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Abstract—What code navigation strategies do developers use and what mechanisms do they employ to find relevant information? Do
their strategies evolve over the course of longer tasks? Answers to these questions can provide insight to educators and software tool
designers to support a wide variety of programmers as they tackle increasingly-complex software systems. However, little research to
date has measured developers’ code navigation strategies in ecologically-valid settings, or analyzed how strategies progressed
throughout a maintenance task. We propose a novel experimental design that more accurately represents the software maintenance
process in terms of software complexity and IDE interactions. Using this framework, we conduct an eye-tracking study (n=36) of
realistic bug-fixing tasks, dynamically and empirically identifying relevant code areas. We introduce a three-phase model to characterize
developers’ navigation behavior supported by statistical variations in eye movements over time. We also propose quantifiable notion of
“thrashing” with the code as a navigation activity. We find that thrashing is associated with lower effectiveness. Our results confirm that
the relevance of various code elements changes over time, and that our proposed three-phase model is capable of capturing these
significant changes. We discuss our findings and their implications for tool designers, educators, and the research community.
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1 INTRODUCTION

I T has been estimated that a rising 50% to 75% of the
overall cost of a software system is dedicated to main-

tenance [1], [2]. Developers reportedly devote around 35%
of that task time finding and navigating relevant areas of
code to either fix bugs or add new features [3]–[5]. Improved
knowledge of developers’ cognitive processes of code main-
tenance and their navigation strategies through relevant
code areas can aid in improving our current development
tools and teaching methods [3], [6]–[8]. A more detailed
understanding of developers’ navigation behavior can also
lead to significant productivity gains or reductions in the
time and cost of the software life cycle [3], [4].

Several studies have investigated the code navigation
strategies [9]–[11] or the areas of code developers read [12]–
[14]. These studies have significantly advanced our under-
standing of program comprehension and bug fixing, but the
majority used small code snippets (i.e., few or single classes
and methods). Complex environments involving many files
and classes are more indicative of software engineering (SE)
practice. To the best of our knowledge, only a few previous
studies featured participants with access to all of the source
code in the system [4], [15], [16].

In this work, we exploit three insights. First, existing
techniques can be fruitfully combined to track eye gaze data
during scrolling and editing, permitting an ambitious exper-
imental design. Eye gaze data is an accurate representation
of the underlying cognitive processes. By indicating both
the targets of the participant’s attention and the effort (or
lack thereof), eye gaze data provide detailed insights into
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developers’ navigation behavior [17], [18]. Second, we can
evaluate the amount of time developers spend to navigate,
write, and understand source code by analyzing the inter-
action data, such as browsing the source code of a method
or inspecting an object at run-time. Third, we can quantify
phases of the software maintenance process in terms of gaze
behavior and developers’ interactions with the source code
in an integrated development environment (IDE), capturing
time-varying activity.

Based on these insights, we conducted an experiment in
which 36 participants worked for 40 minutes on bug-fixing
tasks on a realistic project using the Eclipse IDE. We are
examining: 1) how developers find, use, and track relevant
information over time while performing realistic mainte-
nance tasks and 2) to what extent participants’ performance
and outcome impact their strategies?

We develop a new model to quantify developers’ navi-
gation strategies based on areas of code that are given sig-
nificant attention, as well as transitions between these areas.
We divide a bug-fixing task into three phases: 1) finding
the relevant parts of the code, 2) learning and understand-
ing them, and 3) editing the code to fix the bug. These
phases adhere to the first three categorizations presented
by Sillito et al. [19] to organize the critical questions asked
by developers during a programming change task. We use
a set of eye-movement metrics in isolation to validate our
proposed model. By analyzing the changes to the recorded
values of these metrics, we found significant support for
our three-phase model: participants showed divergent code
navigation strategies across three distinct phases.

We perform a versatile multidimensional analysis of par-
ticipants’ navigation strategies and find that these strategies
evolve over time and that we can detect these changes
by quantitatively analyzing their eye movements and IDE
interactions. In addition, we find notable differences in



individual participant effectiveness. In that vein, we adapt
a notion of thrashing — informally, “excessively switching
between code elements” — as a quantifiable, critical activity
in code navigation that partially accounts for individual
differences. We observe that unsuccessful participants fre-
quently shift their attention between areas of the code:
thrashing is associated with lower effectiveness. We also
find that thrashing behavior and the distribution of attention
tended to be shared amongst the entire group of developers
regardless of their experience level.

The contributions of this paper are as follows:
• A new experimental design, and an accompanying

analysis method, combining current eye-tracking tech-
nology with support for both scrolling and movement
in large codebases as well as edits to the code.

• A new three-phase model that characterizes and quan-
tifies developers’ navigation behavior during realistic
bug-fixing tasks. We express these phases in terms of
significant, measurable events.

• A detailed observations on code navigation behavior
of 36 developers working on realistic bug-fixing tasks
by combining eye gaze and IDE interaction data. We
release our de-identified results for replication and
analysis.

• A quantitative notion of measurable “thrashing” as an
activity of navigation behavior that has adverse effects
on performance and effectiveness.

2 RELATED WORK

We place our work in context with respect to eye-tracking
studies of code comprehension and bug fixing. We also
summarize relevant studies of monitoring and analyzing
developers’ interaction with the system in hand while work-
ing on a maintenance task.

2.1 Eye-tracking and Code Navigation

Many early eye-tracking studies included a focus on exper-
tise or strategies. Crosby et al. [20] performed the first eye-
tracking study in software engineering while investigating
the role of expertise on the developers’ navigation strategies.
In the same vein, Aschwanden et al. [21] looked into various
visual attention patterns deployed by developers and their
variances between experts and novices.

Uwano et al. [11] investigated the impact of scan time
(time spent reading the entire code before debugging) on
how developers find defects and reported that longer times
help developers to find defects faster. In a partial replication,
Sharif et al. [22] reported two different debugging strategies,
deployed by experts and novices, to find defects more
efficiently. Busjahn et al. [14] analyzed the attention distri-
bution on code elements to detect and compare experts’
and novices’ code reading strategies and reported that most
attention is given to identifiers, operators, keywords, and
literals, in that order.

More recent studies have measured eye behavior dur-
ing a richer set of software engineering tasks, including
code changes and summarization. Rodeghero et al. [13] per-
formed an eye-tracking study to analyze the eye movements
of ten developers performing code summarization manually

to improve current information retrieval algorithms that au-
tomatically summarize code. The authors further extended
their work and analyzed the eye movement patterns of
developers during the code summarization task and ob-
served analogous eye-movement patterns between code and
natural language reading [23]. Kevic et al. [4], [8] used user
interaction monitoring combined with eye-tracking data to
investigate developers’ navigation strategies within and be-
tween methods while working on a change task. They con-
cluded that developers spend more time on data flow areas
of the methods and mostly switch their attention to the areas
that are adjacent or nearby. Abid et al. [15] conducted an eye-
tracking study similar to the work done by Rodeghero et al.
[23]. However, the authors changed the study environment
and used an actual IDE while investigating the impact of
using methods of different sizes on the developers’ code
reading behavior.

2.2 IDE Interaction Analysis
Researchers proposed several approaches and tools to au-
tomatically capture and track developers’ interaction with
the code [8], [24]–[26]. Tools, such as Mylyn [27], FLU-
ORITE [28] and Eclipse Usage Collector [29], have been
used to automatically capture and store IDE interaction
logs along with timestamps [8], [30], [31]. Previous work
leveraged this data for different purposes. They investigate
how developers use various features and windows in an
IDE [24], navigate through code [25], [26], browse through
software [32], distribute their time across different devel-
opment activities [30], or use various refactoring tools [33].
Ahmed et al. [34] mined about 75,000 copy and paste (C&P)
incidents captured by Eclipse Usage Data Collector exten-
sion. The results show that C&P is performed regularly by
developers, and developers follow different C&P patterns
than regular users.

However, previous studies are different from our work
with regards to context (e.g., refactoring), the level of details,
and granularity of the recorded data. The majority of the
previous work focus on the method level [8], [25], [30] or
how various IDE features have been utilized by developers
[24]. In this work, the granularity is mainly class file-level
and how developers switch between various code elements
in different files to fix the bug.

2.3 Summary of Related Work
To our knowledge, our approach is the first aiming at
automatically splitting a development session into activity-
related sub-sessions based on eye-gaze data. We propose
a three-phase model to characterize developers’ code nav-
igation by analyzing the eye-movement data. The study
presented in this paper has similar intent but differs from
prior work in several ways. The majority of the previous
work did not allow participants to change the code and
used small code snippets that fit on one screen without
scrolling. Similar to the work performed by Abid et al. and
Kevic et al. [8], [15], we mitigate the limitations related to
the study environment by allowing participants to access
all the source code in the system. Also, in the majority
of previous work, the size and location of the areas of
interest were defined using a top-down approach assuming
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a priori information about which areas might matter to
participants, while we automatically detect and refine the
areas of interest. Finally, in contrast to some previous work,
we not only look at how developers interact with the code
but also focus on determining how successful developers
complete the maintenance tasks compared to the unsuc-
cessful ones. This comparative analysis allowed us to make
detailed observations about the code investigation behavior
that contributes to developers’ effectiveness at maintenance
tasks.

3 ANALYZING NAVIGATION STRATEGIES

We propose a novel method for gathering and analyzing
eye-tracking data in indicative bug-fixing tasks. A high level
outline of our experimental and data analysis approach is as
follows:

1) Collect eye gaze data while participants navigate code
in a realistic manner (i.e.,scrolling, switching between
files, editing the code and running the code using an
IDE) (Section 3.1).

2) Empirically infer areas of the code that held partici-
pants’ attention, and are thus significant (Section 3.2).

3) Separate the data into temporal segments representing
the major phases of the bug fixing activity (Section 3.3).

4) Characterize participants’ navigation strategies in
terms of the distribution and transition of visual atten-
tion and IDE interactions (Section 3.4).

In the remainder of this section, we detail the individual
steps in our proposed approach.

3.1 Eye Tracking with Edits and Scrolling

We aim for an empirical model to capture navigation strate-
gies that: (1) is based on measurements from more realistic
scenarios, including scrolling and editing larger programs; (2)
accounts for how navigation behaviors change over time, such
as from locating a relevant area to acting on it; and (3) ade-
quately explains observed individual variations in outcomes.

A model of code navigation strategies expressed in terms
of eye movements requires that we establish a link between
gaze and code elements. For static code without scrolling
or editing, that essentially reduces to a coordinate system
transformation between the eye-tracking camera and screen
pixels followed by a mapping from screen pixels to code
elements. Allowing participants to have normal interactions
with the IDE, such as scrolling, editing, and other low-level
navigation actions require a more sophisticated mapping
between gaze and code elements. To the best of our knowl-
edge, no single proposed eye-tracking algorithm addresses
the entirety of this problem, but we propose a combination
of existing solutions to do so.

Existing eye-tracking software, such as iTrace [35], [36],
supports scrolling, and some other navigation features, but
do not support edits to the code. Also, iTrace plugin collects
eye gaze data only within the IDE code window. Dually,
editor plugins, such as FLOURITE [28], support recording
low-level IDE actions, but do not incorporate eye-tracking
data. We propose an experimental setup that combines these
approaches, using iTrace to record gaze data and FLUORITE
to detect and timestamp edits while gathering information

Fig. 1: Dynamic area of interest identification: a mask ob-
tained by Gaussian smoothing and thresholding with a ma-
trix of fixations (left), the intersection of this mask with code
(center), and color-labeled areas of interest (right) in which
the darkest line is over the package name, the next few lines
belong to the comment preceding the class definition, and
so on.

on how developers interact with non-code elements and
other features of an IDE. The result of this combination is
a unified time series in which eye information and editor
actions are associated with temporal offsets throughout a
long-running software maintenance task.

Although we have access to gaze data at all times, we
propose to abstract away gaze behavior during typing. This
has the advantages of both simplifying our mathematical
model and also removing certain sources of noise (e.g.,
participants looking at the keyboard or an IDE animation
occluding code elements). We propose a post-processing
system that separates data into segments during which the
code files were not changed by the participant, and we
discard data associated with edits themselves. However, this
filtering retains pre- and post-edit gaze data. Each segment
is then subjected to standard post-processing, and we con-
catenate the resulting output into a time series dataset that
spans the entire experiment.

3.2 Automatic Discovery of AOIs

The area of interest (AOI) formalism is widely used to de-
scribe visual stimuli. We present a method that empiri-
cally computes only those AOIs that are most relevant to
general maintenance activities, producing regions that can
be used by subsequent analyses. There are no universal
guidelines for defining appropriate AOIs in terms of size
and granularity [37]. Researchers define AOIs based on the
study’s research questions, hypotheses, and variables [37],
[38]. In current eye -tracking research, studying coding or
otherwise, it is standard to assume the locations of AOIs are
known a priori. We claim that a priori assumptions about AOI
locations both disregard valuable information about partici-
pant attention and treat all AOIs equally for all participants
over the course of the whole maintenance task. Suppose, for
example, that we wish to analyze data that was gathered
from participants viewing a painting. We may divide the
painting into the AOIs “foreground” and “background”,
and observe that the participants generally pay more atten-
tion to one or the other. While this finding may be useful and
significant, this method of analysis cannot discern which
objects in the foreground or background actually drew the
participant’s attention unless the researcher pre-annotates
them. Depending on how the experiment is framed, this
runs the risk of confounds, false positives or false negatives.
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For example, the claim that “the foreground drew the most
participant attention” may be misleading if, in fact, a small
but striking piece of the foreground drew participants’
gazes. In addition, if the scene changes over time, AOIs
associated with earlier changes may no longer correspond
to semantically-meaningful visual regions. We propose a
new method that would permit empirical determinations
of AOIs and would support claims that a particular area of
a given stimulus is essential to its comprehension.

We formalize areas of interest in the source code files
using a two-dimensional mask (or filter) on the screen (at a
particular point in time) that selects relevant data. Instead
of pixels, we use characters as the most basic spatial units.
iTrace records the line and column numbers associated with
a particular fixation. The position of a single character’s
cell is defined by zero-indexed line and column numbers.
We produce a 2D logical array describing the intersection
between the subjects’ gaze and the code in the a specific
source code file. Formally, each of our AOIs is a rectangular
bounding box around a set of characters.

We compute an intermediate two-dimensional array of
of fixation counts, correspond to the generated bounding
boxes. We then apply Gaussian smoothing (smoothing pa-
rameter = 5.0) and thresholding to a matrix representing on-
screen eye fixations to obtain a mask. The mask corresponds
to areas in which substantial numbers of fixations occurred
during a given period. This matrix-smoothing method is
inspired by the approach of Caldara et al. [39], as imple-
mented in their iMap4 tool [40]. We then further intersect
the mask with the position of a stimulus to compute a
set of areas in which the given stimulus was fixated on
many times. The process is illustrated in Figure 1. The first
step is generating the gaze mask. Lighter circles in the left
image show eye fixations. The middle image shows relevant
code elements (horizontal lines), and the right image shows
their intersection (with semantic code elements labeled via
colors). The darkest line is over the package name, the
next few lines all belong to the comment preceding the
class definition, member variables, and so on. We use this
technique as a filtering method. Fixations outside of these
AOIs are assumed to be located over whitespace (as in
the lower-right visual fixation in Figure 1), or over areas
that were not given enough attention to be significant to
software engineering behavior and decisions. Such fixations
are removed from further analysis.

A traditional approach may have yielded to the same
set of AOIs. Our automated method eliminates the tedious
effort of manually annotating the whole project and avoids
considering code elements that received an insignificant
amount of visual attention compared to the rest of the
regions.

3.3 Partitioning Eye Behavior into Phases
We observe that a long-running bug fixing activity, such
as the 20-minute bug-fixing tasks in our experiment, may
feature multiple distinct phases with different associated
behaviors and goals. A model that accounts for such phases
and transitions, rather than conflating all observations, has
two benefits. First, it allows us to give a more precise (phase-
varying) characterization of developers’ navigation behav-
ior. Second, since we hypothesize that different developers

may work at different individual rates but will use the same
broad phases to solve the same task,

We propose to automatically quantify and partition pro-
cessed gaze data into three phases:

• Finding areas in the code that are relevant to the bug.
• Learning about those relevant areas by exploring the

code, and analyzing the code elements involved and
their structural/hierarchical relationships.

• Editing the code to fix the bug.

These three phases are based on qualitative descriptions
by Sillito et al. [19]. To partition the data, we define quanti-
tative rules for distinguishing the phases from each other.
Each participant begins in the first phase. A participant
enters the second phase after making k consecutive fixations
in any area of the code semantically related to the target
issue. This consecutive fixation requirement is based on the
immediacy assumption [18], which states that participants
will attempt to interpret a stimulus as soon as they view
it. Therefore, the requirement ensures that participants have
found the regions related to the issue and now start to better
understand it. At this phase, participants also make some
“information-gathering” actions such as print-statement de-
bugging or testing (recall that we give participants full
access to the dynamic IDE).

A participant enters the third phase when the first action
to resolve the bug is made. We assume that participants have
built a sufficient understanding of any relevant areas by the
time they make a first editing change.

The threshold k, the semantic relation, and the set of
actions to resolve the bug are task-specific; we specify them
for the particular debugging task in our experiment in
Section 6. The Time to First Fixation, one of the most used
eye-tracking metrics [41]–[43], indicates the amount of time
that it takes a participant to look at a specific AOI from
stimulus onset. It characterizes the participants stimulus-
driven searches by capturing when they actively decide
to focus on certain AOIs. Previous work used this metric
for small, static stimuli consisting of a handful of AOIs.
However, in our experiment, we deal with a broad set
of AOIs (i.e., source code entities), and we aim to find
the moment that the participant sees the relevant code
entity and starts investigating to understand it better. We
randomly selected 15 participants and manually verified
the timestamps at which they started reading the relevant
method and evaluating its content. The average time for
these selected participants centered around the time of their
10th fixations, so we choose the threshold k = 10 for our
analyses. We intentionally avoid more nuanced models (e.g.,
moving back and forth between phases). We acknowledge
the risk associated with this choice (See Section 7), yet
to the best of our knowledge, this paper represents the
first attempt to automatically infer such phase behaviors
quantitatively from long-running eye-tracking data in an in-
dicative editing-and-scrolling setting, and we favor compre-
hensibility and simplicity to aid in interpreting novel results.
We evaluate the goodness of fit for this model in Section 5.
A pair of modules and sample script for processing output
from the iTrace plugin, particularly when used in tandem
with the FLUORITE plugin, along with our script for AOI
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extraction and assignment are available on our website.1

3.4 Quantifying and Comparing Navigation Strategies

We use the information from the previous subsections,
including eye gaze data aligned with edit actions and
scrolling, and rules for determining phases, to analyze and
compare the navigation strategies of participants. A strategy
models gaze data, navigation, and action trends over time
throughout a task: variations in gaze and IDE interaction
behavior across a spectrum of phases. In the following, we
structure our analysis along with two categories: quantify-
ing navigation strategies via eye gaze data and providing a
detailed patterns of IDE interactions.

3.4.1 Gaze Context

To admit indirect comparison with previous work [38], [41],
[44], [45], we use scanpath metrics to quantify navigation
strategies. A scanpath is a series of fixations or AOIs in
chronological order. We use scanpaths because they en-
compass an entire range of eye-gaze data as one formal
construct, revealing visual attention trend over time and
in space. Scanpath analyses are common in eye-tracking
studies [37], [38], [46]. Scan-path analyses can be done by
either 1) looking at standalone metrics individually or by 2)
directly computing and comparing scan paths. We chose the
first approach because of the dynamic nature and large size
of our experiment. In our study, participants deal with dy-
namic stimuli while continually interacting with them. As a
result, currently available scan-path comparison algorithms
such as the Levenshtein algorithm [38], Scanmatch [47], or
MultiMatch [48] cannot be applied to our more modern
experiment setup. As fixation-based algorithms, they all
depend on the screen coordinates, which change when
participants use scrolling and are undefined if participants
switch to another file. Also, the AOI-based scan path com-
parison algorithms work based on the assumption that we
have a limited number of AOIs, which is not the case while
working with the larger code projects in our experiment.

We use three specific, standard fixation and saccadic
metrics as the components of a scanpath for our analysis.
A fixation is the stabilization of the eye on part of a stimulus
for a period of time (typically 200–300 ms). A saccade is
the rapid eye movements between fixation points [18], [49].
We compute the quantity of transitions between AOIs and
the temporal distribution of fixations among these regions.
Transition counts have been shown to capture the dynamics
of visual attention [44]. We apply these traditional metrics
to provide a detailed analysis of navigation strategies:

Fixation Count (FC) is the total number of fixations,
indicates the number of attention shifts required to complete
the task [18].

Average Fixation Duration (AFD) is the sum of the du-
ration of all the fixations divided by the number of fixations.
It reflects either difficulty in extracting information or that
the stimulus is more engaging in some way [18]. Longer
fixations denote greater cognitive demands [49].

1. https://web.eecs.umich.edu/∼weimerw/data/
navigation-behavior/

TABLE 1: Complete list of IDE interaction events.

Event Type IDE Event Description

Navigation
Move caret Move cursor via the mouse
Find Find or find & Replace
Open file Open or activate a new file

Editing
Insert Text insertion
Delete Text deletion
Replace Deletion & insertion

Inspection Select text Select (highlight) text
Run Run/Debug the application

Understanding - None of the above

Saccadic Length (SL) is the average Euclidean distance
between consecutive fixations, in pixels. Higher SLs corre-
spond to finding peripheral features faster [17], [18], while
more complicated tasks are associated with shorter saccades
(consequently higher number of fixations) [41], [44].

3.4.2 IDE Interaction Context
Beyond analyzing the viewing behavior, we investigate par-
ticipants’ IDE interaction to provide detailed observations
on how they navigate within source code. We first describe
interaction data and its properties. FLUORITE records vari-
ous types of events, as shown in Table 1.

We classify interaction data according to the following
groups of FLUORITE events [28]:
• Navigation events capture moving around the code, e.g.,

by clicking on a class or method name.
• Editing events capture writing of the code by editing the

text.
• Inspection events happen when developers select a text,

open the debugger, or run the application.
• Understanding events are the remainder: times when

developers are reading code. These events correspond
directly to program comprehension [28], [50].
For each phase, per participant, we create a sequence of

interaction events. Beyond Understanding events, the other
events are very quick as they represent the action that is
triggered by the developer. Thus, we look at the number of
occurrences (frequencies) of these events while computing
an estimate of developers’ understanding activities.

4 EXPERIMENT DESIGN

We recruited 36 participants and conducted an exploratory
study to investigate the navigation strategies of developers
for realistic maintenance tasks. Each participant worked
on two bug-fixing tasks for a Java implementation of
MineSweeper in the Eclipse IDE for up to 40 minutes. All
study materials, including stimuli and de-identified re-
sponses, are available on our website 10.

4.1 Participants and Recruitment

The study participants were 36 volunteers. The participants
were in B.Sc., M.Sc., and Ph.D. programs in the Department
of Computer and Software Engineering at the authors’ insti-
tution. We received the agreement from the Ethical Review
Board of the authors’ institution to perform and publish
this study. Table 2 presents self-reported demographic data
of our participants. Participants were recruited through
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TABLE 2: Participant demographics.

Participants
Characteristics All (36) Men (20) Women (16)
Age (n (%))

18-25 32 (88%) 18 14
25-30 4 (12%) 2 2

Class standing (n (%))
2nd-Year 6 (17%) 3 3
3rd-Year 6 (17%) 2 4
4th-Year 8 (22%) 7 1
M.S./PhD 16 (44%) 8 8

email and were compensated with $25 voucher for their
participation. We asked participants about their experience
and familiarity with programming, Object-Oriented design,
and IDEs. We performed standard screening, including
the exclusion of participants with color-blindness, epilepsy,
or seizures. Participants also completed questionnaires to
gather basic information: age, gender, native and speak-
ing languages, and educational attainment. Participants re-
ported an average of 0.68 years (SD = 1.5) of industrial expe-
rience (e.g., from working as a developer with a company).
All participants were familiar with Java and had previous
experience working with IDEs. Twenty-six of the 36 (72%)
participants rated their IDE skills as above average, and six
(16%) rated them as average. Siegmund et al. [51] reported
that self-estimation is a reliable way to judge programming
experience, especially when working with students. To re-
duce stereotype threat, especially its negative impact on un-
derrepresented minorities [52], [53], participants answered
questions about their coding knowledge and experience at
the end of study.

4.2 Procedure

We conducted the experiment in a quiet room with an
eye-tracking system; the participants were seated approxi-
mately 70 cm away from the screen in a comfortable swivel
chair with arm rests. Before running the experiment, all
participants signed a consent form and the experimenter
verbally explained the procedure of the experiment in detail.
Participants were informed that the experiment consists of
one Java project and they will be fixing two bugs, one after
the other. The experimenter provided no explanation to
participants on the particular goal of the experiment.

Participants were given twenty minutes per task and
were instructed to inform the experimenter if they finished
early to stop the tracking. To mitigate any learning effects,
participants received the two tasks in randomized order.
Each participant used the Eclipse IDE augmented with
iTrace and FLUORITE (see Section 3.1). The participants
debugged MineSweeper source code, initially opened to a
file containing a bug report as a block comment spanning
the first few lines. To have better control and avoid any
other factors impacting the results, no additional tools were
installed and the participants were instructed to always
maintain the full screen setup, not to use the debugger, and
not to browse the internet.

They subsequently completed a post-questionnaire
which asked them to explain (1) their approach to solve
the previous tasks, and (2) their level of experience with

programming in general and Java in particular. It is com-
mon to ask participants to fill out a survey regarding
their experience or knowledge of software development and
maintenance before the study begins. However, to mitigate
the stereotype threat [53], [54], we asked questions about
coding knowledge and experience at the end of study to
avoid interfering with performance. In particular, women
and underrepresented minorities experience the negative
stereotype that they have weaker ability more strongly than
others [52], [53].

4.3 Software System and Tasks
We chose MineSweeper as the specimen system in this ex-
periment. MineSweeper is a simplistic single-player video
game involving logic, mathematics and spatial layout. We
use an open-source implementation of the game available
on GitHub [55]. We used version 1.0 of the game, which
has approximately 1.2 KLOC across 10 files. We chose Java
because its wide use (reported as one of the three most
popular programming languages [56]) adds to the represen-
tative power of the experiment and simplifies recruitment.

In this paper, we are interested in examining the cogni-
tive process behind code navigation behavior in a mainte-
nance activity. However, since we cannot directly observe
how developers internally decide which code elements are
relevant, and to evaluate code scanning behavior in an
indicative context, we assigned participants a guiding task:
a bug fixing activity that can only be completed correctly
if the source code is sufficiently understood, the relevant
element is found, and the defect is repaired. To present
realistic bug-fixing tasks, we chose two actual bugs that
already existed in the codebase. Table 3 presents information
about each task. Through an informal pilot study with four
other colleagues, we designed our experiment to feature
two tasks of 20 minutes each (e.g.,, to avoid fatigue effects
and meet other IRB constraints). We randomly assigned the
order of the two bug-fixing tasks for each participant.

4.4 Equipment
We executed all experiments on a 64-bit Windows R©10
machine with a 27” monitor with a screen resolution of
1920x1080 pixels. We used the Tobii Pro X3-120 eye-tracker
[57] which is a remote, non-intrusive device and can locate
eye-gaze data in a code document at a granularity of a
single line of 10pt text. The Tobii Pro X3-120 generates 120
raw samples per second. We subjected this raw data to an
iTrace filter to generate fixation data. During fixations, the
majority of information acquisition and processing occurs.
The nature of the task, as well as the participant’s character-
istics, may impact the number and the duration of fixations
[18]. iTrace processes gaze data offline after recording, and it
supports three fixation algorithms, including basic fixations,
based on a method proposed by Olsson [58], velocity-based
fixations (I-VT), and dispersion-based fixations (I-DT). We
use I-VT to extract fixations, which is among the most pop-
ular method currently used in the research community [59].

5 VALIDATING OUR THREE-PHASE MODEL

To validate our proposed model, we first perform a human
study of two bug fixing tasks and collect viable eye move-
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TABLE 3: Description of the tasks.

ID Description Scope of the solution
T1 When you start the MineSweeper program, if you click on “New Game”

button, it will crash.
One class: MineSweeperGui. Multiple methods: up-
dateCheat and resetButtons

T2 MineSweeper has 3 difficulty levels. The size of the board and the
number of the mines are different for each level. Sometimes, we end
up having a smaller number of mines in the game. For an easy game,
we want to have 10 mines, but sometimes it is 9, 8, or even less.

Three classes: MineSweeperGui, MineButton, and
MineSweeperBoard. One method: generateMines

ment data from 34/36 participants for task 1 and 35/36 for
task 2. We mathematically partition eye behavior into phases
(Section 3.3). We choose k = 10 as the fixation threshold for
the transition to Phase 2. This value is empirically derived
based on the size of the task. For our bug fixing tasks, we
define semantically-relevant regions as any of 1) a function
that contains the bug, 2) a function that calls the function
that contains the bug, or 3) a block comment belonging to
any such function. For the transition to Phase 3, we consider
actions to resolve the bug to be any edit to the code that: 1) is
not immediately deleted, and 2) is within the scope of the
solution as mentioned in Table 3.

To evaluate our three-phase model, we investigate how
well it captures the significant changes in participants’ nav-
igation behavior. Informally, we prefer different phases to
show distinct patterns of visual attention distribution and
changes. To capture the pattern of attention distribution,
we statistically assess the differences between phases us-
ing Friedman test of total fixation count, average fixation
duration, and saccade length throughout the task.

As shown in the first row of Table 4, we find that the
number of transitions between code elements across phases
differs significantly (χ2

r = 17.267, p < .001). In both of
the tasks, the number of attention switches performed by
the participants shows an increasing trend from phase 1 to
phase 2 and a strong decreasing trend from phase 2 to phase
3 as shown in Figure 2.

For fixation and saccade metrics, our results also demon-
strate significant changes across phases (see Table 4). This re-
sult indicate that the participants began the bug-fixing task
by searching for the task-relevant source code elements. The
participants explored the code more in phase 1 and phase
2 (higher number of transitions and fixations) compared to
phase 3, taking less time to focus on any one location during
these first two phases.

Our quantitatively-defined three-phase model captures
significant (p < .001) changes in participants’ visual
attention and navigation behavior.

6 RESULTS AND ANALYSIS

Having validated our three-phase model, in this section, we
apply our analysis methods (including phase partitioning
and scanpath-based strategy characterization) to the eye-
tracking and IDE interaction data collected during software
maintenance tasks in which participants could freely scroll
and edit files. Our study aims to provide insight into the
detailed navigation behavior of developers working on re-
alistic bug fixing tasks. Critically, while we use standalone
generic eye-gaze data (e.g.,, attention switching, fixation
and saccade merics) to validate the model, in this section

Fig. 2: Comparison of transition counts between code ele-
ments for all participants per task across phases. An increas-
ing trend from phase 1 to phase 2 and a strong decreasing
trend from phase 2 to phase 3 are observed.

we instead use other AOI-based eye-movement, thrashing,
and performance metrics to analyze developers’ navigation
behavior.

We focus the interpretation of our results around an-
swers to the following research questions:
RQ1. How do developers find, use, and track relevant in-

formation over time while performing realistic main-
tenance tasks?

RQ2. To what extent do participants’ performance play a
role in characterizing their navigation strategies?

RQ1 focuses on code navigation strategies. The detected
AOIs identify the information that is relevant to the bug
fixing tasks. In Sections 6.2 and 6.3, we measure and com-
pare attention distribution across these AOIs while also ana-
lyzing participants’ patterns of IDE interactions to quantify
and capture their code navigation strategies. For RQ2, in
Section 6.4, we perform a set of analyses to investigate the
impact of participants’ strategies on their outcome (mea-
sured by accuracy and thrashing rate).

6.1 Inferring Areas of Interest
Using our proposed method (see Section 3.2), we statistically
determined the areas in the code that attract any significant
amount of participant attention. We then characterized the
code inside these areas based on the code elements they
represent. We ask our participants to list and rate the
relevance of the top 5 code element categories. They list
relevant categories, representing the major code elements
present in the MineSweeper project: Method Body, Comment,
Member Variable, Method Signature, and Class Signature. We
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TABLE 4: Non-parametric Friedman test statistics (α = .05), comparing three phases. Results for each metric is at the right,
with significant results (< 0.05) bolded.

Mean (SD)
Finding (Phase 1) (Learning) Phase 2 (Editing) Phase 3 χ2

r p
Number of Transitions 59.85 (54.20) 123.51 (82.44) 42.67 (44.70) 17.267 <.001
Fixation Count 224.29 (252.63) 465.64 (249.33) 158.32 (164.36) 33.091 <.001
Average Fixation Duration 256.27 (81.46) 274.26 (80.28) 233.44 (100.63) 8.4545 .01
Saccadic Length 101.77 (31.73) 90.30 (17.79) 89.24 (31.31) 12.636 .001

also consider the Task Description which is the inserted block
comment in the Java files explaining the bug to be fixed.

Once the areas of interest have been mapped to code-
relevant concepts, we can use visual attention on them and
switches between them to quantitatively characterize partic-
ipant behavior. We compared the number of transitions and
the distribution of visual attention between all categories.
We focus on attention switches (or transitions), which occur
whenever the participant’s gaze shifts from one category to
a different one (e.g., from Comment to Class Signature).

6.2 Understanding Phase Behavior
To determine whether a difference exists between the par-
ticipants’ attention distribution as they move forward in the
task, going from phase 1 to phase 3, we calculate average
fixation duration across AOIs and use the general align-
and-rank non-parametric factorial analysis [60]. Because
each code category receives different representation in the
MineSweeper project (e.g., there are more code lines than
comment lines), following standard analysis practices in eye
tracking [37], [38], [44], we weighted the average fixation
duration in each element by the number of lines of code
representing that element.

Comparing the participants’ attention distribution over
the three phases reveals that there is a significant interaction
between these phases (F (2, 8) = 16.88, p < .001 for task 1
and F (2, 8) = 8.4, p < .001 for task 2). This indicates that
participants’ attention behavior changed over time as they
progressed through the task.

In addition to the quantitative, statistical analysis of
phase behavior, we present a qualitative explanation. Figure
3 illustrates participants’ attention distribution and switch-
ing with a radial transition graph [61], which is a “donut”
chart depicting the different code elements as segments.
This visual representation is often used in eye-tracking stud-
ies; we briefly describe its main features and conclusions.
Each radial border segment, identified by a unique color,
corresponds to the average duration of fixations, normalized
to the number of lines in the project belonging to the
given category, for all participants. Edges denote transitions
between code elements and are separated into outgoing and
incoming transitions using two black and white anchors
respectively. Edge thickness represents the total number of
transitions between two code elements.

Comparing the amount of attention spent on Method
Body and Member Variable shows that the importance of these
AOIs changes as participants progress in the task. Member
Variable attracts the majority of visual attention in Phase
1, but its popularity decreases in Phase 2 and Phase 3. As
participants progress through the task, they increasingly
pay attention to Method Body. Consider Phase 2 (center)

and Phase 3 (right) in Figure 3. Note that the Method Body
and Method Signature fixation durations are very similar for
participants (orange and purple radial border segments).
However, the edges (center, gray) show that Phase 3 features
far fewer transitions. We also note that the edges in Phase 2
are thicker and more dense (indicating more transitions).

Fixing bugs in our Task involves predominantly chang-
ing control flow and function calls: the visualization makes
this clear, showing that participants did not spend signifi-
cant time focusing on Member Variables and Class Signatures.
Also, as participants started to edit the code to fix the bug
in Phase 3, comments receive much more visual attention
(documentation likely serving to verify the behavior).

In the same vein, previous studies on developers’ code
navigation strategies also suggest that developers’ distribu-
tion of time on various parts of a maintenance task changes
throughout the task [3], [10]–[12], [14]. Uwano et al. [11] re-
ported variation in code comprehension strategies, starting
by a thorough scan of the complete source code (sequen-
tially from left-to-right, top to bottom), then another set of
shorts scan, and finally concentrating on certain parts of the
program. Roehm et al. [10] reported that developers identify
a starting point and filter out irrelevant code entities, and
their experience profoundly modulates this. Some previous
work also demonstrated distinct attention allocations within
different code elements like keywords and operators [12],
[14]. However, the majority of these works focused on small
tasks and have been undertaken in a limited, less-realistic
setup [11], [12], [14]. By capturing participants’ navigation
behavior on a more realistic project and task, while allowing
the participants to freely interact with the IDE, we provide
a detailed navigation pattern of developers, emphasizing
that the relevance of code elements changes throughout the
tasks.

AOI relevance varies substantially across phases. In par-
tial answer to RQ1, participants used different navigation
and attention distribution patterns to find and track rele-
vant information throughout bug-fixing tasks.

6.3 IDE interactions Differences

We use the collected FLUORITE data to quantify the devel-
opment activities based on interaction data. Table 5 sum-
marizes the data collected per task across phases. In both
of the tasks, the frequency of Inspection, Navigation, and
Understanding events performed by the participants show
an increasing trend from phase 1 to phase 2 and a strong
decreasing trend from phase 2 to phase 3. In addition, the
results show an increasing number of edits from phase 1 to 2
and 3. The edits in phase 2 are information gathering edits,
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Fig. 3: Comparison of distributions of attention and transition counts between code elements for all participants per phase.

TABLE 5: Summary of IDE interaction events for Task 1 (T1)
and Task 2 (T2). The number of occurrences of each event is
presented.

Interaction Events
Editing Inspection Navigation Understanding

T1
P1 453 461 1428 2849
P2 587 532 1565 3225
P3 880 278 500 1990

T2
P1 199 390 1261 2162
P2 663 476 1571 3646
P3 805 216 498 1936

such as adding “print” statements. The participants enter
the third phase when attempting to fix the bug. Across all
tasks, Navigation events in phase 1 and phase 2 are three
times more frequent than in phase 3.

To determine whether a difference exists between the
participants’ IDE interactions, across phases, we use Pear-
son’s chi-squared test. Numerically, we find significant re-
sults for Understanding (χ2

r = 630.18, p < .001), Navigation
(χ2

r = 1081, p < .001), Inspection (χ2
r = 161.35, p < .001),

and Editing (χ2
r = 244.51, p < .001). Overall, our IDE

interaction results further support our eye-gaze findings
that developers’ strategies change throughout the task.

Figure 4 gives insights on how developers behave
throughout the task, across successive phases. Each color
sequence is an augmented scarf-plot [62] of a participant.
Each row represents a task investigation of a participant
with the time axis going from left to right. Phase changes are
marked over the colored sequence, while a colored vertical
line represents an IDE interaction event. The participants
spent the majority of their time understanding the code. For
all three participants, Phase 1 and Phase 2 are composed of
understanding steered by navigation. P2 occasionally does
some inspections by running the code. P3 doesn’t reach the
Phase 3, but for P1 and P2, Phase 3 encloses editing and
inspection interleaved with navigation events. Towards the
end of Phase 3, P1 and P2 performs a series of inspection
activities to verify their change.

IDE interactions change significantly (p < .001) across
phases. Furthering our investigation of RQ1, we find
that participants employ various activities to gather and
use pertinent information to tackle the tasks. Moreover,
although the distribution varies, code understanding is
still the dominant activity in each phase.

6.4 Variation in Individual Outcomes
Having observed a broad, statistically-significant similar-
ity in participants’ navigation strategies, we now consider
variation in outcomes (correct bug fixes). We measure effec-
tiveness (correctness) via manual comparison to the historical
developer fix and all available tests, resulting in a categor-
ical boolean assessment. We propose a simple quantitative
thrashing model to analyze participants’ effectiveness. We
borrowed the term “thrashing” from the Systems literature.
Thrashing is the result of overcommitting resources which
leads to “excessive overhead and severe performance degra-
dation or collapse” [63].

Informally, thrashing corresponds to transitioning be-
tween code elements to a disproportionately large degree.
As software developers navigate throughout a complex
project, they track information from multiple sources and
may “swap” it in and out of working memory. Returning
to a recently-viewed area to re-learn previously-acquired
information has negative impacts on performance. Formally,
we define the thrashing rate as the number of AOI switches
per minute. We use this quantifiable thrashing metric as a
lens to differentiate successful participants from the others.

We applied binomial regression and found evidence
that thrashing is a significant predictor of effectiveness (F =
4.7671, p = .003). The correlation is negative: more frequent
AOI switching (thrashing) does not help participants be more
effective in our tasks. Successful participants, who fixed
both issues within the allotted 20 minutes, displayed 35%
less thrashing (M = 16.02, SD = 10.19) than the others
(M = 24.31, SD = 35.09). Low-thrashing participants
were also efficient, spending 28% less time, in a statistically
significant manner (W = 2991, p = .03), completing phases.

We use the general align-and-rank non-parametric fac-
torial analysis [60] to compare the successful participants
with the others. The result reveals that there is a signifi-
cant interaction between accuracy and attention distribution
(F (4, 8) = 4.85, p < .001). Successful participants put on
average 8% more visual effort on Method Body.

Figure 5 depicts the IDE interaction behavior of suc-
cessful and unsuccessful participants. While the number of
events may vary (e.g., between Successful and Unsuccessful
participants in Phase 1), there is no statistically significant
difference between the participant event distributions for
these activities. The role of understanding is still dominant
in all phases for all participants (around 55%). The distri-
bution of editing, navigation, and inspection activities is
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Fig. 4: Scarf-plots (history of all IDE interactions) of three example participants working on Task 1. Code understanding is
a dominant activity, interleaved mainly by navigation.

Fig. 5: Comparison of IDE interaction pattern between suc-
cessful and unsuccessful participants per phase.

around 12%, 7.5%, and 23.5%, respectively. This is important
because it suggests that certain aspects of the IDE activity
of participants is independent of successful outcomes, and
thus that tools and UI improvements can be targeted to a
general distribution without requiring a priori knowledge
of whether a software engineer is likely to be successful
at a task or not. It is instead the navigation strategy (e.g.,
frequent AOI switching) that characterizes better or worse
performance.

We also evaluated the impact of experience. We ex-
amine the number of years of programming experience
in addition to the level of familiarity with programming,
object-oriented design, and IDEs. In our analysis, none of
these values significantly interact with phases to have an
effect on navigation strategies, efficiency, time, or thrashing
frequency. We note that our participants are students, thus
their programming experience is rather homogeneous.

Our results are in broad agreement with the work of
Robillard et al. [30] reporting that returning to the same
method repeatedly is a sign of poor performance. Research
on end-user programming also report that tinkering, turn-
ing a feature “on” immediately followed by turning the
feature “off”, negatively impact the outcome for men [64],
[65].

However, more investigation is required to explain why
excessive exploration, in this context, was not effective. As
with previous studies, we may be able to shed further light
on thrashing behavior by considering various types of code
exploration and investigating their impacts individually.

We find that successful developers’ navigation strategies
are quantifiably different: more frequent AOI switching,
or “thashing”, is associated with worse performance (p =
.003).

7 THREATS TO VALIDITY

Several factors potentially affect the validity of our study.
We recorded eye-gaze data with their timestamps and de-
vised a model that characterizes the navigation behavior
of developers. A threat to validity for our results is the
accuracy of this model, which may not precisely capture
participants’ intent and actions. There is a possibility of
participants behavior not matching our three phases. To
mitigate this risk, we carefully validate our proposed model
by performing a controlled experiment with 36 participants
and present a quantitative evaluation of the results. Also, we
corroborate our results with a detailed analysis of the IDE
interactions. We record more editing and less understanding
for phase 3 compared to other phases, which implies that
our model captures these significant changes in developers’
navigation behavior.

Our analysis is based on automatically inferring AOIs.
A possible threat is that our inference approach could be
inaccurate. To partially mitigate this threat, we manually
analyzed a sample of the participants’ data and the extracted
AOIs for validity and determined them to be reasonable,
acknowledging that an assessment by the authors does not
give as much confidence as a full independent assessment
or replication.

The iTrace plugin collected eye gaze data only within
Eclipse code pane (window). Thus, we do not have any
records of developers’ eye movements when they use other
parts of the IDE. We mitigate this risk by recording and
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analyzing the IDE interaction data using FLUORITE. More-
over, since we look for the code navigation strategies, this
limitation does not directly impact our analysis. Also, in this
work, to better control experimental conditions, participants
worked on two bugs in a small project and they were not
allowed to access other software (e.g., browsing the inter-
net). Our results may not generalize to real-world software
engineering tasks. Further studies investigating these effects
but allowing multiple systems and a more indicative use of
external tools would have greater ecological validity.

We alleviate hypothesis guessing and apprehension by
not informing the participants about the precise goals of
the study. However, we clearly explained the process of the
study, the number of sessions, the type of tasks, and how an
eye tracker works before running the experiment.

We mitigate instrument bias by using a video-based
eye tracker that does not involve any heavy goggles and
allows participants to move their head without changing the
calibration of the camera. We calibrated the camera at the
beginning of the study and between tasks. We also choose
well-documented eye-tracking metrics [44] and standard
statistical methods for data analysis.

The Hawthorne effect is the alteration of behavior by
participants due to their awareness of being watched and
evaluated. To overcome this risk, we explained to the par-
ticipants that the eye tracker does not record any video or
image beyond the eye itself. In addition, our experimenter
sat inconspicuously away from the participants.

To reduce the stereotype threat [53], [54] and avoid
interfering with participants’ performance, we asked self-
assessment questions about their coding knowledge and
experience at the end of the study. Researchers may unin-
tentionally influence participants to achieve specific goals
or to perform in a particular manner. To mitigate this
bias, we minimized the interaction between our team and
participants while de-identifying the data so that it cannot
be used to learn the identity of individual participants.
Also, our research team contained both men and women;
we conducted a set of pilot studies to help identify biased
procedures or results.

All of our participants are students, and 50% of them
are graduate students with good programming knowledge
and expertise. As stated by Kitchenham et al. [66] “using
students as participants is not a major issue as long as
you are interested in evaluating the use of a technique by
novice or non-expert software engineers. Students are the
next generation of software professionals so, are relatively
close to the population of interest”.

We must be careful because only 36 developers partici-
pated in our study. Although this number is much higher
than that of any previously reported studies [38], [45],
[67], we cannot consider the population large enough to
generalize the results.

Finally, we used only one system, so its quality and
complexity might influence the study. We mitigate this risk
by choosing an open-source project, written in a popu-
lar programming language. MineSweeper is not large by
general software engineering standards, but is quite large
by eye-tracking standards (where all but three previously-
published papers focused on a single screen).

8 CONCLUSION

In this paper, we presented an eye-tracking experiment de-
sign for more indicative scenarios within an IDE (admitting
both editing and scrolling); a statistically-significant three-
phase model of code navigation behavior; and an investi-
gation of developers interaction with IDE. Utilizing this ex-
periment design, we investigate the variances of navigation
patterns with respect to developers’ individual differences
using various eye-movement statistics. We selected a set of
two realistic bug fixing tasks and recruited 36 participants.
We consider this to be a reasonable number of tasks to
validate our novel approach without causing fatigue. How-
ever, We must be careful when drawing conclusions as the
reported results are based on the limited sample size in
terms of systems, tasks, and the number of participants.

Our analysis shows that, in a statistically significant
manner, developers spend more time searching various
code elements during the beginning of a bug-fixing task,
and the relevance of these code elements changes over
time. Also, our multi-dimensional eye movement analysis
shows that, although individuals follow different navigation
strategies, participants in our study tended to broadly focus
on the same set of code elements per phase. Moreover,
our proposed simple thrashing model suggests that greater
amounts of thrashing lead to less effective results.

We discuss how our results might (speculatively) be
applied to the domains of bug fixing, code summarization,
and education.

Enhancing the cost and time estimation of bug fix-
ing: by capturing the amount of effort (visual attention),
developers devote to various source code elements in the
granularity of a file (e.g., a class) or a set of files (e.g., Java
packages), we could measure the associated difficulty of
fixing a type of bug. A more cognitively-grounded assess-
ment or prediction of task difficulty could provide a better
estimation of the maintenance cost and time required.

In addition, a detailed eye-movement pattern is a cost-
effective way of transferring an expert’s knowledge about
the code to the rest of the team. In such a setting, only one
or two experts need thoroughly read the code while an eye
tracker is capturing their eye-movements, reducing data-
gathering costs. Other developers may consult the recorded
eye-movement pattern while debugging the code to find the
pertinent areas faster.

Improving code summarization by locating important
code regions: a critical problem with manual and automated
code summarization approaches is that it is difficult to iden-
tify areas in which humans will be interested (i.e.,areas that
should be retained when abstracting to summarize) [14],
[23]. Our results demonstrate that the importance of source
code elements changes over the course of the task. Since
we capture the amount of attention developers devote to
various code elements, we could use this data to create a
more accurate models of code elements’ relevance to fixing
a given problem and the difficulty of fixing it.

Addressing education via navigation strategies: in this
work, we demonstrate that distribution of visual attention
are quantifiably different from individuals with a weaker
performance. Also, we have observed that thrashing has
adverse effects on effectiveness. Although code is required
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to understand it, over-exploration is counter-productive. If
we can identify fruitful cost-benefit tradeoffs between code
exploration and thrashing, we could train developers to
follow such best practices.

Although our work investigated developers’ strategies
in bug-fixing tasks, our experiment design may apply in
the future to investigate how developers use and track
relevant information over time while performing other
software maintenance tasks — such as writing test cases,
conducting code reviews, or implementing a new feature.
Future work may also include using attitudinal data to
investigate whether or not confidence after successfully or
unsuccessfully resolving a first task impacts results in solv-
ing a similar task. Finally, we propose a further investigation
into the effects of thrashing by exploring the types of edits
developers made while performing the bug-fixing tasks.
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