 2006.

D. American Psychiatric Association, A. P. Association et al.,
Diagnostic and statistical manual of mental disorders: DSM-5. Wash-
ington, DC, USA: American psychiatric association, 2013, vol. 5.
J. Siegmund, N. Peitek, C. Parnin, S. Apel,]. Hofmeister,
C. Késtner, A. Begel, A. Bethmann, and A. Brechmann, “Measur-
ing neural efficiency of program comprehension,” in Foundations
of Software Engineering. ESEC/FSE, 2017, pp. 140-150.

L.]J. Garey, “Brodmann’s’ localisation in the cerebral cortex’,” 1999.
K. Zhang, X. Sun, C.-L. Yu, R. L. Eggleston, R. A. Marks, N. Nick-
erson, V. C. Caruso, X.-S. Hu, T. Tardif, T.-L. Chou, J. R. Booth, and
I. Kovelman, “Phonological and morphological literacy skills in
english and chinese: A cross-linguistic neuroimaging comparison
of Chinese-English bilingual and monolingual english children,”
Hum Brain Mapp, vol. 44, no. 13, pp. 4812-4829, Jul. 2023.

J. K. Torgesen, R. K. Wagner, and C. A. Rashotte, “Test of word
reading efficiency-second edition,” Pro-Ed, 2012.

M. Thambirajah, “Developmental dyslexia: clinical aspects,” Ad-
vances in psychiatric treatment, vol. 16, no. 5, pp. 380-387, 2010.

R. Akhil, A. Soori, D. Shankar, M. M. Krishnan, and B. R. Poorna,
“Detecting specific learning disabilities,” in 2017 International
Conference on Networks & Advances in Computational Technologies
(NetACT). Thiruvananthapuram, India: IEEE, 2017, pp. 359-363.
J. M. Tarar, E. B. Meisinger, and R. H. Dickens, “Test review: Test
of word reading efficiency-second edition by torgesen, jk, wagner,
rk, & rashotte, ca,” 2015.

J. K. Torgeson, R. K. Wagner, and C. A. Rashotte, Test Review: Test
of Word Reading Efficiency (TOWRE). Austin, Texas: Pro-ed, 1999.
Microsoft, “Visual studio code-code editing. redefined,” Nov
2021. [Online]. Available: https://code.visualstudio.com

Stack Overflow Team, “Stack overflow developer
survey 2019,” accessed on December, 2023. [On-
line]. Available: https://insights.stackoverflow.com/survey/
2019\#development-environments-and-tools

T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto,
and D. M. German, “Quantifying programmers’ mental workload
during program comprehension based on cerebral blood flow
measurement: a controlled experiment,” in Companion to the in-
ternational conference on software engineering. New York, NY, USA:
ICSE, 2014, pp. 448-451.

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Ikutani and H. Uwano, “Brain activity measurement during
program comprehension with nirs,” in 15th International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing. NJ, USA: IEEE, 2014, pp. 1-6.

M. A. Yiicel, A. v. Lithmann, E. Scholkmann, J. Gervain, 1. Dan,
H. Ayaz, D. Boas, R. J. Cooper, J. Culver, C. E. Elwell, A. Egge-
brecht, M. A. Franceschini, C. Grova, F. Homae, F. Lesage,
H. Obrig, I. Tachtsidis, S. Tak, Y. Tong, A. Torricelli, H. Wabnitz,
and M. Wolf, “Best practices for fNIRS publications,” Neurophoton-
ics, vol. 8, no. 1, p. 012101, 2021.

H. H. Jasper, “Ten-twenty electrode system of the international
federation,” Electroencephalogr Clin Neurophysiol, vol. 10, pp.
371-375, 1958. [Online]. Available: https://cirnii.acjp/crid/
1571698600671094016

U. Herwig, P. Satrapi, and C. Schonfeldt-Lecuona, “Using the
international 10-20 eeg system for positioning of transcranial
magnetic stimulation,” Brain topography, vol. 16, pp. 95-99, 2003.
X. Xiao, H. Zhu, W.-J. Liu, X.-T. Yu, L. Duan, Z. Li, and C.-Z. Zhu,
“Semi-automatic 10/20 identification method for mri-free probe
placement in transcranial brain mapping techniques,” Frontiers in
neuroscience, vol. 11, p. 4, 2017.

Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Transactions on Software Engineer-
ing, vol. 37, no. 5, pp. 649-678, 2011.

M. A. Boksem and M. Tops, “Mental fatigue: costs and benefits,”
Brain research reviews, vol. 59, no. 1, pp. 125-139, 2008.

M. Gergelyfi, B. Jacob, E. Olivier, and A. Zénon, “Dissociation
between mental fatigue and motivational state during prolonged
mental activity,” Front. in behavioral neuroscience, vol. 9, p. 176, 2015.
X. Cui, S. L. Bray, and A. L. Reiss, “Functional near infrared spec-
troscopy (nirs) signal improvement based on negative correlation
between oxygenated and deoxygenated hemoglobin dynamics,”
Neurolmage, vol. 49, pp. 3039-3046, 2010.

X.-S. Hu, N. Wagley, A. T. Rioboo, A. F. DaSilva, and I. Kovelman,
“Photogrammetry-based stereoscopic optode registration method
for functional near-infrared spectroscopy,” Journal of Biomedical
Optics, vol. 25, no. 9, p. 095001, 2020.

D. Bates, M. Michler, B. Bolker, and S. Walker, “Fitting linear
mixed-effects models using Ime4,” Journal of Statistical Software,
vol. 67, no. 1, p. 1-48, 2015.

J. J. Faraway, Extending the linear model with R: generalized linear,
mixed effects and nonparametric regression models. New York, NY,
USA: CRC press, 2016.

H. Ahmad, M. Endres, K. Newman, P. Santiesteban, E. Shedden,
and W. Weimer, “Causal relationships and programming out-
comes: A transcranial magnetic stimulation experiment,” in 46th
International Conference on Software Engineering, 2024, pp. 1-13.

A.]. Turkson, F. Ayiah-Mensah, and V. Nimoh, “Handling cen-
soring and censored data in survival analysis: A standalone sys-
tematic literature review,” International Journal of Mathematics and
Mathematical Sciences, vol. 2021, p. 16, Sep 2021.

J. E. Cavanaugh and A. A. Neath, “The akaike information cri-
terion: Background, derivation, properties, application, interpre-
tation, and refinements,” Wiley Interdisciplinary Reviews: Computa-
tional Statistics, vol. 11, no. 3, p. e1460, 2019.

H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” Budapest, Hungary, pp. 267-281, 1973.

A. C. Davison and D. V. Hinkley, Bootstrap Methods and their
Application, ser. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope,
“Measuring the impact of lexical and structural inconsistencies
on developers’ cognitive load during bug localization,” Empirical
Software Engineering, vol. 25, pp. 2140-2178, May 2020.

Z. P. Fry and W. Weimer, “A human study of fault localization
accuracy,” in International Conference on Software Maintenance. Pis-
cataway, NJ, USA: IEEE, 2010, pp. 1-10.

P. Santiesteban, Y. Huang, W. Weimer, and H. Ahmad, “Cirfix:
Automated hardware repair and its real-world applications,” IEEE
Transactions on Software Engineering, vol. 49, no. 7, 2023.

E. Nightingale, D. Greenberg, and L. Branum-Martin, “Selecting
fluency assessments for adult learners.” Grantee Submission, vol. 5,
pp. 18-29, 2016.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect
of poor source code lexicon and readability on developers’ cog-
nitive load,” in International Conference on Program Comprehension.
Piscataway, NJ, USA: IEEE, 2018, pp. 286-296.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

(84]

(85]

[86]

(871

14

U. Debarnot, M. Sperduti, F. Di Rienzo, and A. Guillot, “Experts
bodies, experts minds: How physical and mental training shape
the brain,” Frontiers in Human Neuroscience, vol. 8, p. 280, May
2014.

B. Floyd, T. Santander, and W. Weimer, “Decoding the represen-
tation of code in the brain: An fmri study of code review and
expertise,” in International Conference on Software Engineering, 2017,
pp. 175-186.

S. Sorby, B. Casey, N. Veurink, and A. Dulaney, “The role of
spatial training in improving spatial and calculus performance in
engineering students,” Learning and Individual Differences, vol. 26,
pp- 20-29, 2013.

Z.Karas, A. Jahn, W. Weimer, and Y. Huang, “Connecting the dots:
Rethinking the relationship between code and prose writing with
functional connectivity,” in Foundations of Software Engineering,
2021, p. 767-779.

J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier
names take longer to comprehend,” Empirical Software Engineering,
vol. 24, no. 1, pp. 417-443, Feb 2019.

D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Program-
ming, vol. 74, no. 7, pp. 430-445, 2009.

G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing
faults in ¢ and java source code: Abbreviated vs.full-word iden-
tifier names,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 2, pp.
1-43, 2017.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in 14th International Conference on Program
Comprehension (ICPC’06). NJ, USA: IEEE, 2006, pp. 3-12.

P. Tramontana, M. Risi, and G. Scanniello, “Studying abbreviated
vs. full-word identifier names when dealing with faults: An exter-
nal replication,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
New York, NY, USA: Association for Computing Machinery, 2014.
D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under_score,” in 2009 IEEE 17th International Conference on Program
Comprehension. Vancouver, BC, Canada: IEEE, 2009, pp. 158-167.
D. Binkley, M. Davis, D. Lawrie,]J. I. Maletic, C. Morrell, and
B. Sharif, “The impact of identifier style on effort and comprehen-
sion,” Empirical Software Engineering, vol. 18, no. 2, pp. 219-276,
Apr 2013.

B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under_score identifier styles,” in 18th International Conference
on Program Comprehension. NJ, USA: IEEE, 2010, pp. 196-205.

N. Al Madi and M. Zang, “Would a rose by any other name smell
as sweet? examining the cost of similarity in identifier naming,” in
2022 33rd Annual Workshop on the Psychology of Programming Inter-
est, Psychology of Programming Interest Group (PPIG). Simpson,
UK: Psychology of Programming Interest Group (PPIG), 08 2022.
N. Al Madi, “Namesake: A checker of lexical similarity in iden-
tifier names,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE "22. New
York, NY, USA: Association for Computing Machinery, 2023.

W. Nagy, V. W. Berninger, and R. D. Abbott, “Contributions of
morphology beyond phonology to literacy outcomes of upper
elementary and middle-school students.” Journal of educational
psychology, vol. 98, no. 1, p. 134, 2006.

J. E. Carlisle and C. A. Stone, “Exploring the role of morphemes in
word reading,” Reading research quarterly, vol. 40, no. 4, pp. 428-
449, 2005.

I. R Katz and]. R. Anderson, “Debugging: An analysis of
bug-location strategies,” Hum.-Comput. Interact., vol. 3, no. 4, p.
351-399, dec 1987.

I. Vessey, “Expertise in debugging computer programs: A process
analysis,” International Journal of Man-Machine Studies, vol. 23,
no. 5, pp. 459494, 1985.

D. J. Gilmore, “Models of debugging,” Acta Psychologica, vol. 78,
no. 1, pp. 151-172, 1991.

C. S. Corley, F. Lois, and S. Quezada, “Web usage patterns of
developers,” in 2015 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2015, pp. 381-390.

J. a. Lourengo and J. C. Cunha, “The pdbg process-level debugger
for parallel and distributed programs,” in Symposium on Parallel
and Distributed Tools, ser. SPDT '98. New York, NY, USA: Associ-
ation for Computing Machinery, 1998, p. 154.

[88] M. Ahrens, K. Schneider, and M. Busch, “Attention in software
maintenance: An eye tracking study,” in 6th International Workshop
on Eye Movements in Programming (EMIP), 2019, pp. 2-9.

Danniell Hu received a BSE in Computer Sci-
ence from the University of Michigan and is cur-
rently a PhD student in the Realize lab at the Uni-
versity of Michigan being advised by Elizabeth
Bondi—Kelly. Her research interests are broadly
in the area of Al for social impact, public health,
and healthcare.

Priscila Santiesteban received a BA in Com-
puter Science and Physics from Coe College
and is currently a PhD student at the University
of Michigan being advised by Westley Weimer.
Her research interests relate to software engi-
neering with an emphasis on human factors and
programming.

Madeline Endres received a BS in Computer
Science and PhD in Computer Science and
Engineering from the University of Michigan.
She will be starting as an Assistant Profes-
sor of Computer Science at the University of
Massachusetts Amherst in January 2025. Her
main research interests lie at the intersection of
Software Engineering, programming languages,
and human factors, focusing on understand-
ing and improving programmer productivity and
well-being.

Westley Weimer received a BA in Computer
Science and Mathematics from Cornell Univer-
sity, and an MS and a PhD in Computer Engi-
neering from the University of California, Berke-
ley. He is currently a Professor of Computer
Science at the University of Michigan. His main
research interests include static and dynamic
analyses to improve software quality and fix de-
fects, as well as medical imaging and human
studies of programming.

