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Abstract—There is a substantial and growing body of malware samples that evade automated analysis and detection tools. Malware
may measure fingerprints (“artifacts”) of the underlying analysis tool or environment, and change their behavior when such artifacts are
detected. While analysis tools can mitigate artifacts to reduce exposure, such concealment is expensive and limits scalable automated
malware analysis. However, not every sample checks for every type of artifact—analysis efficiency can be improved by mitigating only
those artifacts most likely to be used by a sample. Using that insight, we propose MIMOSA, a system that identifies a small set of
“covering” configurations that collectively and efficiently defeat most malware samples in a corpus. MIMOSA identifies a set of
configurations that maximize analysis throughput and detection accuracy while minimizing manual effort, enabling scalable automation
for analyzing stealthy malware. We evaluate our approach against a benchmark of 1535 meticulously labeled stealthy malware
samples. We further test our approach on an additional set of 1221 stealthy malware samples and successfully analyze nearly 99% of
them using only 2 VM backends. MIMOSA provides a practical, tunable method for efficiently deploying malware analysis resources.

Index Terms—Malware analysis, covering sets, artifact mitigation

✦

1 INTRODUCTION

Malware continues to proliferate, significantly eroding
user and corporate privacy and trust in computer sys-
tems [1], [2], [3], [4]. Malwarebytes 2022 Threat Review
reports a 77% increase in malicious software detected from
2020–2021 as well as an 85% increase in detection num-
bers for Windows business threats compared to 2019 [5].
SonicWall detected around 10 billion malware attacks in
2019 [6]. Keeping abreast of this large volume of malware
requires effective scalable malware analysis techniques.

Once a malware sample has been detected and ana-
lyzed, automated techniques such as signature matching can
quickly identify other copies. Understanding novel malware
samples, however, requires lengthy analysis using both au-
tomated and manual techniques [7], [8]. Analysts frequently
execute samples under laboratory setups [9], [10] using vir-
tualization. This includes not only virtual machine monitors
like VMWare [11], Xen [12], and VirtualBox [13], but also
tools that depend on virtualization such as Ether [14], Hy-
perDbg [15], or Spider [16]. Executing the malware sample
in a controlled environment allows the analyst to observe
its behavior safely. If malware causes damage, the damage
is limited to the virtualized environment, which can be
destroyed and restarted to analyze subsequent samples.
Virtualization is now a lynchpin of computer security and
analysis applications [17], [18], [19], [20], [21].

As these malware analysis methods have matured, mal-
ware authors have in turn adopted evasive, or stealthy,
techniques to avoid or subvert automated analysis [22],
[23], [24]. For example, Chen et al. [23] reported that 40%
of malware samples hide or reduce malicious behavior

when run in a VM or with a debugger attached. Stealthy
malware techniques include anti-debugging [23], [25], [26],
anti-virtualization [27], [28], and anti-emulation [29]. These
methods detect a particular feature, or artifact, of the analy-
sis environment which allows the malware to determine if it
is being analyzed. When an artifact is detected, the malware
can avoid executing its malicious payload, thereby hiding its
true function from the analyst. Table 1 summarizes common
artifacts, derived from Zhang et al. [30]. Studying the behav-
ior of stealthy malware requires that the analyst mitigate the
artifacts by configuring the environment in a way that pre-
vents detection by the malware. Over time, malware authors
have discovered a wide diversity of artifact types, which
has increased the time required to manually determine the
best mitigation strategy for each malware sample; however,
this process has proven difficult to automate. As malware
authors discover new artifacts, analysts must develop new
mitigations, raising the cost and complexity of analysis.

Balzarotti et al. describe how stealthy malware samples
check for evidence of analyses and behave differently when
they are present [31]. They classify stealthy malware by
running samples under multiple environments and using
the differences between those runs, especially in terms of
patterns of system call execution, to characterize evasive
behavior. For example, if a sample is executed under both
VMWare [11] and VirtualBox [13], and the VMWare instance
does not exhibit malicious behavior, one can conclude that
the sample detects VMWare-specific artifacts (e.g., [32]).
Many techniques, from machine learning [33] to symbolic
execution and traces [34] to hybrid dynamic analyses [35],
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among others, have been proposed to tackle this problem
of environment-aware malware—even as new black-hat ap-
proaches for stealthy evasion (e.g., [36], [37]) emerge.

This paper presents MIMOSA1 to address the need
for high-throughput, low-overhead automated analysis of
stealthy malware. MIMOSA’s key insight is that any one mal-
ware sample is likely to use a small set of artifacts to detect
its analysis environment, and that multiple configurations
(i.e., provisioned VM instances) can collectively mitigate a
large number of these artifacts for a given malware dataset.
We propose using coverings from the software testing liter-
ature [38] to find a small set of analysis configurations that
collectively cover (mitigate) the techniques used by most
stealthy malware samples while minimizing the cost of each
individual analysis configuration. MIMOSA can be used as
part of an automated malware analysis or triage system to
help detect and understand new stealthy malicious samples.

We extend the previous state-of-the-art to consider both
the cost and coverage of artifact mitigation strategies. Given
the popularity of stealthy malware and the increasing num-
ber of anti-stealth techniques, the question is no longer
whether or not evasion should be mitigated, but which set
of techniques should be used for a particular sample to
minimize the likelihood of analysis detection. Since samples
often use combinations of artifacts to evade detection [22],
this is not a simple decision. Because each stealth mitigation
technique comes with associated costs—development time,
deployment time, CPU time, memory and disk utilization,
runtime overhead, etc.—compared to a bare-metal or bare-
VM setup. These costs are critical because the rate at which
new malware is deployed [39] combined with the time and
resources required to complete each analysis has led to a
situation in which analysis time can be a bottleneck [40].

MIMOSA uses a notion of coverings that describe the
mitigations associated with classes of stealthy malware as
well as the cost (e.g., runtime overhead, development time,
system memory, disk utilization, etc.) to deploy these mit-
igations. We present an algorithmic approach to deduce a
small number of Pareto-optimal configurations that maxi-
mize coverage (i.e., the fraction of stealthy samples that can
be analyzed successfully) and minimize cost, according to a
user-provided cost model.

Once we devise a set of covering configurations, we train
a classifier that, given a new malware sample, predicts the
best single configuration that is most likely to successfully
analyze that input sample. In this way, given a large corpus
of unseen malware, we ideally execute these samples on
existing configurations predicted by our classifier. In the
worst case, new configurations must be developed and the
classifier finetuned on a random subset of samples from the
new corpus. Then we attempt to execute each sample on
its predicted configuration, facilitating efficient and scalable
analysis on new malware corpora.
To summarize, the main contributions of this paper are:

• A new algorithm for identifying a low-cost set of arti-
fact covering configurations for malware analysis;

• MIMOSA, a system for selecting and deploying covering
combinations of artifact mitigations to maximize analy-

1. MIMOSA: Malware Instrumentation with Minimized Overhead for
Stealthy Analysis.

sis throughput and accuracy;
• An empirical study of 1535 labeled stealthy malware

samples from the wild, demonstrating that MIMOSA
achieves high coverage of stealthy malware and high
automated analysis throughput;

• A follow-on study of the Bluepill dataset [41] where MI-
MOSA successfully analyzes 1207/1221 unseen malware
samples.

• Open-source software for scalable analysis
of evasive malware. MIMOSA is available at
https://github.com/sandbornm/MIMOSA.

2 BACKGROUND

Stealthy Malware We call malware stealthy if it actively
seeks to detect, disable, or otherwise subvert malware
analysis tools. Stealthy malware operates by checking for
signatures, or artifacts, associated with various analysis tools
or techniques. For example, a malware sample may invoke
the isDebuggerPresent Win32 API call to determine
whether a debugger is attached to the process—if a debug-
ger is attached, the sample may conclude that an analyst
is instrumenting it and change its behavior accordingly.
Briefly, stealthy malware samples use artifacts as heuristics
to determine if they are under analysis, and change their
behavior to subvert the tool.

Stealthy, evasive malware has been studied exten-
sively [40] and is of increasing concern in industrial settings,
with companies such as Minerva and Lastline marketing
solutions for detecting stealthy malware. In addition, stealth
is often a property gained through the use of packers [42],
[43], [44] that can systematically change malware statically
to evade detection and subvert analysis. Thus, there is a
need for defensive methods that can keep up with the
escalating arms race with malware.

An artifact is information about the execution environ-
ment that a malware sample can use to determine if it is
running non-natively. For example, if a malware sample
checks whether a debugger is attached to it, that sample
may behave differently in an attempt to conceal its true
behavior from an analyst using the debugger. For any given
artifact, there can be multiple artifact mitigation strategies for
preventing exposure of the artifact to the sample.

Although it is possible to obtain certain artifacts of
stealthy malware statically (e.g., strings), malware samples
may employ obfuscation or packing techniques which limit
static approaches. Static analysis can also be prone to false
positives and does not provide execution behavior of a
sample to be leveraged in the analysis of future samples.

Each artifact mitigation strategy (i.e. specific handling
of an observed artifact) comes with an associated mitigation
cost, which captures overhead, development effort, or other
economic disadvantage, and artifact coverage, which is the
fraction of stealthy samples defeated by the strategy.

Earlier work [31], [45] used observed differences be-
tween runs in disparate environments to determine which
artifacts are used by a stealthy malware sample. Historically,
however, such approaches have not involved many analysis
environments, instead focusing on case studies that compare
runs between limited numbers of virtualization environ-
ments. Given the growing number of malware mitigation
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Fig. 1: VM process names (left) and artifacts detected by
samples of the stealthy malware dataset used to create
MIMOSA’s configurations (right).

techniques, there is a need for techniques that enable fine-
grained control over the artifacts exposed by the analysis en-
vironment. By precomputing a set of configurations that can
be tested in parallel and reused for new malware samples,
we hypothesize that MIMOSA will both increase coverage
and analysis scalability of stealthy malware compared to
existing automated malware analysis techniques.

Machine Learning in Malware Analysis Machine learn-
ing has recently garnered attention for automatic malware
analysis, particularly for classifying malware samples [46].
Previous works used classical machine learning algorithms
such as decision trees [47] and clustering [48], but recent
literature has leveraged deep learning to combat the del-
uge of new malware variants. Specifically, prior work has
seen successful performance on representations of the raw
binary as byte sequences [49] and byte images [50]. For our
framework, we use deep learning to automatically assign
malware binaries to a feasible configuration for increased
scalability (i.e., to avoid running each sample in every
configuration). Past classifiers have seen success in deter-
mining whether or not a sample is malicious [48], [50], [51],
but there is limited actionable information from this result
with respect to individual sample behavior. Here, we use
machine learning to predict which configuration is expected
to execute an input sample, which provides richer infor-
mation about each sample’s behavior with reduced human
effort when it executed on a predicted configuration. Naeem
et al. [52] uses computer vision to classify representative
images from 10,000 malware binaries to up to 9 malware
families. However, these samples are not stealthy and the
approach does not directly enable collection of per-sample
behavioral information in an automated analysis setting.

3 PROPOSED WORKFLOW

In this section, we describe the MIMOSA framework that
automatically analyzes stealthy malware efficiently. Current
techniques either rely on human creativity (e.g., debugging
with IDA Pro [53] or OllyDbg [54]) or heavy-weight analysis
techniques that incur substantial overhead (e.g., MalT [30],
Ether [14], Ghidra [55], or LO-PHI [24]). Moreover, differenc-
ing approaches, such that of as Balzarotti et al. [31], execute
a sample in multiple instrumented environments and use
the difference in runs to determine which artifact is used by
the sample, potentially wasting resources.

Given (1) a list of available artifacts, (2) strategies avail-
able for mitigating them, and (3) a cost model of mitigation
strategies, MIMOSA’s objective is to select a small set of

TABLE 1: Taxonomy of 9 VM artifacts detected by stealthy
malware [30] that motivated MIMOSA configurations.

Artifact Name Artifact Description

Hardware ID VMs with obvious strings (e.g.,
“VMWare Drive”) or identifiers
(e.g., MAC address).

Registry Key Windows VMs have telling registry
keys (e.g., dates and times of VM
creation).

CPU behavior VMs may not faithfully reproduce
CPU instructions.

Resource constraint Analysis VMs may have sparse re-
sources (e.g., <20GB disk)

Timing VMs may not virtualize internal
timers, or may incur noticeable
overhead

Debugger Presence Tools like gdb that instrument sam-
ples are detectable

API Calls API calls hooked for analysis may
be detectable.

Process Names VM monitoring processes have
specific names (e.g., vmtoolsd in
VMWare).

HCI check the human interactions with
system (e.g. keyboard activity)

configurations that cover as many stealthy malware samples
as possible2. Predicted configurations can then be deployed
on a fixed number of servers for efficient analysis of stealthy
malware samples.

Broadly, the configurations shown in Table 2 were con-
structed from in-depth analysis of the original dataset of
1535 stealthy malware samples, including execution traces
and process activity. The breakdown of artifacts and VMs
detected from this dataset is shown in Figure 1. Given
the relatively small number of VM backends, coupled with
the artifact taxonomy in Table 1, we intuit that our initial
MIMOSA configurations can effectively generalize to new
stealthy malware samples. This is borne out in Section 6.3.

For a new malware sample that is suspected but not
known with certainty to exhibit stealthy behavior (e.g., us-
ing signature matching or other static heuristics), MIMOSA
predicts the configuration best suited for the sample to
execute in based on a low-cost, high-coverage subset of con-
figurations provided by our covering algorithm. Each subset
of configurations is meant to mitigate a different specific
subset of artifacts. Next, depending on available resources,
the sample is scheduled to run on one (or optionally more)
predicted configurations. After attempting to execute the
sample, we examine analysis logs to determine if the sample
executed without detecting analysis. If the sample executed,
we record its behavior and proceed with the next sample.
Otherwise, we select the next best configuration based on
the classifier prediction until the sample executes. If a sam-
ple does not execute successfully on any available config-

2. that is, the malware sample runs without detecting environment
instrumentation.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346328

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 08,2024 at 03:31:27 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 4

uration, it must be manually analyzed to understand the
aspects of stealthy behavior that are not mitigated by extant
configurations. In this way, MIMOSA can continually learn
and incorporate correct predictions into subsequent deci-
sions about unseen evasive malware samples. This offers
the benefit of reduced human effort required to analyze new
stealthy samples while also ensuring efficient use of analysis
resources. Additionally, by identifying configurations where
suspected stealthy malware samples will faithfully execute,
MIMOSA offers an improvement over static techniques by
collecting specific behaviors during program execution.

MIMOSA’s workflow is illustrated in Figure 2. In Step
1, pre-processing for a new malware corpus works by
manually reverse engineering a random subset of samples
to obtain artifacts and corresponding mitigations. In this
case, new samples are fed to the trained classifier to predict
configurations in which to execute the sample. In Step 2,
we apply our covering algorithm, which takes (1) a list of
artifacts, (2) corresponding costs to mitigate each artifact
(Section 4.1), and (3) a set of mitigation strategies for each
artifact (Section 4.2) as input. The algorithm returns a Pareto
frontier of covering sets of configurations for designing and
deploying different analysis environments. Each covering is
represented as a vector of bits, where each element indi-
cates whether that artifact is mitigated in the environment’s
configuration. The cost model can include a multitude of
factors including VM run-time, memory usage, mitigation
development time, etc.

Next, these coverings are realized in a malware analysis
cluster by configuring specific computing resources. We
use VMCloak [21] to provision VMs within our framework
to communicate with the Cuckoo agent [56] during the
analysis of a sample in order to collect behavioral artifacts.

Coverings generated by MIMOSA mitigate commonly-
used artifacts by stealthy malware samples (e.g., using
QEMU or VirtualBox as a virtualization backend, hooking
certain API calls like isDebuggerPresent, or using spe-
cific kernel modules or drivers).

Each configuration can be deployed on one or more
servers within the analysis cluster. We assume access to a
suite of hypervisors and hardware resources that can be
configured a priori to realize the set of mitigations specified
by the covering. We implemented 13 such hypervisor and
hardware configurations (Table 2), managed by our Dis-
patcher module to spin up and spin down analysis resources
as samples are processed.

In Step 3, the trained classifier predicts the configura-
tion(s) in which to run the sample based on the artifacts
likely to be engaged by the sample. This classifier is trained
from a small subset of the malware corpus that we assume
has been manually analyzed to reveal defects and may
either be used out of the box or after finetuning on a subset
of new samples, depending on desired performance.

Each sample in turn is then executed as a process within
the predicted configuration using Cuckoo Sandbox [56].
As the process runs, MIMOSA collects API traces and VM
state logs through Virtual Machine Introspection (VMI). In
Step 4, we analyze the logs and JSON report generated by
the Cuckoo agent during sample execution to determine
whether the sample executed. These heuristics include,
for example, process exit codes, process names, process

lifetimes, file operations, loaded libraries, API calls, and
registry key modifications.

We conclude that a sample has faithfully executed
(i.e., it does not detect its environment) if it contains
“behavior” data in the JSON report generated by the
Cuckoo analysis agent but does not trigger the heuris-
tic detection (i.e., evasive behavior is mitigated). For ex-
ample, a sample that calls GetSystemInfo and receives
a cpu count less than 2 has detected the analysis envi-
ronment according to the cpu detection heuristic. Simi-
larly, a sample that calls any of GetFileAttributesW,
GetFileAttributesA, NtCreateFile with a VM
driver (e.g. Vboxservice.exe) as an argument has de-
tected the analysis environment according to the driver de-
tection heuristic. The detection heuristics are extensible but
not perfect; MIMOSA prioritizes the performance improve-
ment of accelerated analysis over potential false positives
and negatives from heuristic detection.

As a concrete example, the sample with MD5 hash
beginning with 0f3ec573 was predicted to execute on the
vbox 2 configuration (see Table 3) but in fact detects the
presence of the VBoxGuest driver using NtCreateFile
(indicated in the behavior[“processes”] entry of the JSON
report) and tries to read its file attributes. Here, we conclude
the sample fails to execute since it identifies the presence
of VBoxGuest according to the driver detection heuristic.
This is corroborated by a signature match in the same
report which indicates that this sample “Detects VirtualBox
through the presence of a device“.

If a sample’s analysis report does not contain a “be-
havior” entry, then we predict the next best configuration
and run the sample on it. If a sample does not execute in
any available analysis environment, then it is reserved for
manual analysis, and can be fed back to MIMOSA to create
a new VM configuration that mitigates similar artifacts, and
to finetune the classifier as needed.

Section 6 uses a well-labeled corpus of 1535 stealthy
malware samples to evaluate MIMOSA’s effectiveness as
well as another, unlabeled corpus of 1221 BluePill stealthy
samples [41] to demonstrate that MIMOSA can generalize to
unseen malware samples. We next describe our approach
for producing covering sets of VM configurations.

4 FINDING COVERING SETS

A key insight of our approach is that efficient analysis
of malware samples must balance the number of artifacts
that are mitigated and the cost of deploying multiple mit-
igations. Because stealthy malware uses artifacts to evade
detection, we desire mitigating as many artifacts as possible
to minimize the likelihood the sample detects the analysis
environment. However, mitigating all artifacts simultane-
ously imposes unreasonable costs or is impossible entirely,
so instead the goal is to find sets of configurations, where
each configuration implements a subset of the available
artifact mitigations. Then, each configuration can be run
simultaneously and relatively inexpensively while collec-
tively defeating most of the stealthy malware samples.

Given a set of artifact mitigation strategies (configura-
tions) and a model that assigns a cost to each strategy,
we describe an algorithm for efficiently selecting a set that
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Fig. 2: Overview of the MIMOSA workflow: In step (1), we identify a set of known artifacts and mitigations based on manual
reverse engineering of a random subset of new samples from a corpus and a cost model. In step (2), our covering algorithm
generates a Pareto front of low cost, high coverage configuration sets to analyze stealthy malware samples. In step (3), our
classifier assigns malware samples to configurations on which each sample should execute, and the corresponding VMs are
dispatched to designated servers for analysis. In step (4), heuristic analysis indicates whether the malware sample detected
its analysis in the VM instance or not, based on behavioral information in the analysis report.

TABLE 2: MIMOSA’s configurations and the artifacts that they mitigate. Each column indicates if a specific artifact is
mitigated in that configuration.

Index Backend Configuration Process Debugger CPUID RDTSC CPU # Invalid Inst. TickCount HCI BIOS File Check HDD - SCSI Disk size Memory MAC ACPI

1 KVM kvm patched 1 ✓ ✓ – – ✓ ✓ – ✓ ✓ – – – – ✓ ✓
2 kvm patched 2 ✓ ✓ – – ✓ ✓ – ✓ ✓ – ✓ – ✓ – ✓

3
VMWare

vmware 3 ✓ ✓ – – ✓ ✓ – ✓ ✓ – – – – ✓ ✓
4 vmware 2 ✓ ✓ – – – – – ✓ – ✓ – – ✓ – ✓
5 vmware 2 vmtools – ✓ – – ✓ – – ✓ – – – – ✓ – ✓

6 KVM kvm legacy 1 ✓ ✓ – – ✓ ✓ – ✓ ✓ ✓ – – ✓ ✓ ✓
7 kvm legacy 2 ✓ ✓ – – – ✓ – ✓ ✓ ✓ – – – – ✓

8

Virtualbox

vbox 1 guestadditions – ✓ – – – ✓ – ✓ ✓ – ✓ ✓ – – –
9 vbox 2 guestadditions – ✓ – – ✓ ✓ – ✓ – – ✓ ✓ – ✓ ✓

10 vbox 1 ✓ ✓ ✓ – ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓ – –
11 vbox 2 ✓ ✓ – – – ✓ – ✓ – ✓ ✓ ✓ – ✓ –

12 QEMU qemu legacy 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✓ ✓
13 qemu legacy 2 ✓ ✓ ✓ – ✓ ✓ – ✓ ✓ ✓ ✓ – ✓ – ✓

maximizes coverage while minimizing cost. There are three
components to consider which are outlined below:

1) Any non-negative cost model. For example, develop-
ment time plus analysis speed. In our evaluation, we
consider cost as the runtime overhead of a VM con-
figuration in terms of disk throughput, CPU time, and
available memory during analysis.

2) For each type of artifact, there is a mitigation strategy
which prevents the malware from detecting its envi-
ronment using that artifact, and a cost associated with
realizing the mitigation strategy.

3) The covering algorithm then selects from the many
possible configurations to produce a set that optimizes
the trade-off between cost and coverage.

4.1 Cost Model
Abstractly, we model cost as a function mapping each
artifact mitigation strategy to the nonnegative real numbers,
R≥0. Our approach operates regardless of how this cost
function is defined, and may readily be modified by an
analyst. If a mitigation strategy is known (e.g., from a
published paper) but an implementation is not available, the
analysis organization incurs a software development cost to

implement it. For example, a full QEMU-emulated system
may take longer to boot and execute than a Virtualbox
configuration but may defeat samples that detect Virtualbox
registry keys.

Given an available set of implemented mitigations, a
second cost is the overhead of deploying them. There are
a number of relevant metrics to consider here such as
throughput and energy consumption.

Given the rate at which new stealthy samples are dis-
covered [39], [45] and the costs associated with zero-day
exploits, rapid analysis response is often paramount. Given
a fixed computing budget, if one approach admits anal-
ysis after 100 time units and another approach only ad-
mits analysis after 800 time units, the former is preferred.
For example, consider a scenario in which ten servers are
available. One could deploy heavyweight tools (such as
Ether [14], BareCloud [45], or MalT [30]) on all ten servers;
this would produce a suitable analysis but is not efficient: it
would take a long time for an analysis to run to completion.
Alternatively, one could deploy lighter-weight systems such
as LO-PHI [24] or VMI. This would be more efficient, but
risks detection by samples in the input corpus, at which
point the analysis fails.
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4.2 Selecting Artifacts and Mitigations
First, we identify a number of potential artifacts commonly
used by our corpus of stealthy malware samples (Sec-
tion 6.1). We followed existing literature [30], [40] and the
pafish tool [57] to group these artifacts into a taxonomy
of categories. We consider 9 artifact families (Table 1) and
34 total specific artifacts, which together represent behavior
indicative of stealthy malware.

For each artifact, we implemented several mitigation
strategies across a number of hypervisor backends. The
mitigation strategies ranged in complexity from straightfor-
ward scripting (e.g., synthetic mouse movements) to more
complex patches to the hypervisor source code (e.g., to hook
kernel API calls made within the guest).

As new artifacts are discovered in the future and ex-
ploited by adversaries, mitigations can be implemented and
added to MIMOSA incrementally since the cost analysis
and coverings construction generalize regardless of artifact
behavior or exploitation, and classifier performance will
ostensibly improve with additional training data.

4.3 Generating Coverings
Next, we present our algorithm for generating a set of low-
cost configurations that cover as many artifacts as possible.
This algorithm is used to identify appropriate configura-
tions from a subset of previously analyzed malware. Once
identified, these configurations can be reused or updated for
unseen samples, such that a single configuration can cover
many previously unseen samples.

Let A = {A1, · · · , An} be the set of n artifacts,
C = {C1, · · · , Cs} be the set of s configurations, and
S = {S1, · · · , Sp} be the set of samples observed. For each
sample Si, we associate with it a set of engaged artifacts
E(Si) ⊂ A. For each configuration Cj , we associate it with
a set of mitigations M(Cj) ⊂ A.

Our goal is to construct a binary 2-dimensional array
(called a covering), where each of the rows corresponds
to a configuration, and each of the columns corresponds
to an artifact, with the following property. For any sam-
ple Si, there are configurations Cj1 , · · · , Cjℓ for which
E(Si) ⊂ M(Cj1) ∪ · · · ∪ M(Cjℓ); in other words, for any
sample, there are some configurations that together fully
mitigate the sample. In terms of the array itself, suppose
that E(Si) involves the columns/artifacts e1, · · · , em. Then,
the union of all rows r in these columns contains a 1 in each
entry, where 1 in column ei indicates that configuration r
mitigates the artifact ei, and 0 otherwise. If the property is
not maintained, we generate an array that mitigates as many
samples as possible (high coverage), while also having the
cost(s) of the chosen configurations be as low as possible.

In addition, we maintain a set of desirably high (DH)
and desirably low (DL) characteristics that reflect the rela-
tive importance on the cost of implementing a particular
strategy (e.g., runtime overhead is DL, while coverage is
DH). In general, we want to generate a set of configurations
such that the covering’s DH characteristics are as large as
possible, and the DL characteristics are as low as possible.
Next, we walk through the algorithm.

For each configuration and artifact, we mark whether or
not the configuration mitigates the artifact. Each configu-
ration has an associated cost (e.g., runtime overhead) and

coverage (e.g., the fraction of well-labeled malware samples
that can be exeucted within that configuration). Next, we
generate all subsets of configurations; suppose these subsets
are S1, · · · , Sk. We say that a subset of configurations Si

dominates another subset Sj if the following properties hold:
• Si’s DH characteristics are all at least those of Sj ,
• Si’s DL characteristics are all at most those of Sj , and
• either (1) some DH characteristic of Si is strictly larger

than that of Sj , or (2) some DL characteristic of Si is
strictly smaller than that of Sj .

The Pareto front of the subsets is the collection of subsets
S such that none of the subsets dominates any other in S ,
which can be found by non-dominated sorting [58].

This algorithm is not efficient because it examines every
subset, which takes exponential time in the number of
configurations. We give an optimization that improves the
running time in practice by assuming that all of the DH and
DL characteristics are monotonic, which means that if a new
configuration c is added to a set of configurations S , then
S ∪ {c} cannot have larger DH characteristics nor smaller
DL characteristics than those of S . For example, adding
a configuration does not decrease the total deployment
time, so this is a monotonic DL characteristic. Meanwhile,
coverage (defined in Section 2) is monotonically increasing
because adding configurations does not decrease overall
coverage. In other words, introducing a new configuration
for a sample to run on will in the worst case not increase
coverage. Coverage of samples cannot be reduced by adding
analysis configurations to any given subset. Formally, let Ai

be all subsets of size i. Let a be a subset in Ai, and let c
be any configuration not in a. If the coverage of a ∪ {c}
is more than a, then we need to observe some subset in
Ai+1 (because a ∪ {c} is one such subset). However, if the
coverage does not increase for any subset in Ai with any
new configuration c, then we can terminate the algorithm
because (1) the coverage does not increase, and (2) the
characteristics are monotone.

An advantage of our algorithm is that it is highly likely
that a configuration will cover the artifacts employed by
any observed sample since the algorithm produces minimal
subsets of configurations (i.e., deleting any configuration
from any subset will cause coverage to decrease).

5 MACHINE LEARNING APPROACH

Recall that the MIMOSA approach requires predicting a con-
figuration in which a sample is likely to execute successfully.
To achieve this, we build an image classifier that takes
as input a grayscale image representation of a single raw
sample binary, similar to previous work on malware clas-
sification [59], [60], [61], [62], [63]. We use our labeled 1535
sample dataset to train a classifier whose output predictions
represent model confidence that a given sample will execute
successfully on an available configuration (i.e., multi-label
classification). In practice, we expect this step to require in
the worst case an initial small, random subset of samples to
manually reverse engineer to produce new configurations
and finetune the classifier. This is only required in the
event that a new corpus of malware does not execute on
the configurations proposed in this work. The remaining
samples (i.e., those not manually reverse engineered) in the
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corpus can then be fed to this classifier to predict the best
new configuration in which to execute an unseen sample.

Model Selection The Malware2Config model assigns
a sample binary as a grayscale image to a configuration
represented by a binary array. We consider ResNet [64],
ResNeXt [65], and ConvNeXt [66] architectures. ResNet and
ResNeXt are established vision models for image classifi-
cation that use residual connections, whereas ConvNeXt
leverages self-attention to consider information from dis-
parate locations in the input image. We use sigmoid output
layers and cross-entropy loss to provide a probability for
each predicted configuration. We also explore 2 output
layer variants: a fully-connected dense layer that directly
computes the prediction vector (“dense”) vs. N branches
that receive identical copies of the final hidden layer and
compute class belonging with a shallow binary classifier
(“branch”). These models allow us to rapidly predict the
best suitable configuration in which to run a given malware
sample by considering the sample as a grayscale image
modulated by raw byte values.

Model Performance To maximize model performance,
we leverage RayTune [67] to conduct a continuous random
hyperparameter search over the following values: image
size (64x64 to 512x512), epochs (10 to 100), learning rate
(log uniform from 0.00005 to 0.01), validation percentage
(0.01 to 0.3), output layer variant (“dense” or “branch”),
and optimizer (Adam, SGD, or RMSProp). Our highest
performing model uses the ResNeXt architecture that is 50
layers deep with a “dense” output layer, input image size of
64x64, batch size of 16, learning rate of 0.001, binary cross-
entropy loss, and Adam optimizer. This model was not pre-
trained on the CIFAR10 dataset and achieved an average
validation hit rate of 96%.

6 EMPIRICAL EVALUATION

MIMOSA adapts coverings to choose artifact mitigation
strategies that enable the accurate and efficient analysis of
stealthy malware that would otherwise require considerable
human effort to analyze and understand. In this section, we
present results from empirical evaluations of MIMOSA.

We begin by introducing an indicative use case. Consider
an enterprise that desires to use a set of servers with finite
capacity for automated malware classification and triage.
We assume that low-latency analysis of stealthy samples is
paramount: given a fixed set of computing resources, we
want the analysis of a given sample to complete as quickly
as possible to support subsequent human analysis, defense
creation, signature generation, etc. We further assume that
the input samples are stealthy, and the analysis tool must
mitigate the artifacts exposed to each sample to prevent
subversion. Although it might be possible to use all servers
available to the enterprise to mitigate all potential artifacts,
this is not an efficient use of resources and does not provide
the lowest analysis latency. Instead, we apply our covering
algorithm (Section 4.3) to determine which sets of artifacts
are to be mitigated by each server to minimize analysis
latency while also maximizing coverage. Again, we assume
that a subset of the stealthy malware corpus of interest
has been manually reverse engineered to create covering

configurations and to train the classifier. To evaluate our
approach, we consider three research questions:
RQ1 Coverage — Does MIMOSA produce artifact mitiga-

tion configurations that effectively cover stealthy mal-
ware samples?

RQ2 Generalizability — Does MIMOSA effectively predict
configurations for new evasive malware samples to
execute successfully on existing configurations?

RQ3 Scalability — What tradeoffs exist in scaling MIMOSA
to a large evasive malware dataset given a small num-
ber of representative samples?

We first discuss the corpus of malware we used in our
evaluation. Then, we discuss each research question in turn.

6.1 Malware Corpus Selection

We consider stealthy malware that targets Windows. Of the
many available malware corpora, only a few focus directly
on stealthy malware, in part because they are so difficult to
analyze automatically.

Instead, we obtained a set of 1535 unique samples from
independent security researchers, which are analyzed ac-
cording to the artifacts they use. A breakdown of these is
shown in Figure 1. This dataset contains malware samples
that have been manually identified as stealthy and precisely
curated and fully reverse engineered to obtain behavioral
information from execution traces. Other work has used
larger malware databases for similar experiments [68], [69],
but as mentioned above these datasets are not labeled
with enough specificity for our study. Additionally, we
include analysis outcomes for 1221 stealthy samples from
the Bluepill [41] dataset based on the MIMOSA classifier
predictions to further demonstrate the generalization ability
of MIMOSA’s original configurations.

6.2 RQ1: Coverage — Artifact Mitigation

In this experiment, MIMOSA deploys artifact mitigation
strategies to analysis servers. We define the configuration set
size as the number of configurations combined together—
this is an input parameter that represents the number of
distinct configurations that the user is willing to run con-
currently on a set of analysis servers.

For example, if more servers are available for analysis, a
larger configuration set size can be selected. We note that
the configuration set size is a distinct quantity from the
number of servers available for analysis; for some corpora
of malware it may be reasonable to duplicate a single
high coverage configuration across multiple servers while
for others a different configuration is deployed on each
available server. We say that a stealthy malware sample
is successfully analyzed if at least one configuration in the
configuration set produced by MIMOSA mitigates all of the
artifacts used by that sample.

For each configuration, we represent artifact coverage
as a binary array in which each set bit implies that that
particular artifact has been successfully mitigated in the
environment. Table 2 gives details about each configuration.

We use VMWare, VirtualBox, KVM, and QEMU back-
ends for virtualizing guests to complete an analysis of
each sample. We use 13 different configurations across
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these backends for conducting analyses. Each configuration
implements a subset of mitigations against each class of
artifacts. For example, the kvm patched conf1 configuration
contains intentionally low RAM size (< 1GB), exposing
the RAM detection family of artifacts, but also contains
custom patches that remove all QEMU-related hardcoded
strings throughout the source (KVM accelerates QEMU em-
ulation). In contrast, the VMWare 2 configuration employs
the VMWare Tools suite for faster execution, exposing pro-
cess names (i.e., of VMWare Tools). Broadly, we designed
and implemented these configurations by considering the
families of artifacts exposed by our dataset (Section 6.1) and
the expected complexity in mitigating each artifact family
across each virtualization backend.

Next, we determine whether each evasive sample even-
tually executes to completion within the configuration pre-
dicted by our system. To achieve this, we collect multiple
API trace logs for each sample analyzed and aggregate these
traces to bridge the semantic gap [70], [71]which enables
reconstruction of higher abstraction API traces invoked
against the guest OS.

Given each trace of each sample, we confirm detec-
tion results based on the malware’s behavior within the
configuration on which the sample was predicted to ex-
ecute. Specifically, we follow the malware execution trace
up to the point when it starts to create, manipulate, or
remove a memory section, segment, or page using APIs
such as NtCreateSection, NtMapViewOfSection, or
NtSetContext. Then, we compare these analysis results
against ground truth established in our corpus to ensure that
the malicious process executed completely. If the analysis
differs from the ground truth (e.g., if the sample detects
the environment and hides its behavior), we say that con-
figuration does not cover the sample. If there exists at
least one configuration that does cover the sample, we call
that sample covered. If not, we say that the sample is not
covered, implying that it must be executed on the next
predicted configuration or manually analyzed. We show the
coverage rate of each configuration across our entire corpus
of malware in Figure 3.

6.2.1 RQ1 Result Summary
Our mitigation strategies and corresponding configurations
provide varying coverage levels across an indicative dataset
of 1535 stealthy malware samples, allowing us to explore the
trade-off space between coverage provided by analysis tools
and the cost of deploying those tools or acquiring analyses.
As shown in Figure 3, the configurations cover a range of
samples depending on the VM backend which is related to
the artifact mitigation supplied by that configuration. The
configuration qemu legacy 1 is able to cover 1244 samples
on its own, while vmware 2 vmtools only covers 189 samples
on its own. This demonstrates the benefit of combining
configurations based on collections of artifact subsets to
mitigate more artifacts and cover more samples.

6.3 RQ2: Generalizability — Analyzing New Samples
In this section, we assess the generalizability of the MIMOSA
pipeline by measuring whether a new set of evasive mal-
ware samples will execute successfully on predicted config-
urations. Specifically, we classify each of 1221 samples from

Fig. 3: Samples that executed on the original MIMOSA con-
figurations. A gap in the bar indicates that a sample was
not covered by that configuration. Further to the left are
configurations with higher cost, indicating that effectively
covering all samples requires multiple configurations.

the BluePill [41] dataset to 8 of the original MIMOSA con-
figurations. Eight configurations total were selected across
KVM and VirtualBox backends since these backends had the
lowest cost configurations along with QEMU. To expedite
the analysis, we omit QEMU since it is similar to KVM
with slower emulation. To summarize, we use a single
analysis server with VirtualBox and KVM backends for this
experiment. Each sample was executed according to the con-
figuration(s) predicted by the classifier and the same detec-
tion heuristics were used to determine whether the sample
executed successfully. We consider samples that detect the
environment with the Human Computer Interaction (HCI)
heuristic to have executed successfully in that configuration
since adjustments like decreasing the time interval between
automated cursor movements or increasing the area covered
by the cursor (i.e., making VM activity appear more human-
like) can be implemented to evade HCI detection.

The results of this study are summarized by Table 3.
In total, 1207/1221 BluePill samples were successfully an-
alyzed across the 8 available configurations using a single
analysis server, leaving 14 samples to manual analysis. In
other words, nearly 99% of samples from an unseen dataset of
stealthy malware samples executed successfully using a subset
of the original MIMOSA configurations. The remaining 14
samples contain artifacts that were not mitigated in the con-
figurations tested, and manual reverse engineering of these
samples can contribute to identifying new artifacts and
additional configurations for use in subsequent automated
analysis. This allows for MIMOSA to achieve monotonically
increasing coverage as a greater diversity of stealthy mal-
ware is analyzed over time.

Based on our classifier predictions, 110 samples execute
on the top-1 configuration predicted by the classifier, 317
on top-3, 390 on top-5, and 370 top-7, leaving only 20
samples that executed on the configuration with the lowest
prediction confidence (non-cumulative).

From these results, we conclude that MIMOSA’s config-
urations successfully generalize to new evasive malware
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TABLE 3: BluePill Samples that Executed on Predicted MI-
MOSA Configurations (listed by decreasing cost from top to
bottom, left to right)

Config # Executed Config # Executed

kvm patched 1 622 vbox 1 96
vbox 1 guestadds 179 kvm legacy 2 21
vbox 2 guestadds 147 kvm legacy 1 4
vbox 2 100 kvm patched 2 38

Total 1207/1221

samples and can continually increase the coverage provided
by the MIMOSA pipeline by using insights from manually
analyzed samples to cover yet-unseen samples engaging
similar artifacts.

6.4 RQ3: Scalability — Tradeoffs in Scaling MIMOSA

MIMOSA identifies Pareto-optimal coverings that provides
accurate stealthy malware analyses while minimizing the
resource allocation required to obtain those analyses. Al-
though the covering set reduces the number of configura-
tions to spin up, it does not identify the configuration in
which each sample will veritably run. To prevent running
all samples on every configuration in the covering set, the
model predicts which configurations the samples will run
on in an effort to both expedite and scale MIMOSA.

To demonstrate the model’s potential effect, we simu-
lated MIMOSA’s scalability in terms of the total runtime
under four scenarios: (1) Ideal scenario (i.e. 100% model
accuracy) with weighted round-robin scheduling, (2) Ran-
dom scheduling of samples to configurations, (3) Industry-
standard king-of-the-hill (KotH) scheduling of all samples
to the “best” configuration, and (4) MIMOSA’s scenario (i.e.
approx. 90% model accuracy) with weighted round-robin
scheduling. All scenarios were subject to load balancing
after initial allocation to use all available servers and reduce
the total runtime as much as possible.

For the Ideal and MIMOSA scenarios, model accuracy is
the simulated success rate where a random (100 - success
rate)% of samples fail to run (e.g., because the sample
detects the predicted configuration during execution) and
have to be rescheduled. We define rescheduling as subse-
quent iterations in which the predictions are updated to
reflect prior execution failures on the previously predicted
configurations so a failed sample does not rerun on the
same configuration; the total runtime comprises the time
to complete all rescheduling iterations.

For the random and KotH scenarios, we assume no
rescheduling. One consideration is the threshold for a pos-
itive label to indicate coverage (i.e., whether the sample
will execute); at a 50% threshold, our model predicts 90%
of samples to run on the KotH configuration (vbox_2). To
better reflect the coverages reported in Section 6.2.1, we
threshold positive labels at a higher predictive confidence
value of 70% for the random and KotH scenarios. Although
this is not directly comparable to the proposed weighted
round-robin procedure because random and KotH scenarios
would not rely on model predictions for running samples,
we use them in a best-effort attempt to make as close a

comparison as possible. Figure 4 controls for the number
of servers vs. runtime for each of the four scenarios.

Figure 5 shows that total runtime decreases with in-
creased model accuracy. From these results, we observe that
our proposed method approaches the ideal scenario as the
number of available servers increases, suggesting that as
the system is scaled up our method holistically outperforms
conventional methods in regards to runtime and coverage. Our
simulation also indicates that the industry-standard KotH
method trades off coverage for runtime while our method
scales with a comparable runtime while accomplishing al-
most perfect coverage.

7 DISCUSSION

In this section, we discuss (1) potential threats to the validity
of the experimental results, (2) using MIMOSA for control-
ling an adaptive malware analysis system, and (3) potential
future improvements that can be made to cost functions.

7.1 Threats to Validity
First, we characterized artifact families according to concep-
tual similarity. The artifact families ultimately inform what
structure the corresponding covering takes. There is no stan-
dard method for classifying artifacts in this manner—the
effectiveness or utility of MIMOSA could change depending
on the specific assumptions we made about which artifacts
are categorically similar.

Second, although our evaluation incorporated 1535
stealthy malware samples from the wild, we produced
configurations whose costs were measured in isolation (e.g.,
we measured CPU utilization separately from memory uti-
lization).

Finally, we do not evaluate the risk of adversarial per-
turbations to our malware image classifier [72], [73], [74].
An attacker could undetectably modify pixel values of a
malware image such that our classifier mispredicts a config-
uration for a perturbed image sample. In the worst case, the
sample will run unnecessarily on multiple configurations
in the case of repeated mispredictions. However, byte-level
perturbations made to the binary before it is processed into
an image would likely alter the original sample and could
lead to unintended program behavior.

7.2 Remarks on Adaptability
MIMOSA takes as input a set of modeled mitigation
strategies and associated costs, and it produces as output
a coverage-optimal, low-heuristic-cost array of strategies.
This approach can be extended to adapt over time to
changes in the distribution of stealthy malware. For exam-
ple, if new artifacts are discovered or if the costs associated
with mitigating each one changes with technology, our
overall approach and algorithms will still be applicable as a
tool for finding cost-optimal analysis configurations. Here,
the worst case requires manual analysis effort on a small
number of samples along with finetuning the classifier to
assign any newly constructed configurations to samples that
were not covered by previous configurations.

As a specific example, recent work leveraged “wear
and tear” of virtual machine environments [75]. In essence,
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Fig. 4: Number of servers vs. total runtime for Ideal, Random, KotH, and MIMOSA scenarios. Ideal refers to weighted
round-robin with a perfect model such that all samples run on the first predicted configuration. Random refers to random
assignment of samples to configurations with no consideration to the model’s predictions. KotH refers to the industry
standard of assigning all samples to the single best configuration. Our proposed method approaches the ideal runtime
with our observed accuracy and with more servers available while achieving relatively high coverage. Although the KotH
configuration is low cost and is expected to run faster, it does so at the cost of coverage.

malware samples can look for evidence that an environment
is “aged.” An analyst that spins up a vanilla VM image may
fall victim to a sample that detects if the environment is
pristine and newly-created. That is, the perceived “age” of
the virtualized environment is the artifact.

We do not include such artifacts in our prototype cover-
age calculation because our dataset did not contain samples
that exploited wear and tear artifacts; however, they can
be readily incorporated by implementing a corresponding
mitigation.

7.3 Remarks on Cost Functions
MIMOSA currently considers optimizing for cost, which
can be captured in several ways: CPU utilization, memory
utilization, and runtime overhead with respect to latency.

Fig. 5: Accuracy (%) vs. Total Runtime (ms) with reschedul-
ing of MIMOSA’s scenario. MIMOSA becomes more efficient
as the model is more likely to accurately predict the best
configuration in which to schedule each sample.

However, these one-dimensional approaches may admit
coverings that are difficult to interpret. For example, in
a cluster of 10 servers, assigning nine servers to do no
mitigation (minimal cost) and one server to run bare metal
(maximal coverage) is a well-formed solution.

We also discussed a second parameter that captures
benefit: coverage of stealthy malware samples is important
for acquiring faithful, interpretable analyses. For example,
if we know a mitigation strategy will cover 90% of stealthy
malware, we may be willing to pay a higher cost to use that
strategy because of its overall coverage. On the other hand,
a strategy that only covers 2% of stealthy malware in the
wild may be disregarded.

8 RELATED WORK

Various projects have focused on detecting and evading
analysis systems in both x86 executables [29], [76], [77], [78]
and mobile devices (e.g., Android [79]). In this section, we
discuss this work in four categories: (1) stealthy malware
detection using behavioral analysis, (2) malware analysis
using virtual machine infrastructure, (3) malware analysis
using bare-metal machines, and (4) machine learning in
malware analysis.

Stealthy Malware Detection Current stealthy malware
analysis techniques generally rely either on human creativ-
ity (e.g., debugging with IDA Pro [53] or OllyDbg [54])
or heavy-weight analysis tools that incur significant over-
head (e.g., MalT [30] or Ether [14]). Moreover, differing
approaches, such that of as Balzarotti et al. [31], work by
executing a sample in multiple instrumented environments
and use the difference in runs to determine which artifact is
used by the sample, potentially wasting resources.
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Lindorfer et al. [80] later employed a similar technique,
but used various malware sandboxes and scored their
evasive behaviors. HASTEN [81] specifically focuses on
stalling malware, which is a particularly difficult evasion
technique to analyze because the malware appears benign
for an extended period of time. TriggerScope [82] similarly
examines Android programs which mask their malicious
behavior until a certain trigger is observed. Our technique
leverages a combination of multiple environments that sep-
arately mitigate different artifact families, instead providing
environments in which samples are more likely to execute.

Our approach is conceptually related to SLIME [83], an
automated tool for disarming anti-sandboxing techniques
employed by stealthy malware. SLIME runs a sample many
times, each time configuring the environment to explic-
itly expose certain artifacts to the sample. In contrast, our
approach seeks to minimize the total cost of analysis for
each sample under test. In addition, we introduce a novel
application of coverings [38] that helps identify cost-optimal
covering sets for stealthy malware analysis system.

Maffia et al. [84] provides a comprehensive analysis of
over 180K Windows malware samples to understand the
evolution of evasive malware behavior over the last sev-
eral years. Findings indicate a roughly 10% increase in the
collected samples exhibiting evasive behavior from 2016 to
2020. There is also an increased focus on Anti-Debugging
tricks vs. Anti-VM checking as seen in 80% vs. 20% of recent
malware samples, respectively.

Virtual Machine Analysis Ether [14] is a malware analy-
sis framework based on hardware virtualization extensions
(e.g., Intel VT). It runs outside of guest operating systems, in
the hypervisor, by relying on underlying hardware features.
BitBlaze [85] and Anubis [86] are QEMU-based malware
analysis systems that focus on understanding malware be-
havior, instead of achieving better transparency. V2E [87]
combines both hardware virtualization and software emu-
lation. HyperDbg [15] uses the hardware virtualization that
allows the late launching of VMX modes to install a virtual
machine monitor, and run the analysis code in the VMX root
mode. SPIDER [88] uses Extended Page Tables to implement
invisible breakpoints and hardware virtualization to hide its
side-effects. DRAKVUF [89] is another VMI-based system
for both user and kernel-level analysis.

We note that recent work has investigated changes to
the sandboxing environment to give it the appearance of
age or use [75]. For example, a dearth of Documents,
Downloads, event logs, or installed software could be a
hint that the sample is not executing in a real, vulnerable
environment. Although our current prototype does not ad-
dress samples exhibiting such “age” checks, as discussed
above, we could readily incorporate it. As with other new
or yet-undiscovered artifacts, our overall framework would
not change. One would simply implement a configurable
mitigation against that new artifact and include it as a
strategy used by our coverings algorithm.

Bare-metal Analysis BareBox [90] is a malware analysis
framework based on a bare-metal machine without any vir-
tualization or emulation techniques, which is used for ana-
lyzing user mode malware. Follow up work, BareCloud [45],
uses mostly un-instrumented bare-metal machines, and is
capable of analyzing stealthy malware by detecting file

system changes. Willems et al. [91] propose a method for
using branch tracing, implemented on a physical CPU, to
analyze stealthy malware. LO-PHI [92] is a system capable
of both live memory and disk introspection on bare-metal
machines, which can be used for analyzing stealthy mal-
ware. MalT [30] uses System Management Mode to instru-
ment a bare-metal system at the instruction level, exposing
very few artifacts to the system. While LO-PHI and MalT
both have high deployment overheads, they also expose
very few artifacts to samples under test; thus, either could
conceptually serve as our highest coverage (and highest
cost) configuration.

Machine Learning in Malware Analysis Machine learn-
ing models are used most commonly in malware analysis
to detect whether a sample is malicious given information
such as a description of behavior, raw binaries, or API
calls [51], [93]. For example, some methods [94], [95], [96]
rely on sequential information such as process behavior, API
calls, and Indicators of Compromise (IoCs) represented as
N-grams, for malware detection. Sayadi et al. [97] propose
a timeseries-based machine learning approach for detecting
embedded malware and a fully convolutional network to
classify potentially contaminated intervals in the time series
data. Other works [98], [99] propose reinforcement learning
for attacking static anti-malware engines with the insight
that an agent perturbates the portable executable (PE) file
in a way that preserves functionality and helps identify
operations that lead to successful evasion.

In comparison to these approaches, we leverage com-
puter vision for multi-label malware classification [59], [60],
[63] to demonstrate the scalability of MIMOSA by taking as
input the raw binary of an evasive malware sample and
assigning it to one or more configurations under which it is
expected to execute. This approach offers the potential key
benefit that the evasive behavior of a sample need not be
known a priori. As additional evasive malware samples are
obtained, there is not a need to expend resources studying
every one of these samples if a well-trained classifier can
be obtained from a relatively small set of samples. In this
case, human effort is saved since only a fraction of samples
need to be manually analyzed to achieve acceptable clas-
sifier performance. In the best case, an entire new corpus
of malware can be analyzed automatically with existing
VM configurations. Otherwise, manually reversed samples
can inform additional configurations and increase sample
coverage over time.

9 CONCLUSION

Stealthy and obfuscated malware is expanding rapidly. As
the security arms race continues, malware authors use in-
creasingly sophisticated techniques to subvert analysis. The
large volume of new malware released every year increases
the urgency of robust automated analysis pipelines to iden-
tify and understand stealthy malware samples.

In this paper, we introduced coverings, a novel way
of representing the problem of analyzing stealthy malware
efficiently, and a prototype implementation called MIMOSA.
We studied a broad set of artifacts exposed by analysis
environments and the mitigation strategies required to pre-
vent malware samples from using those artifacts to subvert
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TABLE 4: Examples of 2 artifacts families mitigated in
MIMOSA configurations

Artifact Family Mitigation Examples

VM-specific Registry Keys Hook RegOpenKeyEx API
Hook RegQueryValueEx API
Remove offending keys from guest (e.g.,
HARDWARE\ACPI\DSDT\VBOX__)

Internal Timing Hook instructions that read MSRs
Hook GetLastInputInfo API
Hook GetTickCount API

detection. We modeled the mitigations using a partially
ordered structure according to the number of artifacts miti-
gated and the cost associated with deploying that strategy.
We developed 34 such mitigation strategies across 4 VM
backends. We presented an algorithm that finds the lowest-
cost selection of mitigation strategies to implement while
guaranteeing high coverage of these artifacts. Finally, we
empirically evaluated MIMOSA using 1535 labeled stealthy
malware samples from the wild and analyze an additional
1207/1221 BluePill samples [41] using configurations de-
rived from the original 1535 sample corpus to demonstrate
generalization capabilities. We found that MIMOSA can find
mitigation strategies that reduce the overhead and memory
utilization associated with mitigating all artifacts consid-
ered, and can also cover new evasive malware samples
using original configurations. Finally, we determine that
MIMOSA scales automated malware analysis, optimizing for
both runtime and coverage compared to existing approaches
which relinquish increased coverage for decreased runtime.
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