
TBD, VOL. X, NO. Y, MONTH YEAR 1

GenProg: A generic method
for automatic software repair

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Westley Weimer

Abstract—This article describes GenProg, an automated method for repairing defects in off-the-shelf, legacy programs without formal
specifications, program annotations, or special coding practices. GenProg uses an extended form of genetic programming to evolve
a program variant that retains required functionality but is not susceptible to a given defect, using existing test suites to encode both
the defect and required functionality. Structural differencing algorithms and delta debugging reduce the difference between this variant
and the original program to a minimal repair. We describe the algorithm and report experimental results of its success on 16 programs
totaling 1.25M lines of C code and 120K lines of module code, spanning 8 classes of defects, in 357 seconds, on average. We analyze
the generated repairs qualitatively and quantitatively to demonstrate that the process efficiently produces evolved programs that repair
the defect, are not fragile input memorizations, and do not lead to serious degradation in functionality.

Index Terms—D.1.2 Automatic Programming; D.2.7.b Corrections; D.2.5 Testing and Debugging

F

1 INTRODUCTION

Software quality is a pernicious problem. Mature software
projects are forced to ship with both known and unknown
bugs [1], because the number of outstanding software defects
typically exceeds the resources available to address them [2].
Software maintenance, of which bug repair is a major com-
ponent [3], [4], is time-consuming and expensive, accounting
for as much as 90% of the cost of a software project [5] at a
total cost of up to $70 billion per year in the US [6], [7]. Put
simply: Bugs are ubiquitous, and finding and repairing them
are difficult, time-consuming, and manual processes.

Techniques for automatically detecting software flaws in-
clude intrusion detection [8], model checking and lightweight
static analyses [9], [10], and software diversity methods [11],
[12]. However, detecting a defect is only half of the story:
once identified, a bug must still be repaired. As the scale
of software deployments and the frequency of defect reports
increase [13], some portion of the repair problem must be
addressed automatically.

This article describes and evaluates GenProg, (“Genetic
Program Repair”), a technique that uses existing test cases
to automatically generate repairs for real-world bugs in off-
the-shelf, legacy applications. We follow Rinard et al. [14] in
defining a repair as a patch consisting of one or more code
changes that, when applied to a program, cause it to pass a
set of test cases (typically including both tests of required
behavior as well as a test case encoding the bug). The test
cases may be human-written, taken from a regression test suite,
steps to reproduce an error, or generated automatically. We
use the terms “repair” and “patch” interchangeably. GenProg

• Le Goues and Weimer are with the Department of Computer Science at
the University of Virginia, Charlottesville, VA 22904.

• Nguyen and Forrest are with the Department of Computer Science at the
University of New Mexico, Albuquerque, NM 87131.

• E-mail:{legoues,weimer}@cs.virginia.edu,{tnguyen,forrest}@cs.unm.edu

does not require formal specifications, program annotations
or special coding practices. GenProg’s approach is generic,
and the paper reports results demonstrating that GenProg can
successfully repair several types of defects. This contrasts with
related approaches which repair only a specific type of defect
(such as buffer overruns [15], [16]).

GenProg takes as input a program with a defect and a set of
test cases. GenProg may be applied either to the full program
source, or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required func-
tionality but is not vulnerable to the defect in question. GP is a
stochastic search method inspired by biological evolution that
discovers computer programs tailored to a particular task [17],
[18]. GP uses computational analogs of biological mutation
and crossover to generate new program variations, which we
call variants. A user-defined fitness function evaluates each
variant; GenProg uses the input test cases to evaluate the
fitness, and individuals with high fitness are selected for
continued evolution. This GP process is successful when it
produces a variant that passes all tests encoding the required
behavior and does not fail those encoding the bug. Although
GP has solved an impressive range of problems (e.g., [19]),
it has not previously been used either to evolve off-the-shelf
legacy software or patch real-world vulnerabilities, despite
various proposals directed at automated error repair, e.g., [20].

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to address
this longstanding problem [21]. First, GenProg operates at the
statement level of a program’s abstract syntax tree (AST),
increasing the search granularity. Second, we hypothesize that
a program that contains an error in one area likely implements
the correct behavior elsewhere [22]. Therefore, GenProg uses
only statements from the program itself to repair errors and
does not invent new code. Finally, GenProg localizes genetic
operators to statements that are executed on the failing test
case. This third point is critical: fault localization is, in general,

TBD, VOL. X, NO. Y, MONTH YEAR 2

a hard and unsolved problem. The scalability of our approach
relies on existing, imperfect strategies, and there exist classes
of defects (e.g., non-deterministic bugs) which cannot always
be localized. For the defects considered here, however, we
find that these choices reduce the search space sufficiently to
permit the automated repair of a varied set of both programs
and errors.

The GP process often introduces irrelevant changes or
dead code along with the repair. GenProg uses structural
differencing [23] and delta debugging [24] in a post-processing
step to obtain a 1-minimal set of changes to the original
program that permits it to pass all of the test cases. We call
this set the final repair.

The main contributions of this article are:

• GenProg, an algorithm that uses GP to automatically
generate patches for bugs in programs, as validated by
test cases. The algorithm includes a novel and efficient
representation and set of operations for applying GP to
this domain. This is the first work to demonstrate the use
of GP to repair software at the scale of real, unannotated
programs with publicly documented bugs.

• Experimental results showing that GenProg can effi-
ciently repair errors in 16 C programs. Because the
algorithm is stochastic, we report success rates for each
program averaged over 100 trials. For every program,
at least one trial found a successful repair, with the
average success rates ranging from 7% to 100%. Across
all programs and all trials, we report an average success
rate of 77%.

• Exerimental results demonstrating that the algorithm
can repair multiple types of errors in programs drawn
from multiple domains. The errors span eight different
defect types: infinite loop, segmentation fault, remote
heap buffer overflow to inject code, remote heap buffer
overflow to overwrite variables, non-overflow denial of
service, local stack buffer overflow, integer overflow,
and format string vulnerability. The benchmark programs
include unix utilities, servers, media players, text process-
ing programs, and games. The 16 benchmarks total over
1.25M lines of code, although GenProg operates directly
on 120K lines of program or module code.

Some of these points were previously presented in early
versions of this work [25], [26] or summarized for general
audiences [27]. This article extends those results to include:

• New repairs. Previous work showed repairs on 11 pro-
grams totaling 63K lines of code and four classes of
errors. We present five additional programs, and show
that GenProg can operate on both an entire program’s
source code as well as at the module level. The new
benchmarks consist of 1.2M new lines of source code,
60K new lines of repaired code (either module or whole
program), and four new types of errors, a significant
increase that substantiates GenProg’s ability to scale to
real-world systems.

• Closed-loop repair. A description and proof-of-concept
evaluation of a closed-loop repair system that integrates
GenProg with anomaly intrusion detection.

• Repair Quality. A partial evaluation of the quality of the
produced repairs, first manually, and then quantitatively
using indicative workloads, fuzz testing, and variant bug-
inducing input. Our preliminary findings suggest that
the repairs are not fragile memorizations of the input,
but instead address the defect while retaining required
functionality.

2 MOTIVATING EXAMPLE

In this section, we use an example defect to highlight the
important insights underlying the GenProg approach, and
motivate important design decisions.

Consider the pseudocode shown in Figure 1(a), adapted
from a remote-exploitable heap buffer overflow vul-
nerability in the nullhttpd v0.5.0 webserver. Function
ProcessRequest processes an incoming request based on data
copied from the request header. Note that on line 14, the call
to calloc to allocate memory to hold request contents trusts
the content length provided by a POST request, as copied
from the header on line 8. A malicious attacker can provide
a negative value for Content-Length and a malicious payload
in the request body to overflow the heap and kill or remotely
gain control of the running server.

To automatically repair this program, we must first codify
desired behavior. For example, we can write a test case
that sends a POST request with a negative content-length
and a malicious payload to the webserver, and then checks
the webserver to determine if it is still running. Unmodified
nullhttpd fails this test case.

At a high level, GenProg searches for valid variants of the
original program that do not display the specified buggy be-
havior. However, searching randomly through related programs
may yield undesirable results. Consider the following variant:

1 char* ProcessRequest() { return null; }

This version of ProcessRequest does not crash on the bug-
encoding test case, but also fails to process any requests at
all. The repaired program should pass the error-encoding test
case while retaining core functionality. Such functionality can
also be expressed with test cases, such as a standard regression
test that obtains index.html and compares the retrieved copy
against the expected output.1

To satisfy these goals, program modifications should ide-
ally focus on regions of code that affect the bad behavior
without affecting the good behavior. We therefore employ a
simple fault localization strategy to reduce the search space.
We instrument the program to record all lines visited when
processing the test cases, and favor changes to locations
that are visited exclusively by the negative test case. The
standard regression test visits lines 1–12 and 18 (and lines
in ProcessGETRequest). The test case demonstrating the error
visits lines 1–11 and 13–18. Mutation and crossover opera-
tions are therefore focused on lines 13–17, which exclusively
implement POST functionality.

1. In practice, we use several test cases to express program requirements;
we describe only one here for brevity.

TBD, VOL. X, NO. Y, MONTH YEAR 3

1 char* ProcessRequest() {
2 int length, rc;
3 char[10] request_method;
4 char* buff;
5 while(line = sgets(line, socket)) {
6 if(line == "Request:")
7 strcpy(request_method, line+12)
8 if(line == "Content-Length:")
9 length=atoi(line+16);
10 }
11 if (request_method == "GET")
12 buff=DoGETRequest(socket,length);
13 else if(request_method == "POST") {
14 buff=calloc(length, sizeof(char));
15 rc=recv(socket,buff,length)
16 buff[length]=’\0’;
17 }
18 return buff;
19 }

(a) Buggy webserver code snippet.

4 ...
5 while(line = sgets(line, socket)) {
6 if(line == "Request:")
7 strcpy(request_method, line+12)
8 if(line == "Content-Length:")
9 length=atoi(line+16);
10 }
11 if (request_method == "GET")
12 buff=DoGETRequest(socket,length);
13 else if(request_method == "POST") {
14 + if (length <= 0)
15 + return null;
16 buff=calloc(length, sizeof(char));
17 rc=recv(socket,buff,length)
18 buff[length]=’\0’;
19 }
20 return buff;
21 }

(b) Patched webserver.

Fig. 1: Pseudocode of a buggy webserver implementation, and a repaired version of the same program.

Despite this fault localization, there are still many possible
changes to explore. To further constrain the search, we as-
sume that most defects can be repaired by adapting existing
code from another location in the program. In practice, a
program that makes a mistake in one location often handles a
similar situation correctly in another [22]. This hypothesis is
correct for nullhttpd. Although the POST request handling
in ProcessRequest does not do a bounds check on the user-
specified content length, the cgi_main function, implemented
elsewhere, does:

502 if (length <= 0) return null;

Fault localization biases the modifications towards POST
request code. The restriction to use only existing code
for insertions further limits the search, and eventually
GenProg tries inserting the check from cgi_main into
ProcessRequest, shown in section (b) of Figure 1. A pro-
gram with this version of ProcessRequest passes both test
cases; we call it the primary repair. GP can produce spu-
rious changes in addition to those that repair the pro-
gram; for example, the search might have randomly inserted
return ProcessGetRequest(socket,length) at line 22, after
the original return. This insertion is not dangerous, because it
will never be executed, but it does not contribute to the repair.
We remove such extraneous changes in a postprocessing step.
The resulting minimal patch is the final repair; we present it
in traditional diff format.

We formalize this procedure, and describe concrete imple-
mentation details, in the next section.

3 TECHNICAL APPROACH

Figure 2 gives pseudocode for GenProg. GenProg takes as
input source code containing a defect and a set of test cases,
including a failing negative test case that exercises the defect
and a set of passing positive test cases that describe require-
ments. The GP maintains a population of program variants
represented as trees. Each variant is a modified instance of
the original defective program; the modifications are generated
by the mutation and crossover operations, described in Sec-
tion 3.2. The call to initial population on line 4 uses mutation

Input: Program P to be repaired.
Input: Set of positive test cases PosT .
Input: Set of negative test cases NegT .
Input: Fitness function f .
Input: Variant population size pop size.
Output: Repaired program variant.

1: PathPosT ←
S

p∈PosT statements visited by P (p)
2: PathNegT ←

S
n∈NegT statements visited by P (n)

3: Path ← set weights(PathNegT , PathPosT)
4: Popul ← initial population(P, pop size)
5: repeat
6: Viable ← {〈P, PathP 〉 ∈ Popul | f(P) > 0}
7: Popul ← ∅
8: NewPop ← ∅
9: for all 〈p1, p2〉 ∈ select(Viable, f, pop size/2) do

10: 〈c1, c2〉 ← crossover(p1, p2)
11: NewPop ← NewPop ∪ {p1, p2, c1, c2}
12: end for
13: for all 〈V, PathV 〉 ∈ NewPop do
14: Popul ← Popul ∪ {mutate(V, PathV)}
15: end for
16: until f(V) = max fitness for some V contained in Popul
17: return minimize(V, P, PosT , NegT)

Fig. 2: High-level pseudocode for GenProg. Lines 5–16 de-
scribe the GP search for a feasible variant. Subroutines such as
mutate(V, PathV) are described subsequently.

operators to construct an initial GP population based on the
input program and test cases. A fitness function evaluates each
individual’s fitness, or desirability. GenProg uses the input
test cases to guide the GP search (lines 1–3 of Figure 2,
Section 3.1) as well as to evaluate fitness (Section 3.3). A GP
iterates by selecting high-fitness individuals to copy into the
next generation (line 9, Section 3.2) and introducing variations
with the mutation and crossover operations (lines 13–15 and
line 10. This cycle repeats until a goal is achieved—a variant
is found that passes all the test cases—or a pre-determined
resource limit is consumed. Finally, GenProg minimizes the
successful variant (line 17, Section 3.4)

3.1 Program Representation
GenProg represents each variant (candidate program) as a pair:

1) An abstract syntax tree (AST) that includes all of the
statements in the program.

TBD, VOL. X, NO. Y, MONTH YEAR 4

2) A weighted path consisting of a list of program state-
ments, each associated with a weight based on that
statement’s occurrence in various test case execution
traces.

GenProg generates a program AST using the off-the-shelf
CIL toolkit [28]. ASTs express program structure at multiple
levels of abstraction or granularity. GenProg operates on the
constructs that CIL defines as statements, which includes all
assignments, function calls, conditionals, blocks, and looping
constructs. GenProg does not directly modify expressions,
such as “(1-2)” or “(!p)”, nor does it ever directly modify
low-level control-flow directives such as break, continue or
goto. This genotype representation reflects a tradeoff between
expressive power and scalability. Because of these constraints
on permitted program modifications, the GP never generates
syntactically ill-formed programs (e.g., it will never generate
unbalanced parentheses). However, it can generate variants that
fail to compile due to a semantic error by, for example, moving
the use of a variable out of scope.

The weighted path is a sequence of 〈 statement, weight 〉
pairs that constrains the mutation operators to a small, likely
relevant (more highly weighted) subset of the program tree.
Statements not on the weighted path (i.e. with weight 0) are
never modified, although they may be copied into the weighted
path by the mutation operator (see Section 3.2). Each new
variant has the same number of pairs and the same sequence
of weights in its weighted path as the original program. This
is necessary for the crossover operation (described below).

To construct the weighted path, we apply a transformation
that assigns each statement a unique number and inserts code
to log an event (visit) each time the statement is executed
(lines 1–2 of Figure 2). Duplicate statements are removed from
the list: that is, we do not assume that a statement visited
frequently (e.g., in a loop) is likely to be a good repair site.
However, we do respect statement order (determined by the
first time a statement is visited), so the weighted path is a
sequence, rather than a set. Any statement visited during the
execution of a negative test case is a candidate for repair, and
its initial weight is set to 1.0. All other statements are assigned
a weight of 0.0 and never modified. The initial weights of
the statements on the negative test case execution path are
modified further by changing the weights of those statements
that were also executed by a positive test case. The goal is to
bias the modifications towards portions of the source code that
are likely to affect the bad behavior, while avoiding those that
influence good behavior. set weights(PathNegT ,PathPosT)
on line 3 of Figure 2 sets the weight of every path statement
that is visited during at least one positive test case to a
parameter WPath . Choosing WPath = 0 prevents modification
of any statement visited during a positive test case by removing
it from the path; we found that values such as WPath = 0.01
typically work better in practice.

The weighted path serves to localize the fault. This fault
localization strategy is simple, and by no means state-of-the-
art, but has worked in practice for our benchmark programs.
We do not claim any new results in fault localization, and
instead view it as an advantage that we can use relatively
off-the-shelf approaches. Path weighting is necessary to repair

Input: Program P to be mutated.
Input: Path PathP of interest.
Output: Mutated program variant.

1: for all 〈stmt i, probi〉 ∈ PathP do
2: if rand(0, 1) ≤ probi ∧ rand(0, 1) ≤Wmut then
3: let op = choose({insert, swap, delete})
4: if op = swap then
5: let stmtj = choose(P)
6: PathP [i]← 〈stmtj , probi〉
7: else if op = insert then
8: let stmtj = choose(P)
9: PathP [i]← 〈{stmt i; stmtj}, probi〉

10: else if op = delete then
11: PathP [i]← 〈{}, probi〉
12: end if
13: end if
14: end for
15: return 〈P, PathP 〉

Fig. 3: The mutation operator. Updates to PathP also update the
AST P .

the majority of the programs we have investigated: without
it, the search space is typically too large to search efficiently.
However, effective fault localization for both automatic and
manual repair remains a difficult and unsolved problem, and
there exist certain types of faults which remain difficult to
impossible to localize. We expect that GenProg will improve
with advances in fault localization, and leave the extension of
the technique to use more sophisticated localization methods
as future work.

3.2 Selection and Genetic Operators

Selection. The code on lines 6–9 of Figure 2 implements the
process by which GenProg selects individual variants to copy
over to the next generation. GenProg discards individuals with
fitness 0 (variants that do not compile or that pass no test
cases) and places the remainder in Viable on line 6. It then
uses a selection strategy to select pop size/2 members of a
new generation from the previous iteration; these individuals
become the new mating pool. We have used both stochastic
universal sampling [29], in which each individual’s probability
of selection is directly proportional to its relative fitness
f , and tournament selection [30], where small subsets of
the population are selected randomly (a tournament), and
the most fit member of the subset is selected for the next
generation. This process is iterated until the new population
is selected. Both selection techniques produce similar results
in our application.

Two GP operators, mutation and crossover, create new
variants from this mating pool.

Mutation. Figure 3 shows the high-level pseudocode
for the mutation operator. Mutation has a small chance of
changing any particular statement along the weighted path
(line 1). Changes to statements in PathP are reflected in its
corresponding AST P . A statement is mutated with probability
equal to its weight, with the maximum number of mutations
per individual determined by the global mutation rate (the
parameter Wmut , set to 0.06 and 0.03 in our experiments;
see Section 5.1). Line 2 uses these probabilities to determine
if a statement will be mutated.

TBD, VOL. X, NO. Y, MONTH YEAR 5

Input: Parent programs P and Q.
Input: Paths PathP and PathQ.
Output: Two new child program variants C and D.

1: cutoff ← choose(|PathP |)
2: C, PathC ← copy(P, PathP)
3: D, PathD ← copy(Q, PathQ)
4: for i = 1 to |PathP | do
5: if i > cutoff then
6: PathC [i]← PathQ[i]
7: PathD[i]← PathP [i]
8: end if
9: end for

10: return 〈C, PathC〉,〈D, PathD〉

Fig. 4: The crossover operator. Updates to PathC and PathD update
the ASTs C and D.

In genetic algorithms, mutation operations typically involve
single bit flips or simple symbolic substitutions. Because
our primitive unit is the statement, our mutation operator
is more complicated, and consists of either a deletion (the
entire statement is deleted), an insertion (another statement is
inserted after it), or a swap with another statement. We choose
from these options with uniform random probability (line 3).
In the case of an insertion or swap, a second statement stmtj

is chosen uniformly at random from anywhere in the program
(lines 5 and 8), not just along the weighted path; a statement’s
weight does not influence the probability that it is selected
as a candidate repair. This reflects our intuition about related
changes: a program missing a null check probably includes one
somewhere, but not necessarily on the negative path. In a swap,
stmt i is replaced by stmtj , while at the same time stmtj is
replaced by stmt i. We insert by transforming stmt i into a
block statement that contains stmt i followed by stmtj . In the
current implementation, stmtj is not modified when inserted,
although we note that intermediate variants may fail to compile
if code is inserted which references out-of-scope variables.
Deletions transform stmt i into an empty block statement; a
deleted statement may therefore be modified in a later mutation
operation.

In all cases, the new statement retains the old statement
weight, to maintain the invariant of uniform path lengths and
weights between program variants, and because inserted and
swapped statements may not come from the weighted path
(and may thus have no initial weight of their own).

Crossover. Figure 4 shows the high-level pseudocode for
the crossover operator. Crossover combines the “first part”
of one variant with the “second part” of another, creating
offspring variants that combine information from two parents.
The crossover rate is 1.0—every surviving variant in a popu-
lation undergoes crossover, though a variant will only be the
parent in one such operation per generation. Only statements
along the weighted paths are crossed over. We choose a cutoff
point along the paths (line 1) and swap all statements after
the cutoff point. We have experimented with other crossover
operators (e.g., a crossover biased by path weights and a
crossover with the original program) and found that they give
similar results to the one-point crossover shown here.

3.3 Fitness Function
The fitness function evaluates the acceptability of a program
variant. Fitness provides a termination criterion for the search
and guides the selection of variants for the next generation.
Our fitness function encodes software requirements at the test
case level: negative test cases encode the fault to be repaired,
while positive test cases encode functionality that cannot be
sacrificed. We compile the variant’s AST to an executable
program, and then record which test cases the executable
passes. Each successful positive test is weighted by the global
parameter WPosT ; each successful negative test is weighted
by the global parameter WNegT . The fitness function is thus
simply the weighted sum:

fitness(P) = WPosT × |{t ∈ PosT | P passes t}|
+ WNegT × |{t ∈ NegT | P passes t}|

The weights WPosT and WNegT should be positive; we give
concrete values in Section 5. A variant that does not compile
has fitness zero. For full safety, the test case evaluations can
be run in a virtual machine or similar sandbox with a timeout.
Since test cases validate repair correctness, test suite selection
is an important consideration.

3.4 Repair Minimization
The search terminates successfully when GP discovers a pri-
mary repair that passes all test cases. Due to randomness in the
mutation and crossover algorithms, the primary repair typically
contains at least an order-of-magnitude more changes than are
necessary to repair the program, rendering the repairs difficult
to inspect for correctness. Therefore, GenProg minimizes the
primary repair to produce the final repair, expressed as a list
of edits in standard diff format. Defects associated with such
patches are more likely to be addressed [31].

GenProg performs minimization by considering each differ-
ence between the primary repair and the original program and
discarding every difference that does not affect the repair’s be-
havior on any of the test cases. Standard diff patches encode
concrete, rather than abstract syntax. Since concrete syntax
is inefficient to minimize, we have adapted the DIFFX XML
differencing algorithm [23] to work on CIL ASTs. Modified
DIFFX generates a list of tree-structured edit operations, such
as “move the subtree rooted at node X to become the Y th
child of node Z”. This encoding is typically shorter than the
corresponding diff patch, and applying part of a tree-based
edit never results in a syntactically ill-formed program, both
of which make such patches easier to minimize.

The minimization process finds a subset of the initial repair
edits from which no further elements can be dropped without
causing the program to fail a test case (a 1-minimal subset).
A brute-force search through all subsets of the initial list of
edits is infeasible. Instead, we use delta debugging [24] to
efficiently compute the one-minimal subset, which is O(n2)
worst case [32]. This minimized set of changes is the final
repair. DIFFX edits can be converted automatically to standard
diff patches, which can either be applied automatically to the
system or presented to developers for inspection. In this article,
patch sizes are reported in the number of lines of a Unix diff

patch, not DIFFX operations.

TBD, VOL. X, NO. Y, MONTH YEAR 6

4 REPAIR DESCRIPTIONS
In this section, we substantiate the claim that automated repair
of real-world defects is possible by describing several buggy
programs and examples of the patches that GenProg generates.
The benchmarks for all experiments in this and subsequent
sections are shown in Figure 5. The defects considered include
infinite loops, segmentation faults, several types of memory
allocation errors, integer overflow, and a well-known format
string vulnerability. In most cases, we consider all of the
program source when making a repair; in a few cases we
restrict attention to the single module visited by the negative
test case. gcd is a small example based on Euclid’s algorithm
for computing greatest common divisors. zune is a fragment
of code that caused all Microsoft Zune media players to freeze
on December 31st, 2008. The Unix utilities were taken from
Miller et al.’s work on fuzz testing, in which programs crash
when given random inputs [34]. The remaining benchmarks
are taken from public vulnerability reports.

In the following subsections, we describe several case
studies of several exemplar repairs, only one of which has
been previously published. The case studies are all taken from
the security domain, but they illustrate the repair process in
the context of large programs with publicly documented bugs.
In each case we first describe the bug that corresponds to
a public vulnerability report; we then describe an indicative
patch discovered by GenProg.

4.1 nullhttpd: remote heap buffer overflow
The nullhttpd webserver is a lightweight multithreaded web-
server that handles static content as well as CGI scripts. Ver-
sion 0.5.0 contains a heap-based buffer overflow vulnerability
that allows remote attackers to execute arbitrary code (Sec-
tion 2 illustrates this vulnerability for explanatory purposes).
nullhttpd trusts the Content-Length value provided by the
user in the HTTP header of POST requests; negative values
cause nullhttpd to overflow a buffer.

We used six positive test cases that include both GET
and POST requests and a publicly available exploit to create
the negative test case. The negative test case request crashes
the webserver, which is not set to respawn. To determine
if the attack succeeded we insert a legitimate request for
index.html after the exploit; the negative test case fails
if the correct index.html is not produced.

The actual buffer overflow occurs in the ReadPOSTData()

function, defined in http.c,
108 // http.c
109 conn[sid].PostData=
110 calloc(conn[sid].dat->in_ContentLength+1024,
111 sizeof(char));
112 pPostData=conn[sid].PostData;
113 ...
114 do {
115 rc=recv(conn[sid].socket,
116 pPostData, 1024, 0); /* overflow! */
117 ...
118 pPostData+=rc;
119 } while ((rc==1024) ||
120 (x<conn[sid].dat->in_ContentLength));

The value in_ContentLength is supplied by the attacker.
However, there is a second location in the program, the

cgi_main() function on line 267 of cgi.c, where POST-data
is processed and copied:
267 // cgi.c
268 if (conn[sid].dat->in_ContentLength>0) {
269 write(local.out, conn[sid].PostData,
270 conn[sid].dat->in_ContentLength);
271 }

The evolved repair changes the high-level read_header()

function so that it uses the POST-data processing in
cgi_main() instead of calling ReadPostData. The final, mini-
mized repair is 5 lines long. Although the repair is not the one
supplied in the next release by human developers—which in-
serts local bounds-checking code in ReadPOSTData()—it both
eliminates the vulnerability and retains desired functionality.

4.2 openldap: non-overflow denial of service
The openldap server implements the lightweight directory
access protocol, allowing clients to authenticate and make
queries (e.g., to a company’s internal telephone directory).
Version 2.3.41 is vulnerable to a denial of service attack.
LDAP encodes protocol elements using a lightweight basic
encoding rule (BER); non-authenticated remote attackers can
crash the server by making improperly formed requests.

The assertion visibly fails in liblber/io.c, so we restricted
attention to that single file to demonstrate that we can repair
program modules in isolation without requiring a whole-
program analysis. To evaluate the fitness of a variant io.c

we copied it in to the openldap source tree and ran make to
rebuild and link the liblber library, then applied the test cases
to the resulting binary.

The positive test cases consist of an unmodified 25-second
prefix of the regression suite that ships with openldap. The
negative test case was a copy of a positive test case with an
exploit request inserted in the middle:
perl -e ’print"\xff\xff\xff\x00\x84\x41\x42\x43\x44"’
| nc $HOST $PORT

The problematic code is around line 522 of io.c:
516 for (i=1; (char *)p<ber->ber_rwptr; i++) {
517 tag <<= 8;
518 tag |= *p++;
519 if (!(tag & LBER_MORE_TAG_MASK)) break;
520 if (i == sizeof(ber_tag_t)-1) {
521 /* Is the tag too big? */
522 sock_errset(ERANGE); /* !! buggy assert */
523 return LBER_DEFAULT;
524 }
525 }
526 if ((char *)p == ber->ber_rwptr) {
527 /* Did we run out of bytes? */
528 sock_errset(EWOULDBLOCK);
529 return LBER_DEFAULT;
530 }

The for loop contains both a sanity check and processing
for large ber tags. The first 127 tag values are represented with
a single byte: if the high bit is set, the next byte is used as well,
and so on. The repair removes the entire loop (lines 516–524),
leaving the “run out of bytes” check untouched. This limits
the number of BER tags that the repaired openldap can handle
to 127. A more natural repair would be to fix the sanity check
while still supporting multi-byte BER tags. However, only

TBD, VOL. X, NO. Y, MONTH YEAR 7

Program Lines of Code Description Fault
Total Module

gcd 22 22 example infinite loop
zune 28 28 example [33] infinite loop†
uniq utx 4.3 1146 1146 duplicate text processing segmentation fault
look utx 4.3 1169 1169 dictionary lookup segmentation fault
look svr 4.0 1.1 1363 1363 dictionary lookup infinite loop
units svr 4.0 1.1 1504 1504 metric conversion segmentation fault
deroff utx 4.3 2236 2236 document processing segmentation fault
nullhttpd 0.5.0 5575 5575 webserver remote heap buffer overflow (code)†
openldap 2.2.4 292598 6519 directory protocol non-overflow denial of service†
ccrypt 1.2 7515 7515 encryption utility segmentation fault†
indent 1.9.1 9906 9906 source code processing infinite loop
lighttpd 1.4.17 51895 3829 webserver remote heap buffer overflow (variables)†
flex 2.5.4a 18775 18775 lexical analyzer generator segmentation fault
atris 1.0.6 21553 21553 graphical tetris game local stack buffer exploit†
php 4.4.5 764489 5088 scripting language integer overflow†
wu-ftpd 2.6.0 67029 35109 FTP server format string vulnerability†
total 1246803 121337

Fig. 5: Benchmark programs used in our experiments, with size of the program and the repaired program segment in lines of code (LOC).
The Unix utilities are repaired in their entirety. However, for example, while the entire wu-ftpd server was processed as a unit, a smaller
io module of openldap was selected for repair. A † indicates an openly-available exploit.

1 POST /hello.php HTTP/1.1
2 Host: localhost:8000
3 Connection: close
4 Content-length: 21213
5 Content-Type: application/x-www-form-urlencoded
6 ...
7 randomly-generated text
8 ...
9 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
10 SCRIPT_FILENAME/etc/passwd

Fig. 6: Exploit POST request for lighttpd. The random text creates
a request of the correct size; line 9 uses a fake FastCGI record to
mark the end of the data. Line 10 overwrites the execute script so that
the vulnerable server responds with the contents of /etc/passwd.

about thirty tags are actually defined for openldap requests,
so the repair is fine for all openldap uses, and passes all the
tests.

4.3 lighttpd: remote heap buffer overflow
lighttpd is a webserver optimized for high-performance
environments; it is used by YouTube and Wikimedia, among
others. In Version 1.4.17, the fastcgi module, which improves
script performance, is vulnerable to a heap buffer overflow that
allows remote attackers to overwrite arbitrary CGI variables
(and thus control what is executed) on the server machine. In
this case, GenProg repaired a dynamically linked shared ob-
ject, mod_fastcgi.so, without touching the main executable.

The positive test cases included requests for static content
(i.e., GET index.html) and a request to a 50-line CGI Perl
script which, among other actions, prints all server and CGI
environment variables. The negative test case is the request
shown in Figure 6, which uses a known exploit to retrieve the
contents of /etc/passwd—if the file contents are not returned,
the test case passes.

The key problem is with the fcgi_env_add function, which
uses memcpy to add data to a buffer without proper bounds
checks. fcgi_env_add is called many times in a loop by

fcgi_create_env, controlled by the following bounds calcu-
lation:
2051 off_t weWant =
2052 req_cq->bytes_in - offset > FCGI_MAX_LENGTH
2053 ? FCGI_MAX_LENGTH : req_cq->bytes_in - offset;

The repair modifies this calculation to:
2051 off_t weWant =
2052 req_cq->bytes_in - offset > FCGI_MAX_LENGTH
2053 ? FCGI_MAX_LENGTH : weWant;

weWant is thus uninitialized, causing the loop to exit early on
very long data allocations. However, the repaired server can
still report all CGI and server environment variables and serve
both static and dynamic content.

4.4 php: integer overflow
The php program is an interpreter for a popular web-
application scripting language. Version 5.2.1 is vulnerable
to an integer overflow attack that allows context-dependent
attackers to execute arbitrary code by exploiting the way the
interpreter calculates and maintains bounds on string objects
in single-character string replacements. As with the openldap

repair example, we restricted GenProg’s operations to the
string processing library.

We manually generated three positive test cases that exercise
basic PHP functionality, including iteration, string splitting and
concatenation, and popular built-in functions such as explode.
The negative test case included basic PHP string processing
before and after the following exploit code:
str_replace("A", str_repeat("B", 65535),

str_repeat("A", 65538));

A program variant passed this test if it produced the correct
output without crashing.

Single-character string replacement replaces every instance
of a character ("A" in the attack) in a string (65538 "A"’s)
with a larger string (65535 "B"’s). This functionality is imple-
mented by php_char_to_str_ex, which is called by function
php_str_replace_in_subject at line 3478 of file string.c:

TBD, VOL. X, NO. Y, MONTH YEAR 8

3476 if (Z_STRLEN_P(search) == 1) {
3477 php_char_to_str_ex(
3478 Z_STRVAL_PP(subject), Z_STRLEN_PP(subject),
3479 Z_STRVAL_P(search)[0], Z_STRVAL_P(replace),
3480 Z_STRLEN_P(replace), result,
3481 case_sensitivity, replace_count);
3482 } else if (Z_STRLEN_P(search) > 1) {
3483 Z_STRVAL_P(result) =
3484 php_str_to_str_ex(
3485 Z_STRVAL_PP(subject), Z_STRLEN_PP(subject),
3486 Z_STRVAL_P(search), Z_STRLEN_P(search),
3487 Z_STRVAL_P(replace), Z_STRLEN_P(replace),
3488 &Z_STRLEN_P(result), case_sensitivity,
3489 replace_count);
3490 } else {
3491 *result = **subject;
3492 zval_copy_ctor(result);
3493 INIT_PZVAL(result);
3494 }

php_str_replace_in_subject uses a macro Z_STRLEN_P,
defined in a header file, to calculate the new string length.
This macro expands to len + (char_count ∗ (to_len - 1))

on line 3480, wrapping around to a small negative number on
the exploitative input. The repair changes lines 3476–3482 to:
3476 if (Z_STRLEN_P(search) != 1) {

Single-character string replaces are thus disabled, with the
output set to an unchanged copy of the input, while multi-
character string replaces, performed by php_str_to_str_ex,
work as before. The php_str_to_str_ex function replaces
every instance of one substring with another, and is
not vulnerable to the same type of integer overflow as
php_char_to_str_ex because it calculates the resulting length
differently. Disabling functionality to suppress a security vi-
olation is often a legitimate response in this context: many
systems can be operated in a “safe mode” or “read-only mode.”
Although acceptable in this situation, disabling functionality
could have deleterious consequences in other settings; we
address this issue in Section 6.2.

4.5 wu-ftpd: format string
wu-ftpd is an FTP server that allows for anonymous and
authenticated file transfers and command execution. Version
2.6.0 is vulnerable to a well-known format string vulnerability.
If SITE EXEC is enabled, a user can execute a restricted
subset of quoted commands on the server. Because the user’s
command string is passed directly to a printf-like function,
anonymous remote users gain shell access by using carefully
selected conversion characters. Although the exploit is similar
in structure to a buffer overrun, the underlying problem is
a lack of input validation. GenProg operated on the entire
wu-ftpd source.

We used five positive test cases (obtaining a directory list-
ing, transferring a text file, transferring a binary file, correctly
rejecting an invalid login, and an innocent SITE EXEC com-
mand). The negative test used an posted exploit to dynamically
craft a format string for the target architecture.

The bug is in the site_exec() function of ftpcmd.y, which
manipulates the user-supplied buffer cmd:
1875 /* sanitize the command-string */
1876 if (sp == 0) {
1877 while ((slash = strchr(cmd, ’/’)) != 0)

1878 cmd = slash + 1;
1879 } else {
1880 while (sp
1881 && (slash = (char *) strchr(cmd, ’/’))
1882 && (slash < sp))
1883 cmd = slash + 1;
1884 for (t = cmd; *t && !isspace(*t); t++) {
1885 if (isupper(*t)) *t = tolower(*t);
1886 }
1887 }
1888 ...
1889 lreply(200, cmd);
1890 /* !!! vulnerable lreply call */
1891 ...
1892 /* output result of SITE EXEC */
1893 lreply(200, buf);

lreply(x,y,z...) provides logging output by printing the
executing command and providing the return code (200 de-
notes success in the FTP protocol). The lreply(200,cmd) on
line 1889 calls printf(cmd) which, with a carefully crafted
cmd format string, compromises the system. The explicit
attempt to sanitize cmd by skipping past slashes and converting
to lowercase does not prevent format-string attacks. The repair
replaces lreply(200,cmd) with lreply(200, (char *)""),
which disables verbose debugging output on cmd itself,
but does report the return code and the properly sanitized
site_exec in buf while maintaining required functionality.

5 GENPROG REPAIR PERFORMANCE

This section reports the results of experiments that use
GenProg to repair errors in multiple legacy programs: 1)
evaluating repair success over multiple trials and 2) measur-
ing performance and scalability in terms of fitness function
evaluations and wall-clock time.

5.1 Experimental Setup
Programs and Defects. The benchmarks consist of all pro-
grams in Figure 5. These programs total 1.25M LOC; the
repaired errors span eight defect classes (infinite loop, segmen-
tation fault, remote heap buffer overflow to inject code, remote
heap buffer overflow to overwrite variables, non-overflow
denial of service, local stack buffer overflow, integer overflow,
and format string vulnerability) and are repaired in 120K lines
of module or program code. Our experiments were conducted
on a quad-core 3 GHz machine.

Test Cases. For each program, we used a single negative
test case that elicits the given fault. For the Unix utilities, we
selected the first fuzz input that evinced a fault; for the others,
we constructed test cases based on the vulnerability reports
(see Section 4 for examples). We selected a small number
(e.g., 2–6) of positive test cases per program. In some cases,
we used non-crashing fuzz inputs; in others, we manually
created simple cases, focusing on testing relevant program
functionality; for openldap, we used part of its test suite.

Parameters. We report results for one set of global GenProg
parameters that seemed to work well. We chose pop size =
40, which is small compared to typical GP applications; on
each trial, we ran the GP for a maximum of ten genera-
tions (also a small number). For fitness computation, we set
WPosT = 1 and WNegT = 10. In related work [35] we note

TBD, VOL. X, NO. Y, MONTH YEAR 9

that it is possible to select more precise weights, as measured
by the fitness distance correlation metric [36]. However, we
find that the values used here work well on our benchmark set.
These heuristically chosen values capture our intuition that the
fitness function should emphasize repairing the fault and that
the positive test cases should be weighted evenly. We leave a
more thorough exploration for future work.

With the above parameter settings fixed, we experimented
with two parameter settings for WPath and Wmut :

{WPath = 0.01, Wmut = 0.06}
{WPath = 0.00, Wmut = 0.03}

Note that WPath = 0.00 means that statements executed by
both the negative test case and any positive test case will not
be mutated, and WPath = 0.01 means such statements will be
considered infrequently. The parameter set WPath = 0.01 and
Wmut = 0.06 works well in practice. Additional experiments
show that GenProg is robust to changes in many of these
parameters, such as population size, and that varying the
selection or crossover techniques has a small impact on time
to repair or success [26]. We have experimented with higher
probabilities, finding that success worsens beyond Wmut >
0.12.

The weighted path length is the weighted sum of statements
on the negative path and provides one estimate of the com-
plexity of the search space. Statements that appear only on
the negative path receive a weight of 1.0, while those also
on a positive path receive a weight of WPath . This metric is
correlated with algorithm performance (Section 5.3).

Trial. We define a trial to consist of at most two serial
invocations of the GP loop using the parameter sets above in
order. We stop a trial if an initial repair is found; otherwise, the
GP is run for ten generations per parameter set. We performed
100 random trials for each program and report the percentage
of trials that produce a repair; average time to the initial repair
in a successful trial; and time to minimize a final repair, a
deterministic process performed once per successful trial.

An initial repair is one that passes all input test cases.
Given the same random seed, each trial is deterministically
reproducible and leads to the same repair. With unique seeds
and for some programs, GenProg generates several different
patches over many random trials. For example, over 100
random trials, GenProg produces several different acceptable
patches for ccrypt, but only ever produces one such patch for
openldap. Such disparities are likely related to the program,
error, and patch type. We do not report the number of different
patches found because, in theory, there are an infinite number
of ways to address any particular error. However, we note that
our definition of repair as a set of changes that cause a program
to pass all test cases renders all such patches “acceptable.”
Ranking of different but acceptable patches remains an area
of future investigation.

Optimizations. When calculating fitness, we memoize fit-
ness results based on the pretty-printed abstract syntax tree
so that two variants with different ASTs but identical source
code are not evaluated twice. Similarly, variants that are copied
unchanged to the next generation are not reevaluated. Beyond
such caching, the prototype tool is not optimized. In particular,

we do not take advantage of the fact that the GP repair task is
embarrassingly parallel: both the fitness of all variant programs
and also the test cases for any individual variant can all be
evaluated independently [25].

5.2 Repair Results

Figure 7 summarizes repair results for sixteen C programs. The
‘Initial Repair’ heading reports timing information for the GP
phase and does not include the time for repair minimization.
The ‘Time’ column reports the average wall-clock time per
trial that produced a primary repair; execution time is analyzed
in more detail in Section 5.3. Repairs are found in 357 seconds
on average. The ‘fitness’ column shows the average number
of fitness evaluations per successful trial, which we include
because fitness function evaluation is the dominant expense
in most GP applications and the measure is independent of
specific hardware configuration. The ‘Success’ column gives
the fraction of trials that were successful. On average, over
77% of the trials produced a repair, although most of the
benchmarks either succeeded very frequently or very rarely.
Low success rates can be mitigated by running multiple
independent trials in parallel. The ‘Size’ column lists the size
of the primary repair diff in lines.

The ‘Final Repair’ heading gives performance information
for transforming the primary repair into the final repair and a
summary of the effect of the final repair, as judged by manual
inspection. Minimization is deterministic and takes less time
and fewer fitness evaluations than the initial repair process.
The final minimized patch is quite manageable, averaging 5.1
lines.

Of the sixteen patches, seven insert code (gcd, zune, look-u,
look-s, units, ccrypt, and indent) seven delete code (uniq,
deroff, openldap, lighttpd, flex, atris, and php), and two
both insert and delete code (nullhttpd and wu-ftpd). Note
that this does not speak to the sequence of mutations that lead
to a given repair, only the operations in the final patch: a swap
followed by a deletion may result in a minimized patch that
contains only an insertion.

While a comprehensive code review is beyond the scope
of this article, manual inspection suggests that the produced
patches are acceptable. We note that patches that delete code
do not necessarily degrade functionality: the deleted code may
have been included erroneously, or the patch may compensate
for the deletion with an insertion. The uniq, deroff, and flex

patches delete erroneous code and do not degrade untested
functionality. The openldap patch removes unnecessary faulty
code (handling of multi-byte BER tags, when only 30 tags
are used), and thus does not degrade functionality in practice.
The nullhttpd and wu-ftpd patches delete faulty code and
replace them by inserting non-faulty code found elsewhere.
The wu-ftpd patch disables verbose logging output in one
source location, but does not modify the functionality of the
program itself, and the nullhttpd patch does not degrade
functionality. The effect of the lighttpd patch is machine-
specific: it may reduce functionality on very long messages,
though in our experiments, it did not. More detailed patch
descriptions are provided in Section 4, above; we evaluate

TBD, VOL. X, NO. Y, MONTH YEAR 10

Positive Initial Repair Final Repair
Program Tests |Path| Time Fitness Success Size Time Fitness Size Effect
gcd 5x human 1.3 153 s 45.0 54% 21 4 s 4 2 Insert
zune 6x human 2.9 42 s 203.5 72% 11 1 s 2 3 Insert
uniq 5x fuzz 81.5 34 s 15.5 100% 24 2 s 6 4 Delete
look-u 5x fuzz 213.0 45 s 20.1 99% 24 3 s 10 11 Insert
look-s 5x fuzz 32.4 55 s 13.5 100% 21 4 s 5 3 Insert
units 5x human 2159.7 109 s 61.7 7% 23 2 s 6 4 Insert
deroff 5x fuzz 251.4 131 s 28.6 97% 61 2 s 7 3 Delete
nullhttpd 6x human 768.5 578 s 95.1 36% 71 76 s 16 5 Both
openldap 40x human 25.4 665 s 10.6 100% 73 549 s 10 16 Delete
ccrypt 6x human 18.01 330 s 32.3 100% 34 13 s 10 14 Insert
indent 5x fuzz 1435.9 546 s 108.6 7% 221 13 s 13 2 Insert
lighttpd 3x human 135.8 394 s 28.8 100% 214 139 s 14 3 Delete
flex 5x fuzz 3836.6 230 s 39.4 5% 52 7 s 6 3 Delete
atris 2x human 34.0 80 s 20.2 82% 19 11 s 7 3 Delete
php 3x human 30.9 56 s 15.5 100% 139 94 s 11 10 Delete
wu-ftpd 5x human 149.0 2256 s 48.5 75% 64 300 s 6 5 Both
average 573.52 356.5 s 33.63 77.0% 67.0 76.3 s 8.23 5.7

Fig. 7: Experimental results on 120K lines of program or module source code from programs totaling 1.25M lines of source code. We report
averages for 100 random trials. The ‘Positive Tests’ column describes the positive tests. The ‘|Path|’ columns give the weighted path length.
‘Initial Repair’ gives the average performance for one trial, in terms of ‘Time’ (the average time taken for each successful trial), ‘fitness’
(the average number of fitness evaluations in a successful trial), ‘Success’ (how many of the random trials resulted in a repair). ‘Size’ reports
the average Unix diff size between the original source and the primary repair, in lines. ‘Final Repair’ reports the same information for
the production of a 1-minimal repair from the first initial repair found; the minimization process always succeeds. ‘Effect’ describes the
operations performed by an indicative final patch: a patch may insert code, delete code, or both insert and delete code.

repair quality using indicative workloads and held-out fuzz
testing in Section 6.

In many cases it is also possible to insert code without
negatively affecting the functionality of a benchmark program.
The zune and gcd benchmarks both contain infinite loops: zune
when calculating dates involving leap years, and gcd if one
argument is zero. In both cases, the repair involves inserting
additional code: For gcd, the repair inserts code that returns
early (skipping the infinite loop) if the argument is zero. In
zune, code is added to one of three branches that decrements
the day in the main body of the loop (allowing leap years with
exactly 366 days remaining to be processed correctly). In both
of these cases, the insertions are carefully guarded so as to
apply only to relevant inputs (i.e., zero-valued arguments or
tricky leap years), which explains why the inserted code does
not negatively impact other functionality. Similar behavior is
seen for look-s, where a buggy binary search over a dictionary
never terminates if the input dictionary is not pre-sorted. Our
repair inserts a new exit condition to the loop (i.e., a guarded
break). A more complicated example is units, in which user
input is read into a static buffer without bounds checks, a
pointer to the result is passed to a lookup() function, and the
result of lookup() is possibly dereferenced. Our repair inserts
code into lookup() so that it calls an existing initialization
function on failure (i.e., before the return), re-initializing the
static buffer and avoiding the segfault. Combined with the
explanations of repairs for nullhttpd (Section 4.1) and wuftpd

(Section 4.5), which include both insertions and deletions,
these changes are indicative of repairs involving inserted code.

This experiment demonstrates that GenProg can success-

fully repair a number of defect types in existing programs
in a reasonable amount of time. Reports suggest that it takes
human developers 28 days on average to address even security-
critical repairs [37]; nine days elapsed between the posted
exploit source for wu-ftpd and the availability of its patch.

5.3 Scalability and Performance

GenProg is largely CPU-bound. An average repair run took
356.5 seconds. Figure 8 shows the proportion of time taken
by each important component. Executing the test cases for
the fitness function takes much of this time: on average,
positive test cases take 29.76%± 24.0 and negative test cases
32.99% ± 23.17 of the time. In total, fitness evaluations
comprise 62.75% ± 30.37 of total repair time. Many test
cases include timeouts (e.g., negative test cases that specify
an infinite-loop error); others involve explicit internal delays
(e.g., ad hoc instructions to wait two seconds for the web
server to get “up and running” before requests are sent;
the openldap test suite makes extensive use of this type of
delay), contributing to their runtime. Compilation of variants
averaged 27.13% ± 22.55 of repair time. Our initial imple-
mentation makes no attempt at incremental compilation. The
high standard deviations arise from the widely varying test
suite execution times (e.g., from 0.2 seconds for zune to 62.7
seconds for openldap).

Figure 9 plots weighted path length against search time,
measured as the average number of fitness evaluations until
the first repair, on a log-log scale. The straight line suggests
a relationship following a power law of the form y = axb

where b is the best-fit slope and b = 1 indicates a linear

TBD, VOL. X, NO. Y, MONTH YEAR 11

Program Fitness Positive Negative Compile
Total Tests Tests

gcd 91.2% 44.4% 46.8% 8.4%
zune 94.7% 23.2% 71.5% 3.7%
uniq 71.0% 17.2% 53.8% 25%
look-u 76.4% 17.1% 59.3% 20.7%
look-s 83.8% 29.9% 53.9% 12.9%
units 57.8% 20.7% 37.1% 35.5%
deroff 44.5% 8.9% 35.6% 46.5%
nullhttpd 74.9% 22.9% 52.0% 12.8%
openldap 93.7% 82.6% 11.1% 6.2%
indent 36.5% 16.4% 20.1% 43.1%
ccrypt 87.3% 65.2% 22.0% 4.7%
lighttpd 68.0% 67.9% 0.06% 25.3%
flex 23.2% 18.3% 4.8% 39.5%
atris 1.9% 0.8% 1.1% 64.9%
php 12.0% 2.0% 10.0% 78.4%
wu-ftpd 87.2% 38.6% 48.6% 6.6%
Average 62.75 29.76 32.99 27.14
StdDev 30.37 24.00 23.17 22.55

Fig. 8: Percentage of total repair time spent on particular repair tasks.

uniq	 look	 utx	
look	 svr	

units	

deroff	

nullh2pd	

indent	

flex	

openldap	

ligh2pd	
atris	

7ff	

ccrypt	

leukocyte	

imagemagick	

php	

wu-‐=pd	

y	 =	 0.8x	 +	 0.02	
R²	 =	 0.63	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4	

lo
g(
Fi
tn
es
s)
	

log(|Path|)	

Fig. 9: GenProg execution time scales with weighted path size.
Data are shown for 17 benchmark programs, including some not
described here (included for increased statistical significance; see [35]
for details on the additional benchmarks) and excluding gcd and
zune. The x-axis shows weighted path length; the y-axis shows the
number of fitness evaluations performed before a primary repair is
found (averaged over 100 runs). Note the base-10 log-log scale.

relationship. Figure 9 suggests that the relationship between
path length and search time is less than linear with slope 0.8.
Recall that the weighted path is based on observed test case
behavior and not on the much larger number of loop-free paths
in the program. We note that weighted path length does not
fully measure the complexity of the search space; notably, as
program size grows, the number of possible statements that

could be swapped or inserted along the path grows, which is
not accounted for in the weighted path length. Accordingly,
this relationship is only an approximation of scalability, and
search time may not grow sub-linearly with search space
using other measures. However, the results in Figure 9 are
encouraging, because they suggest that search time is governed
more by weighted path rather than program size.

The test cases comprise fitness evaluation and define patch
correctness; test suite selection is thus important to both scala-
bility and correctness. For example, when repairing nullhttpd

without a positive test case for POST-data functionality,
GenProg generates a repair that disables POST function-
ality entirely. In this instance, all of the POST-processing
functionality is on the weighted path (i.e., visited by the
negative test case but not by any positive test cases) and
deleting those statements is the most expedient way to find
a variant that passes all tests. As a quick fix this is not
unreasonable, and is safer than the common alarm practice
of running in read-only mode. However, including the POST-
functionality test case leads GenProg to find a repair that
does not remove functionality. Adding positive test cases can
actually reduce the weighted path length, while protecting
core functionality, and thus improve the success rate, while
possibly also increasing runtime. Experiments have shown
that larger test suites increase fitness variability in early GP
generations [26]; additional experiments confirm that test suite
selection techniques can improve the performance of GenProg
on programs with large regression suites, reducing repair times
by up to 80% while finding the same repairs [35].

These results suggest that GenProg can repair off-the-
shelf code in a reasonable amount of time, that GenProg
performance scales with the size of the weighted path, and that
there are several viable avenues for applying the technique to
larger programs with more comprehensive test suites in the
future.

6 GENPROG REPAIR QUALITY

Although the results of the previous sections are encouraging,
they do not systematically address the important issue of repair
quality. GenProg’s reliance on positive test cases provides an
important check against lost functionality. The use of test cases
exclusively to define acceptability admits the possibility of
repairs that degrade the quality of the design of a system
or make a system more difficult to maintain, concerns that
are difficult to evaluate automatically and are beyond the
scope of this paper. However, certain dangers posed by, for
example, inadequate test suites—such as repairs that reduce
functionality or introduce vulnerabilites—can be evaluated
automatically using indicative workloads, held-out test cases,
and fuzz testing.

Additionally, the claim of automated program repair relies
on manual initialization and dispatch of GenProg. In principle,
automated detection techniques could signal the repair process
to complete the automation loop. Integrating GenProg with au-
tomated error detection produces a closed-loop error detection
and repair system that would allow us to study repair quality
and overhead on programs with realistic workloads.

TBD, VOL. X, NO. Y, MONTH YEAR 12

This section therefore evaluates GenProg in the context of
a proof-of-concept closed-loop system for webserver-based
programs, with several experimental goals: 1) outline the
prototype closed-loop repair system and enumerate new ex-
perimental concerns, 2) measure the performance impact of
repair time and quality on a real, running system, including the
effects of a functionality reducing repair on system throughput
3) analyze the quality of the generated repairs in terms of
functionality using fuzz testing and variant bug-inducing input
and 4) measure the costs associated with intrusion-detection
system false positives.

6.1 Closed-Loop System Overview

Our proposed closed-loop repair system has two requirements
beyond the input required by GenProg: (1) anomaly detection
in near-real time, to provide a signal to launch the repair
process and (2) the ability to record and replay system in-
put [38] so we can automatically construct a negative test case.
Anomaly detection could be provided by existing behavior-
based techniques that run concurrently with the program of
interest, operating at almost any level (e.g., by monitoring
program behavior, examining network traffic, using saved
state from regular checkpoints, etc.). Our prototype adopts an
intrusion-detection system (IDS) that detects suspicious HTTP
requests based on request features [39]. In a pre-processing
phase, the IDS learns a probabilistic finite state machine model
of normal requests using a large training set of legitimate
traffic. After training, the model labels subsequent HTTP
requests with a probability corresponding to “suspiciousness.”

Given these components, the system works as follows.
While the webserver is run normally and exposed to untrusted
inputs from the outside world, the IDS checks for anomalous
behavior, and the system stores program state and each input
while it is being processed. When the IDS detects an anomaly,
the program is suspended, and GenProg is invoked to repair
the suspicious behavior. The negative test case is constructed
from the IDS-flagged input: a variant is run in a sandbox on the
input with the program state stored from just before the input
was detected. If the variant terminates successfully without
triggering the IDS, the negative test case passes; otherwise, it
fails. The positive tests consist of standard system regression
tests. For the purpose of these experiments, we use the tests
described in Section 5 to guide the repair search, and add
new, large indicative workloads to evaluate the effect of the
repair search and deployment on several benchmarks.

If a patch is generated, it can be deployed immediately. If
GenProg cannot locate a viable repair within the time limit,
subsequent identical requests should be dropped and an oper-
ator alerted. While GenProg runs, the system can either refuse
requests, respond to them in a “safe mode” [40], or use any
other technique (e.g., fast signature generation [41]) to filter
suspicious requests. Certain application domains (e.g., supply
chain management requests, banking or e-commerce) support
buffering of requests received during the repair procedure, so
they can be processed later.

Figure 10 summarizes the effects of the proposed system
on a running program; these effects depend on the anomaly

detector’s misclassification rates (false positives/negatives) and
the efficacy of the repair method. The integration of GenProg
with an IDS creates two new areas of particular concern. The
first new concern, Case 3, is the effect of an imperfect repair
(e.g., one that degrades functionality not guaranteed by the
positive tests) to a true vulnerability, which can potentially
lead to the loss of legitimate requests or, in the worst case,
new vulnerabilities. For security vulnerabilities, in particular,
any repair system should include a strong final check of
patch validity before deployment. To evaluate the suitability
of GenProg on real systems, it is therefore important to gain
confidence first, that GenProg repairs underlying errors and
second, that it is unlikely to introduce new faults. In Case 6,
a “repair” generated in response to an IDS false alarm could
also degrade functionality, again losing legitimate requests.

The remainder of this section evaluates these concerns, and
uses them as a framework to motivate and guide the evaluation
of automated repair quality and overhead, in terms of their
effect on program throughput and correctness, measured by
held-out test suites and indicative workloads.

6.2 Experimental Setup

We focus the repair quality experiments on three of our bench-
marks that consist of security vulnerabilities in long-running
servers: lighttpd, nullhttpd, and php. There exist many
mature intrusion-detection systems for security vulnerabilities,
providing a natural means of identifying bugs to be repaired.
Similarly, web servers are a compelling starting point for
closed-loop repair: They are common attack targets; they are
important services that run continually; and they are event-
driven, making it easier to isolate negative test cases. Note that
for the php experiments we repair the php interpreter used by
an unchanging, off-the-shelf apache webserver, in libphp.so.

Several experiments in this section use indicative work-
loads to measure program throughput pre-, during, and post-
repair. We obtained workloads and content layouts from the
University of Virginia CS department webserver. To evaluate
repairs to the nullhttpd and lighttpd webservers, we used a
workload of 138,226 HTTP requests spanning 12,743 distinct
client IP addresses over a 14-hour period on November 11,
2008. To evaluate repairs to php, we obtained the room and
resource reservation system used by the University of Vir-
ginia CS department, which features authentication, graphical
animated date and time selection, and a mysql back-end. It
totals 16,417 lines of PHP, including 28 uses of str_replace

(the subject of the php repair), and is a fairly indicative three-
tier web application. We also obtained 12,375 requests to this
system, spanning all of November 11, 2008. Recall that the
php repair loses functionality; we use this workload to evaluate
the effect of such a repair. In all cases, a request was labeled
“successful” if the correct (bit-for-bit) data was returned to the
client before that client started a new request; success requires
both correct output and response time.

Our test machine contains 2 GB of RAM and a 2.4 GHz
dual-core CPU. To avoid masking repair cost, we uniformly
sped up the workloads until the server machine was at 100%
utilization (and additional speedups resulted in dropped pack-

TBD, VOL. X, NO. Y, MONTH YEAR 13

Case IDS Class. Repair Made? Behavior In This Case
1 True Neg — Common case: legitimate request handled correctly.
2 False Neg — Attack succeeds. Repair not attempted.
3 True Pos Yes Attack stopped, bug fixed. Poor repair may drop requests.
4 True Pos No Attack detected, but bug not repaired.
5 False Pos No Valid request dropped. No repair found.
6 False Pos Yes Valid request dropped. Poor “repair” may drop requests.

Fig. 10: Closed-loop system outcomes (per request), as a function of anomaly detector and repair success. Cases 3 and 6 are new concerns.

ets). To remove network latency and bandwidth considerations,
we ran servers and clients on the same machine.

We use two metrics to evaluate repair overhead and quality.
The first metric is the number of successful requests a program
processed before, during, and after a repair. To evaluate repair
time overhead, we assume a worst-case scenario in which the
same machine is used both for serving requests and repairing
the program, and in which all incoming requests are dropped
(i.e., not buffered) during the repair process. The second
metric evaluates a program on held-out fuzz testing; comparing
behavior pre- and post- repair can suggest whether a repair has
introduced new errors, and whether the repair generalizes.

6.3 The Cost of Repair Time

We first measure the overhead of running GenProg itself by
measuring the number of requests from the indicative work-
loads the unmodified programs successfully handle. Next, we
generated the repair, noting the requests lost during the time
taken to repair on the server machine. Figure 11 summarizes
the results. The “Requests Lost To Repair Time” column
shows the requests dropped during the repair as a fraction of
the total number of successful requests served by the original
program. To avoid skewing relative performance by the size of
the workload, the numbers have been normalized to represent
a single day containing a single attack. Note that the absolute
speed of the server is not relevant here: a server machine that
was twice as fast overall would generate the repair in half the
time, but would also process requests twice as quickly. Fewer
than 8% of daily requests were lost while the system was
offline for repairs. Buffering requests, repairing on a separate
machine, or using techniques such as signature generation
could reduce this overhead.

6.4 Cost of a Repair that Degrades Functionality

The “Requests Lost to Repair Quality” column of Figure 11
quantifies the effect of the generated repairs on program
throughput. This row shows the difference in the number of
requests that each benchmark could handle before and after
the repair, expressed as a percentage of total daily throughput.
The repairs for nullhttpd and lighttpd do not noticeably
affect their performance. Recall that the php repair degrades
functionality by disabling portions of the str_replace func-
tion. The php row of Figure 11 shows that this low quality
(loss of functionality) repair does not strongly affect system
performance. Given the low-quality repair’s potential for harm,
the low “Lost” percentage for php is worth examining. Of the

reservation application’s 28 uses of str_replace, 11 involve
replacements of multi-character substrings, such as replacing
’--’ with ’- -’ for strings placed in HTML comments. Our
repair leaves multi-character substring behavior unchanged.
Many of the other uses of str_replace occur on rare paths.
For example, in:

$result = mysql_query($query) or
die("Query failed : " . mysql_error());

while($data=mysql_fetch_array($result,ASSOC))
if (!$element_label)
$label = str_replace(’_’,’ ’,$data[’Fld’]);

else
$label = $element_label;

str_replace is used to make a form label, but is only in-
voked if another variable, element_label, is null. Other uses
replace, for example, underscores with spaces in a form label
field. Since the repair causes single-character str_replace

to perform no replacements, if there are no underscores in
the field, then the result remains correct. Finally, a few
of the remaining uses were for SQL sanitization, such as
replacing ’,’ with "’,’". However, the application also uses
mysql_real_escape_string, so it remains safe from such
attacks.

6.5 Repair Generality and Fuzzing
The experiments in the previous subsections suggest that
GenProg repairs do not impair legitimate requests, an im-
portant component of repair quality. Two additional concerns
remain. First, repairs must not introduce new flaws or vulner-
abilities, even when such behavior is not tested by the input
test cases. To this end, Microsoft requires that security-critical
changes be subject to 100,000 fuzz inputs [42] (i.e., randomly
generated structured input strings). Similarly, we used the
SPIKE black-box fuzzer from immunitysec.com to generate
100,000 held-out fuzz requests using its built-in handling of
the HTTP protocol. The “Generic” column in Figure 11 shows
the results of supplying these requests to each program. Each
program failed no additional tests post-repair: for example,
lighttpd failed the same 1410 fuzz tests before and after the
repair. Second, a repair must do more than merely memorize
and reject the exact attack input: it must address the underlying
vulnerability. To evaluate whether the repairs generalize, we
used the fuzzer to generate 10 held-out variants of each exploit
input. The “Exploit” column shows the results. For example,
lighttpd was vulnerable to nine of the variant exploits (plus
the original exploit attack), while the repaired version defeated
all of them (including the original). In no case did GenProg’s
repairs introduce any errors that were detected by 100,000 fuzz

TBD, VOL. X, NO. Y, MONTH YEAR 14

Repair Requests Lost Requests Lost Fuzz Test Failures
Program Made? to Repair Time to Repair Quality Generic Exploit

Before After Before After
nullhttpd Yes 2.38%± 0.83% 0.00%± 0.25% 0 0 10 0
lighttpd Yes 2.03%± 0.37% 0.03%± 1.53% 1410 1410 9 0
php Yes 0.12%± 0.00% 0.02%± 0.02% 3 3 5 0
Quasi False Pos. 1 Yes 7.83%± 0.49% 0.00%± 2.22% 0 0 —
Quasi False Pos. 2 Yes 3.04%± 0.29% 0.57%± 3.91% 0 0 —
Quasi False Pos. 3 No 6.92%± 0.09% — —

Fig. 11: Closed-loop repair system evaluation. Each row represents a different repair scenario and is separately normalized so that the
pre-repair daily throughput is 100%. The nullhttpd and lighttpd rows show results for true repairs. The php row shows the results for
a repair that degrades functionality. The False Pos. rows show the effects of repairing three intrusion detection system false positives on
nullhttpd. The number after ± indicates one standard deviation. “Lost to Repair Time” indicates the fraction of the daily workload lost
while the server was offline generating the repair. “Lost to Repair Quality” indicates the fraction of the daily workload lost after the repair
was deployed. “Generic Fuzz Test Failures” counts the number of held-out fuzz inputs failed before and after the repair. “Exploit Failures”
measures the held-out fuzz exploit tests failed before and after the repair.

tests, and in every case GenProg’s repairs defeated variant
attacks based on the same exploit, showing that the repairs
were not simply fragile memorizations of the input.

The issue of repair generality extends beyond the security
examples shown here. Note that because this particular experi-
ment only dealt with the repair of security defects, fuzz testing
was more applicable than it would be in the general case.
Establishing that a repair to a generic software engineering
error did not introduce new failures or otherwise “overfit”
could also be accomplished with held out test cases or cross
validation.

6.6 Cost of Intrusion Detection False Positives

Finally, we examine the effect of IDS false positives when used
as a signal to GenProg. We trained the IDS on 534109 requests
from an independent dataset [39]; this process took 528 sec-
onds on a machine with quad-core 2.8 GHz and 8 GB of RAM.
The resulting system assigns a score to each incoming request
ranging from 0.0 (anomalous) to 1.0 (normal). However, the
IDS perfectly discriminated between benign and exploitative
requests in the testing workloads (no false negatives or false
positives), with a threshold of 0.02. Therefore, to perform
these experiments, we randomly selected three of the lowest-
scoring normal requests (closest to being incorrectly labeled
anomalous) and attempted to “repair” nullhttpd against them,
using the associated requests as input and a diff against
the baseline result for the negative test case; we call these
requests quasi-false positives (QFPs). The “False Pos.” rows
of Figure 11 show the effect of time to repair and requests
lost to repair when repairing these QFPs.

QFP #1 is a malformed HTTP request that includes quoted
data before the GET:
"[11/Nov/2008:12:00:53 -0500]"

GET /people/modify/update.php HTTP/1.1

The GenProg repair changed the error response be-
havior so that the response header confusingly includes
HTTP/1.0 200 OK while the user-visible body retains the cor-
rect 501 Not Implemented message, but with the color-coding
stripped. The header inclusion is ignored by most clients; the
second change affects the user-visible error message. Neither

causes the webserver to drop additional legitimate requests,
and Figure 11 shows no significant loss due to repair quality.

QFP #2 is a HEAD request; such requests are rarer than
GET requests and only return header information such as last
modification time. They are used by clients to determine if a
cached local copy suffices:
HEAD /˜user/mission_power_trace_movie.avi HTTP/1.0

The repair changes the processing of HEAD requests so that
the Cache-Control: no-store line is omitted from the re-
sponse. The no-store directive instructs the browser to store a
response only as long as it is necessary to display it. The repair
thus allows clients to cache pages longer than might be desired.
It is worth noting that the Expires: <date> also included in
the response header remains unchanged and correctly set to
the same value as the Date: <date> header (also indicating
that the page should not be cached), so a conforming browser
is unlikely to behave differently. Figure 11 indicates negligible
loss from repair quality.

QFP #3 is a relatively standard HTTP request:
GET /˜lcc-win32/lccwin32.css HTTP/1.1

GenProg fails to generate a repair within one run (240
seconds) because it cannot generate a variant that is successful
at GET index.html (one of the positive test cases) but fails the
almost identical QFP #3 request. Since no repair is deployed,
there is no subsequent loss to repair quality.

These experiments support the claim that GenProg produces
repairs that address the given errors and do not compromise
functionality. It appears that the time taken to generate these
repairs is reasonable and does not unduly influence real-world
program performance. Finally, the experiments suggest that the
danger from anomaly detection false positives is lower than
that of low-quality repairs from inadequate test suites, but that
both limitations are manageable.

7 DISCUSSION, LIMITATIONS, AND THREATS
The experiments in Section 5 and Section 6 suggest that
GenProg can repair several classes of errors in off-the-shelf
C programs efficiently. The experiments indicate that the
overhead of GenProg is low, the costs associated with false
positives and low-quality repairs are low, that the repairs
generalize without introducing new vulnerabilities, and that

TBD, VOL. X, NO. Y, MONTH YEAR 15

the approach may be viable when applied to real programs
with real workloads, even when considering the additional
concerns presented by a closed-loop detection and repair
system. However, there are several limitations of the current
work.

Non-determinism. GenProg relies on test cases to encode
both an error to repair and important functionality. Some
properties are difficult or impossible to encode using test cases,
such as nondeterministic properties; GenProg cannot currently
repair race conditions, for example. We note, however, that
many multithreaded programs, such as nullhttpd, can already
be repaired if the threads are independent. This limitation
could be mitigated by running each test case multiple times,
incorporating scheduler constraints into the GP representation
and allowing a repair to contain both code changes and
scheduling directives, or making multithreaded errors deter-
ministic [43]. There are certain other classes of properties,
such as liveness, fairness and non-interference, that cannot be
disproved with a finite number of execution examples; it is not
clear how to test or patch non-interference information flow
properties using our system.

Test suites and repair quality. GenProg defines repair
acceptability according to whether the patched program passes
the input test suite. Consequently, the size and scope of the
test suite can directly impact the quality of the produced
patch, even when minimized to reduce unnecessary changes.
Because the test cases don’t encode holistic design choices, the
repairs produced by GenProg are not always the same as those
produced by human developers. Repeated automatic patching
could potentially degrade source code readability, because
even though our patches are small in practice, they sometimes
differ from those provided by human developers. Related
research in automatic change documentation may mitigate this
concern [44]. Repairs may reduce functionality if too few test
cases are used, and the utility of the closed-loop architecture
in particular requires that a test suite be sufficient to guard
against lost functionality or new vulnerabilities. However, test
cases are more readily available in practice than specifications
or code annotations, and existing test case generation tech-
niques [45] could be used to provide new positive or negative
test cases and a more robust final check for patch validity.
We found in Section 6 that several security-critical patches
are robust in the face of fuzzed exploit inputs and do not
appear to degrade functionality. Additionally, the experiments
in Section 6 suggest that even repairs that reduce functionality
do not produce prohibitive effects in practice; these results
corroborate the precedent in previous work for this definition
of repair “acceptability” [14]. Ultimately, however, GenProg is
not designed to replace the human developer in the debugging
pipeline, as it is unable, in its current incarnation, to consider
higher-level design goals or in fact any program behavior
beyond that observed on test cases.

Results in Section 5.3 show that GenProg running time is
dominated by fitness evaluations. Too many test cases may
thus impede running time. However, GenProg has been shown
to integrate well with test suite selection techniques [35],
permitting speedups of 80% while finding the same repairs.

Fault localization. Fault localization is critical to the suc-

cess of GenProg; without weighting by fault localization, our
algorithm rarely succeeds (e.g., gcd fails 100% of the time).
GenProg scalability is predicated on accurate fault localization
using positive and negative test cases. In the current imple-
mentation, which makes use of a simple fault localization
technique, GenProg scales well when the positive and negative
test cases visit different portions of the program. In the case of
security-related data-only attacks, where good and bad paths
may overlap completely, the weighted path will not constrain
the search space as effectively, potentially preventing timely
repairs. More precise bug localization techniques [1] might
mitigate this problem, though fault localization in general
remains a difficult and unsolved problem. A related concern
is GenProg’s assumption that a repair can be adapted from
elsewhere in the same source code. This limitation could po-
tentially be addressed with a small library of repair templates
to augment the search space. In the case of a very large code
base, the randomized search process could be overwhelmed
by too many statements to select from. In such cases, new
methods could be developed for “fix localization.” We leave
further repair localization techniques as an avenue of future
work.

Intrusion detection. For the closed-loop system described
in Section 6.1, we used an intrusion detection system (IDS)
that does not apply to all fault types and does not actually
locate the fault. We note that fault isolation by the IDS
is not necessary to integrate with our proposed architecture
because GenProg does its own fault isolation using existing
techniques. Although success of our approach is limited to
faults that can be well-localized by lightweight techniques
(e.g., excluding data-only attacks), it also means that we do
not need to rely on an IDS that can pinpoint fault locations.
Instead, our proposed closed-loop system requires only a
monitoring system that can identify an input that leads to faulty
behavior—a significantly easier problem—and that permits the
construction of a negative test case (an input and an oracle).
We note that any limitations associated with intrusion detection
apply only to the closed-loop system evaluation and not to
GenProg in general.

Experimental validity. There exist several threats to the
validity of our results. Many of the parameters in the im-
plementation and experimental setup (e.g. Section 5.1) were
heuristically chosen based on empirical performance. They
may not represent the optimum set of parameter values,
representing a threat to construct validity (i.e., we may not
actually be measuring a well-tuned genetic algorithm for this
domain), although we note that they appear to work well in
practice.

Additionally, these parameters, as well as the patterns seen
in Figure 7 and Figure 11, might not generalize to other
types of defects or other programs, representing a threat to
the external validity of the results. The experiments focus
particularly on security-critical vulnerabilities in open-source
software, which may not be indicative of all programs or errors
found in industry. To mitigate this threat, we attempted to
select a variety of benchmarks and errors on which to evaluate
GenProg. More recent publications on the subject of this tech-
nique have added several additional benchmarks [35], [46]. We

TBD, VOL. X, NO. Y, MONTH YEAR 16

note that such benchmarks are often difficult to find in practice:
They require sufficient public information to reproduce an
error, access to the relevant source code and revision number,
and access to the correct operating environment to enable the
reproduction of a given error. Investigating whether the costs
reported in Section 6 are similar for other application domains
(e.g., bind or openssl) and for other types of errors (e.g., time-
of-check to time-of-use or unicode parsing problems) remains
an area of future research.

8 RELATED WORK

There are several research areas broadly related to the work
presented in this article: automatic bug detection/localization
and debugging, automatic error preemption/repair, automatic
patch generation, intrusion detection, genetic programming,
and search-based software engineering.

Research advances in debugging include replay debug-
ging [47] and cooperative bug isolation [1]. Trace localiza-
tion [48], minimization [49], and explanation [50] projects
also aim to elucidate faults and ease repairs. These approaches
typically narrow down a large counterexample backtrace (the
error symptom) to a few lines (a potential cause). However,
a narrowed trace or small set of program lines is not a
concrete repair. Second, GenProg can theoretically work on
any detected fault, not just those found by static analysis
tools that produce counterexamples. Finally, these algorithms
are limited to the given trace and source code and can thus
never localize the “cause” of an error to a missing statement;
adding or swapping code to address a missing statement is
necessary for many of our repairs. This research can be viewed
as complementary to ours; a defect found by static analysis
might be repaired and explained automatically, and both the
repair and the explanation could be presented to developers.
However, a common thread in debugging research is that,
while information or flexibility is presented to the developer,
repairs for unannotated programs must be made manually.

One class of approaches to automatic error preemption and
repair uses source code instrumentation and runtime moni-
toring to detect and prevent harmful effects from particular
types of errors. Demsky et al. [40] automatically insert run-
time monitoring code to detect if a data structure ever violates
a given formal consistency specification and modify it back
to a consistent state, allowing buggy programs to continue to
execute. Smirnov et al. [51], [52] automatically compile C
programs with integrated code for detecting overflow attacks,
creating trace logs containing information about the exploit,
and generating a corresponding attack signature and software
patch. DYBOC [15] instruments vulnerable memory alloca-
tions such that over- or underflows trigger exceptions that are
addressed by specific handlers.

Other research efforts have focused more directly on patch
generation. In previous work, we developed an automatic
static algorithm for soundly repairing programs with speci-
fications [31]. Clearview [14] uses runtime monitors to flag
erroneous executions, and then identify invariant violations
characterizing the failure, generates candidate patches that
change program state or control flow accordingly, and deploys

and observes those candidates on several program variants
to select the best patch for continued deployment. Selected
transactional emulation [53], executes potentially vulnerable
functions in an emulation environment, preventing them from
damaging a system using pre-specified repair approaches; a
more accurate approach uses rescue points [54]. Keromytis
et al. [16] proposed a system to counter worms by using
an intrusion detector to identify vulnerable code or memory
and preemptively enumerated repair templates to automatically
generate patches.

These and similar techniques have several drawbacks. First,
they require an a priori enumeration of vulnerability types
and possible repair approaches, either through the use of
formal specifications, or the use of external runtime mon-
itors or predefined error and repair templates. In practice,
despite recent advances in specification mining (e.g., [55],
[56]), formal specifications are rarely available; none of the
programs presented in this article are specified. Moreover,
specifications are limited in the types of errors they can find
and fix, and cannot repair multithreaded code or violations of
liveness properties (e.g., infinite loops). Although some of the
non-specification based techniques are theoretically applicable
to more than one type of security vulnerability, typically,
evaluations are limited to buffer over- and underflows. The
exception to this rule, Clearview, is shown to also address
illegal control-flow transfers, but is limited by the availability
of external monitors for any given vulnerability type. By
contrast, GenProg, designed to be generic, does not require
formal specifications or advanced knowledge of vulnerability
types and has successfully repaired 8 classes of errors to date,
including buffer overruns.

Second, these techniques require either source code instru-
mentation (Smirnov, Demsky), which increases source code
size (by 14% on Apache in DYBOC), run-time monitoring
(DYBOC, Clearview, Keromytis et al., StemSead), or virtual
execution (Clearview, selected transactional emulation), im-
posing substantial run-time overhead (20% for DYBOC, up
to 150% for Smirnov, 73% on Apache for StemSead, 47%
on Firefox for Clearview and, in general, at least the run-
time cost of the chosen monitors). GenProg does not impose
preemptive performance or size costs, and minimizes patches
as much as possible, though in theory generated patches can
be of arbitrary size. Our patches are also much more localized
than a system that requires system-wide instrumentation and
are easily inspected by a human.

Third, these approaches do not evaluate generated repairs
for quality or repaired programs for loss of functionality
(the Clearview authors note that a manual inspection of their
repaired program suggests that functionality is not dramati-
cally impaired). Similarly, they do not evaluate the effect of
runtime monitor false positives. While we cannot guarantee
correctness, GenProg explicitly encodes testing a patch for
correctness with its use of regression tests in fitness evaluation.
GenProg produces patches with low overhead in terms of
repair time and quality, we have explicitly evaluated the
effect of IDS false positives on system performance and used
standard methods to show that they are general.

In 2008, a method for automatically generating exploits

TBD, VOL. X, NO. Y, MONTH YEAR 17

from program patches was described [57], generating concern
that the method could be used by attackers. Although there are
questions about the validity of this threat, it is worth noting that
there is no need in our system to distribute a patch. A negative
test case can be distributed as a self-certifying alert [58], and
individual systems can generate their own repairs.

There is a large literature on intrusion detection for web
servers, including anomaly-based methods (e.g., [59]). In
principle, many of those techniques, such as those of Kruegel
and Vigna [60], Tombini et al. [61], and Wang and Stolfo [62],
could be incorporated directly into our proposed closed-loop
repair system. Non-webserver programs would require other
types of anomaly detection, such as methods that track other
layers of the network stack, or that monitor system calls or
library calls. Other approaches, such as instruction-set ran-
domization [63] or specification mining [64] could also report
anomalies for repair. In each of these systems, however, false
positives remain a concern. Although Section 6.6 provides
evidence that false positives can be managed, a fielded system
could incorporate multiple independent signals, initiating a
repair only when they agree. Finally, false positives might be
reduced by intelligently retraining the anomaly detector after
the patch has been applied [65].

Arcuri [20], [66] proposed the idea of using GP to automate
the coevolution of repairs to software errors and unit test cases,
demonstrating the idea on a hand-coded example of the bubble
sort algorithm. The details of our approach are quite different
from Arcuri’s proposal, allowing us to demonstrate practical
repairs on a wide variety of legacy programs. Important differ-
ences include: We leverage several representation choices to
permit the repair of real programs with real bugs; We minimize
our high-fitness solution after the evolutionary search has
finished instead of controlling “code bloat” along the way; We
use execution paths to localize evolutionary search operators;
and we do not rely on a formal specifications for fitness
evaluation. Several aspects of Arcuri’s work could augment
our approach, such as using co-evolutionary techniques to gen-
erate or select test cases. However, his work relies on formal
specifications, which limits both the programs to which it may
apply and its scalability. Orlov and Sipper have experimented
with evolving Java bytecode [67], using specially designed
operators to modify the code. However, our work is the first
to report substantial experimental results on real programs with
real bugs. Recently, Debroy and Wong have independently
validated that mutations targeted to statements likely to contain
faults can affect repairs without human intervention [68].

The field of Search-Based Software Engineering
(SBSE) [69] uses evolutionary and related methods for
software testing, e.g., to develop test suites [70], [71], [72].
SBSE also uses evolutionary methods to improve software
project management and effort estimation [73], to find safety
violations [74], and in some cases to re-factor or re-engineer
large software bases [75]. In SBSE, most innovations in the
GP technique involve new kinds of fitness functions, and
there has been less emphasis on novel representations and
operators, such as those we explored in this article.

9 CONCLUSIONS

This article presents GenProg, a technique that uses genetic
programming (GP) to evolve a version of a program that
retains required functionality while avoiding a particular error.
We limit the GP search space by restricting attention to
statements, focusing genetic operations along a weighted path
that takes advantage of test case coverage information, and
re-using existing program statements. We use tree-structured
differencing techniques and delta-debugging to manage GP-
generated dead code and produce a 1-minimal repair. We
validate repairs in terms of an input set of test cases.

We used GenProg to repair 16 programs totaling over 1.25
million lines of code and encompassing 8 different errors
types in 120K lines of program or module code, in 357
seconds, on average; the technique shows encouraging scaling
behavior. We evaluated the quality of the generated repairs in
the context of a proof-of-concept closed-loop repair system
and showed that, for our case-study benchmarks, time lost to
the repair process and requests lost to repair quality are both
manageable, and in some cases negligible. We showed that
IDS false positives similarly represent a manageable threat.
Finally, we evaluated our repaired programs on held out test
cases, fuzzed inputs, and variants of the original defect, finding
that the repairs do not appear to introduce new vulnerabilities,
nor do they leave the program susceptible to variants of the
original exploit.

We credit much of the success of this technique to design
decisions that limit the search space, traditionally a serious
difficulty in applying GP to real-world programs. We believe
that our success in evolving automatic repairs may say as
much about the state of today’s software as it says about
the efficacy of our method. In modern environments, it is
exceedingly difficult to understand an entire software package,
test it adequately, or localize the source of an error. In this
context, it should not be surprising that human programming
often has a large trial and error component, and that many
bugs can be repaired by copying code from another location
and pasting it in to another, an approach that is not so different
from the one described here.

In the short term, GenProg may provide utility as a de-
bugging aid [31] or by temporarily addressing bugs that
would otherwise take days to patch or require detrimental
temporary solutions, a use-case we explored in our closed-
loop repair prototype. In the long term, the technique we have
described leaves substantial room for future investigation into
the repair of new types of bugs and programs and the effects
of automatic repair on program readability, maintainability,
and quality. While we remain far from realizing the long-term
dream of ‘automatic programming’—a vision dating back to
earliest days of computing—we hope that automatic repair
may provide a first step towards the automation of many
aspects of the software development process.

ACKNOWLEDGMENTS

We thank David E. Evans, Mark Harman, John C. Knight,
Anh Nguyen-Tuong, and Martin Rinard for insightful dis-
cussions. SF and WW gratefully acknowledge the support

TBD, VOL. X, NO. Y, MONTH YEAR 18

of the National Science Foundation (grant CCF-0905236),
Air Force Office of Scientific Research grant FA8750-11-2-
0039and MURI grant FA9550-07-1-0532, and DARPA grant
FA8650-10-C-7089. SF acknowledges the partial support of
CCF-0621900 and CCR-0331580; WW acknowledges the
partial support of CCF-0954024 and CNS-0716478.

REFERENCES
[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation

via remote program sampling,” in Programming Language Design and
Implementation, 2003, pp. 141–154.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in OOPSLA workshop on Eclipse technology eXchange,
2005, pp. 35–39.

[3] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-
sional, vol. 2, no. 3, pp. 17–23, 2000.

[4] C. V. Ramamoothy and W.-T. Tsai, “Advances in software engineering,”
IEEE Computer, vol. 29, no. 10, pp. 47–58, 1996.

[5] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[6] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 33–53, 2007.

[7] J. Sutherland, “Business objects in corporate information systems,” ACM
Comput. Surv., vol. 27, no. 2, pp. 274–276, 1995.

[8] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Software
Eng., vol. 13, no. 2, p. 222, February 1987.

[9] T. Ball and S. K. Rajamani, “Automatically validating temporal safety
properties of interfaces,” in SPIN Workshop on Model Checking of
Software, May 2001, pp. 103–122.

[10] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in OOPSLA
companion, 2004, pp. 132–136.

[11] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless frame-
work for security through diversity,” in USENIX Security Symposium,
2006.

[12] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Sixth Workshop on Hot Topics in Operating Systems, 1998.

[13] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
International Conference on Software Engineering, 2006, pp. 361–370.

[14] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in ACM Symposium on Operating Systems
Principles, October 2009, pp. 87–102.

[15] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A dynamic mech-
anism for recovering from buffer overflow attacks.” in Information
Security, 2005, pp. 1–15.

[16] S. Sidiroglou and A. D. Keromytis, “Countering network worms through
automatic patch generation,” IEEE Security and Privacy, vol. 3, no. 6,
pp. 41–49, 2005.

[17] S. Forrest, “Genetic algorithms: Principles of natural selection applied
to computation,” Science, vol. 261, pp. 872–878, Aug. 13 1993.

[18] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[19] “36 human-competitive results produced by genetic programming,” http:
//www.genetic-programming.com/humancompetitive.html, Downloaded
Aug. 17, 2008.

[20] A. Arcuri, D. R. White, J. Clark, and X. Yao, “Multi-objective improve-
ment of software using co-evolution and smart seeding,” in International
Conference on Simulated Evolution And Learning, 2008, pp. 61–70.

[21] S. Gustafson, A. Ekart, E. Burke, and G. Kendall, “Problem difficulty
and code growth in genetic programming,” Genetic Programming and
Evolvable Machines, pp. 271–290, sept 2004.

[22] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as inconsistent behavior:
A general approach to inferring errors in systems code,” in Symposium
on Operating Systems Principles, 2001, pp. 57–72.

[23] R. Al-Ekram, A. Adma, and O. Baysal, “DiffX: an algorithm to detect
changes in multi-version XML documents,” in Conference of the Centre
for Advanced Studies on Collaborative research, 2005, pp. 1–11.

[24] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
in Foundations of Software Engineering, 1999, pp. 253–267.

[25] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in International Conference
on Software Engineering, 2009, pp. 364–367.

[26] S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Genetic and
Evolutionary Computing Conference, 2009.

[27] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications of the
ACM, vol. 53, no. 5, pp. 109–116, May 2010.

[28] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: An infras-
tructure for C program analysis and transformation,” in International
Conference on Compiler Construction, Apr. 2002, pp. 213–228.

[29] A. Eiben and J. Smith, Introduction to Evolutionary Computing.
Springer, 2003.

[30] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection schemes,
and the varying effects of noise,” Evol. Comput., vol. 4, no. 2, pp. 113–
131, 1996.

[31] W. Weimer, “Patches as better bug reports,” in Generative Programming
and Component Engineering, 2006, pp. 181–190.

[32] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.

[33] BBC News, “Microsoft zune affected by ‘bug’,” in http://news.bbc.co.
uk/2/hi/ technology/7806683.stm, Dec. 2008.

[34] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
1990.

[35] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing better
fitness functions for automated program repair,” in Genetic and Evolu-
tionary Computing Conference, 2010.

[36] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in ICGA, 1995, pp. 184–192.

[37] Symantec, “Internet security threat report,” in http://eval.symantec.com/
mktginfo/enterprise/white papers/ent-whitepaper symantec internet
security threat report x 09 2006.en-us.pdf , Sep. 2006.

[38] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent
adaptive replay of application dialog,” in Network and Distributed
System Security Symposium, 2006.

[39] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest, “Learning dfa
representations of http for protecting web applications,” Computer
Networks, vol. 51, no. 5, pp. 1239–1255, 2007.

[40] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard, “Inference and enforcement of data structure consistency
specifications,” in International Symposium on Software Testing and
Analysis, 2006, pp. 233–244.

[41] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generat-
ing signatures for polymorphic worms,” in IEEE Symposium on Security
and Privacy, 2005, pp. 226–241.

[42] M. Howard and S. Lipner, The Security Development Lifecycle. Mi-
crosoft Press, 2006.

[43] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in Programming Language Design
and Implementation, 2007, pp. 446–455.

[44] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in International Conference on Automated Software Engineer-
ing, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp. 33–42.

[45] K. Sen, “Concolic testing,” in Automated software engineering, 2007,
pp. 571–572.

[46] E. Schulte, S. Forrest, and W. Weimer, “Automated program repair
through the evolution of assembly code,” in Automated Software En-
gineering, 2010.

[47] L. Albertsson and P. S. Magnusson, “Using complete system simulation
for temporal debugging of general purpose operating systems and work-
load,” in International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 2000, p. 191.

[48] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause:
localizing errors in counterexample traces,” SIGPLAN Not., vol. 38,
no. 1, pp. 97–105, 2003.

[49] A. Groce and D. Kroening, “Making the most of BMC counterexam-
ples,” in Electronic Notes in Theoretical Computer Science, vol. 119,
no. 2, 2005, pp. 67–81.

[50] S. Chaki, A. Groce, and O. Strichman, “Explaining abstract counterex-
amples,” in Foundations of Software Engineering, 2004, pp. 73–82.

[51] A. Smirnov and T.-C. Chiueh, “Dira: Automatic detection, identification
and repair of control-hijacking attacks,” in Network and Distributed
System Security Symposium, 2005.

[52] A. Smirnov, R. Lin, and T.-C. Chiueh, “Pasan: Automatic patch and
signature generation for buffer overflow attacks,” in SSI, 2006.

TBD, VOL. X, NO. Y, MONTH YEAR 19

[53] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D. Keromytis, “From
stem to sead: speculative execution for automated defense,” in USENIX
Annual Technical Conference, 2007, pp. 1–14.

[54] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: automatic software self-healing using rescue
points.” in ASPLOS, 2009, pp. 37–48.

[55] C. Le Goues and W. Weimer, “Specification mining with few false
positives.” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2009, pp. 292–306.

[56] B. Livshits, A. Nori, S. Rajamani, and A. Banerjee, “Merlin: Specifica-
tion Inference for Explicit Information Flow Problems,” in Programming
Language Design and Implementation, 2009, pp. 75–86.

[57] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” IEEE
Symposium on Security and Privacy, vol. 0, pp. 143–157, 2008.

[58] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: End-to-end containment of internet worm
epidemics,” ACM Trans. Comput. Syst., vol. 26, no. 4, pp. 1–68, 2008.

[59] “Recent advances in intrusion detection,” in RAID, ser. Lecture Notes in
Computer Science, R. Lippmann, E. Kirda, and A. Trachtenberg, Eds.,
vol. 5230. Springer, 2008.

[60] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in
Computer and Communications Security, 2003, pp. 251–261.

[61] E. Tombini, H. Debar, L. Mé, and M. Ducassé, “A serial combination of
anomaly and misuse IDSes applied to http traffic,” in Computer Security
Applications Conference, 2004.

[62] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in Proc. of Recent Advances in Intrusion Detection: 7th
Intnl. Symp, ser. Lecture Notes in Computer Science, vol. 3224, Sophia
Antipolis, FR, 2004, pp. 203–222.

[63] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans,
J. C. Knight, A. Nguyen-Tuong, and J. C. Rowanhill, “Secure and
practical defense against code-injection attacks using software dynamic
translation,” in Virtual Execution Environments, 2006, pp. 2–12.

[64] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extraction of
object-oriented component interfaces,” in International Symposium of
Software Testing and Analysis, 2002, pp. 218–228.

[65] M. E. Locasto, G. F. Cretu, S. Hershkop, and A. Stavrou, “Post-patch
retraining for host-based anomaly detection,” Columbia University, Tech.
Rep. CUCS-035-07, Oct. 2007.

[66] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in IEEE Congress on Evolutionary Computation,
2008.

[67] M. Orlov and M. Sipper, “Genetic programming in the wild: Evolv-
ing unrestricted bytecode,” in Genetic and Evolutionary Computation
Conference, 2009, pp. 1043–1050.

[68] V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in International Conference on Software
Testing, Verification, and Validation, 2010, pp. 65–74.

[69] M. Harman, “The current state and future of search based software
engineering,” in International Conference on Software Engineering,
2007, pp. 342–357.

[70] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos, “Time-aware test
suite prioritization,” in International Symposium on Software Testing and
Analysis, 2006.

[71] S. Wappler and J. Wegener, “Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming,” in Conference on
Genetic and Evolutionary Computation, 2006, pp. 1925–1932.

[72] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software
test data by evolution,” Transactions on Software Engineering, vol. 27,
no. 12, pp. 1085–1110, 2001.

[73] A. Barreto, M. de O. Barros, and C. M. Werner, “Staffing a software
project: a constraint satisfaction and optimization-based approach,”
Computers and Operations Research, vol. 35, no. 10, pp. 3073–3089,
2008.

[74] E. Alba and F. Chicano, “Finding safety errors with ACO,” in Conference
on Genetic and Evolutionary Computation, 2007, pp. 1066–1073.

[75] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in Conference on Genetic and Evolutionary Computation,
2006, pp. 1909–1916.

PLACE
PHOTO
HERE

Claire Le Goues received the BA degree in
computer science from Harvard University and
the MS degree from the University of Virginia,
where she is currently a graduate student. Her
main research interests lie in combining static
and dynamic analyses to prevent, locate, and
repair errors in programs.

PLACE
PHOTO
HERE

ThanhVu Nguyen ThanhVu Nguyen receives
BS and MS degrees in computer science from
the Pennsylvania State University and is cur-
rently a graduate student student at the Univer-
sity of New Mexico. His current research inter-
ests include using static and dynamic analyses
to verify programs.

PLACE
PHOTO
HERE

Stephanie Forrest received the BA degree from
St. John’s College and the MS and PhD degrees
from the University Michigan. She is currently a
Professor of Computer Science at the University
of New Mexico and a member of the External
Faculty of the Santa Fe Institute. Her research
studies complex adaptive systems, including im-
munology, evolutionary computation, biological
modeling, and computer security.

PLACE
PHOTO
HERE

Westley Weimer received the BA degree in
computer science and mathematics from Cornell
University and the MS and PhD degrees from
the University of California, Berkeley. He is cur-
rently an associate professor at the University
of Virginia. His main research interests include
static and dynamic analyses to improve software
quality and fix defects.

