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Abstract. Specifications are necessary in order to find software bugs
using program verification tools. This paper presents a novel automatic
specification mining algorithm that uses information about error han-
dling to learn temporal safety rules. Our algorithm is based on the obser-
vation that programs often make mistakes along exceptional control-flow
paths, even when they behave correctly on normal execution paths. We
show that this focus improves the effectiveness of the miner for discov-
ering specifications beneficial for bug finding.

We present quantitative results comparing our technique to four ex-
isting miners. We highlight assumptions made by various miners that are
not always born out in practice. Additionally, we apply our algorithm to
existing Java programs and analyze its ability to learn specifications that
find bugs in those programs. In our experiments, we find filtering can-
didate specifications to be more important than ranking them. We find
430 bugs in 1 million lines of code. Notably, we find 250 more bugs using
per-program specifications learned by our algorithm than with generic
specifications that apply to all programs.

1 Introduction

Software remains buggy and testing is still the dominant approach for detecting
software errors. The difficulties and costs of testing have helped to push forward
techniques that automatically find classes of errors statically [4, 5, 6, 7, 13] or
dynamically [10, 11, 12, 14]. Such program verification tools can point out bugs
or provide guarantees about the absence of some mistakes.

Invariably, however, verification tools require specifications that describe
some aspect of program correctness. Creating correct specifications is difficult,
time-consuming and error-prone. Verification tools can only point out disagree-
ments between the program and the specification. Even assuming a sound and
complete tool, an imperfect specification can still yield false positives by point-
ing out non-bugs as bugs or false negatives by failing to point out real bugs.
Crafting specifications typically requires program-specific knowledge.

One way to reduce the cost of writing specifications is to use implicit
language-based specifications (e.g., null pointers should not be dereferenced)
or to reuse standard library specifications (e.g., [4, 13]). More recently, however,
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a variety of attempts have been made to infer program-specific temporal specifi-
cations and API usage rules [1, 2, 7, 14] automatically. These specification mining
techniques take programs (and possibly dynamic traces, or other hints) as input
and produce candidate specifications as output. In general, specifications could
also be used for documenting, refactoring, testing, debugging, maintaining, and
optimizing a program. We focus here on finding and evaluating specifications in a
particular context: given a program and a generic verification tool, what specifi-
cation mining technique should be used to find bugs in the program and thereby
improve software quality? Thus we are concerned both with the number of “real”
and “false positive” specifications produced by the miner and with the number
of “real” and “false positive” bugs found using those “real” specifications.

We propose a novel technique for temporal specification mining that uses
information about program error handling. Our miner assumes that programs
will generally adhere to specifications along normal execution paths, but that
programs will likely violate specifications in the presence of some run-time
errors or exceptional situations. Intuitively, error-handling code may not be
tested as often or the programmer may be unaware of sources of run-time er-
rors. Taking advantage of this information is more important than ranking can-
didate policies.

The contributions of this paper are as follows:

– We propose a novel specification mining technique based on the observation
that programmers often make mistakes in exceptional circumstances or along
uncommon code paths.

– We present a qualitative comparison of five miners and show how some miner
assumptions are not well-supported in practice.

– Finally, we give a quantitative comparison of our technique’s bug-finding
powers to generic “library” policies. For our domain of interest, mining finds
250 more bugs. We also show the relative unimportance of ranking candidate
policies. In all, we find 69 specifications that lead to the discovery over 430
bugs in 1 million lines of code.

In Section 2 we describe temporal safety specifications. We present our spec-
ification mining algorithm in Section 3. In Section 4 we describe some existing
specification mining algorithms, leading up to a qualitative comparison of var-
ious techniques in Section 5. We describe our experience running our miner in
Section 6, comparing its bug-finding powers to another technique and to generic
“library” specifications.

2 Temporal Safety Specifications

A specification miner takes a program as input and produces one or more can-
didate specifications with respect to a set of interesting program events. The
program is presented as a set of static or dynamic traces, each of which is a se-
quence of events and annotations (e.g., data values, records of raised exceptions).
Static traces are generated from the program source code. Dynamic traces are
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Session sess = sfac.openSession();
Transaction tx;
try {

tx = sess.beginTransaction();
// do some work
tx.commit();

} catch (Exception e) {
if (tx != null) tx.rollback();
throw e;

} finally
sess.close();

Fig. 1. hibernate2 Session class documentation pseudocode and temporal
safety policy, given as an FSM over a six-event alphabet. Edge labels (events) are ei-
ther successful method invocations or method errors. Other transitions involving these
six events violate the policy, but other events (e.g., S.find) are not constrained

produced by running the program against a workload. In practice, events are
usually taken to be context-free function calls.

Mined specifications (or policies) are typically finite state machines with
events as edges. A run of the program adheres to the policy if it generates a
sequence of events accepted by the FSM. Such policies commonly limit how an
interface may be invoked (e.g., close cannot be called before open and must be
called after it). Many program verifiers can check such FSM properties, either
per-object (as a form of typestate) or globally. Ammons et al. [2] present a more
formal treatment of the mining problem.

As a concrete example, we consider a policy for the interfaces of the
SessionFactory, Session and Transaction classes in the hibernate2 pro-
gram, a 57k LOC framework that provides persistent Java objects [9]. The
Session class is the central interface between hibernate2 and a client. The
Session documentation includes explicit pseudocode and an injunction that
clients should adhere to it. The code and five-state FSM specification are shown
in Figure 1. We denote SessionFactory by SF, Session by S, and Transaction
by T. A typical use of this interface would visit states 1 through 3, “do some
work” there (involving events like S.flush and S.save that are not part of the
input alphabet of the FSM and thus do not affect it), and then visit 5 and return
to 1. In the next section we discuss our mining algorithm using this specification
as a concrete example.

3 Specification Mining Algorithm

Our work on specification mining was motivated by observations of run-time
error handling mistakes. Based on previous work examining such mistakes [13]
we believe that client code frequently violates simple API specifications in ex-
ceptional situations (i.e., in the presence of run-time errors). We found such
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bugs using generic “library” specifications (e.g., Socket and File open/close
rules), but we believed that we would be able to have a greater impact on soft-
ware quality by looking for program-specific mistakes. Our mining algorithm
produces policies dealing with resource leaks or forgotten obligations. We have
found that programs repeatedly violate such policies, especially when run-time
errors are involved. Our technique is in the same family as that of Engler et
al. [7] but is based on assumptions about run-time errors, chooses candidate
event pairs differently, presents significantly fewer candidate specifications and
ranks presented candidates differently.

We attempt to learn pairs of events 〈a, b〉 corresponding to the two-state
FSM policy given by the regular expression (ab)∗. For example, from traces
generated by the state machine in Figure 1 we might learn 〈SF.openSession,
S.close〉, because every accepting sequence that transitions from state 1 to
state 2 via SF.openSession must also transition from state 5 to state 1 via
S.close. We learn multiple candidate specifications per program and present
a ranked list to the user. For example, we might learn the candidate speci-
fication 〈SF.openSession, T.rollback〉. Unlike some mining algorithms that
produce detailed policies that must be manually debugged or modified, we pro-
duce simple policies that are designed to be accepted or rejected. With this
approach we will not be able to learn the “complete” policy in Figure 1. How-
ever, the full policy is closely approximated by 〈SF.openSession, S.close〉 and
〈S.beginTransaction, T.commit〉.

In a normal execution, events a and b may be separated by other events and
difficult to discern as a pair. After an error has occurred, however, the cleanup
code is usually much less cluttered and contains only operations required for
correctness. Intuitively, a programmer who is aware of the specification will have
included b in an exception handler, finally block, or other piece of cleanup code,
making it easier to pick up than in a normal execution path. The pseudocode
in Figure 1 demonstrates this sort of cleanup for the T.rollback and S.close
events. If S.close is the only legal way to discharge a Session obligation, we
expect to see S.close in well-written cleanup code.

We classify intra-procedural static traces as “error” traces if they involve
exceptional control flow. These are the traces containing at least one method
call that terminates with raising of an exception. Such exceptions are assumed to
signal run-time errors or unusual situations. Traces in which no such exceptions
are raised are “normal” traces. In Figure 1, a normal trace of events would
involve the state sequence 1–2–3–5–1. An error trace would visit 1–2–5–1 or
1–2–3–4–5–1.

3.1 Filtering Candidate Specifications

Let Nab be the number of normal traces that have a followed by b, and let Na

be the number that have a not followed by b. We define Eab and Ea similarly for
error traces. Given a set of traces, we consider all event pairs 〈a, b〉 from those
traces such that all of the following occur:
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Exceptional Control Flow (ex). Our novel filtering criterion is that event b
must occur at least once in some cleanup code (e.g., a catch or finally block):
we require Eab > 0. We assume that if the policy is important to the program-
mer, language-level error handling will be used at least once to enforce it. In
hibernate2, the SF.openSession and S.beginTransaction events never oc-
cur in cleanup code, thus ruling them out as the second event in a pair. The
T.commit, T.rollback and S.close events all do occur in cleanup code, how-
ever. Other miners limit events to those on a user-specified list.1 We prefer to
automate the creation of this list because of the cost of acquiring specific knowl-
edge about each target program. However, if such domain knowledge is available,
it can be used instead of, or in addition to, the default from cleanup code. The
occurrence of the event in normal execution traces will be used in Section 3.2 to
rank candidate specifications.

One Error (oe). There must at least one error trace with a but without b: we
require Ea > 0. We are here only interested in learning specifications that will
lead to finding program errors, and we assume that the programmer will make
mistakes in the handling of exceptional situations.

Same Package (sp). Events a and b must be declared in the same package.
For example, we assume that no temporal specification will be concerned with
the relative order of an invocation of an org.apache.xpath.Arg method and
a net.sf.Hibernate.Session method from separate libraries. The user can
specify wider or narrower related groups if such information is available.

Dataflow (df). Every value and receiver object expression in b must also be in
a. When dealing with static traces we require that every non-primitive type in b
also occur in a. We thus assume that Session SessionFactory.openSession()
may be followed by void Session.close() but forbid the opposite ordering.
Intuitively, this also corresponds to finding edges that share the same node in
policies like Figure 1. This notion is in contrast to other miners where a more
precise dataflow analysis rules out some unwanted specifications. In our exper-
iments this lightweight dataflow requirement has been sufficient to capture our
intuitive notion of correlated events.

3.2 Ranking Candidate Specifications

In order to improve the usability of this technique, we present to the user a ranked
list of the candidate specifications that satisfy the criteria described above. Our
heuristics will assign higher ranks to candidates that are more likely to be real
policies. We do not rank policies based on the number of bugs the policy would
find in the program. However, as we will see in Section 6, ranking plays a much
smaller role than eliminating extraneous candidates.

1 For example, in Engler et al. [7] the list includes functions whose names contain the
substrings “lock”, “unlock”, “acquire”, etc.
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Event a Event b Real Na Nab Ea Eab Filters rank z-rank z-rank|N
SF.openSessi S.close Yes 3 100 1348 1040 ex oe sp df 0.971 -73.5 2.40
S.beginTrans S.close ? 2 56 1037 501 ex oe sp df 0.966 -73.3 1.66
S.beginTrans T.commit Yes 2 56 565 973 ex oe sp df 0.966 -33.9 1.66
S.flush S.close no 9 39 200 473 ex oe sp df 0.812 -17.0 -2.02
T.commit S.close ? 1 57 474 504 ex oe sp 0.983 -38.5 2.10
S.beginTrans S.save no 4 54 37 1501 oe sp df 0.931 9.90 0.788
SF.openSessi T.commit ? 47 56 1415 973 ex oe sp 0.544 -81.0 -12.1
SF.openSessi println no 82 21 2121 267 ex oe df 0.204 -130 -23.4

Fig. 2. Static trace observations for Session events in hibernate2. The “real” column
indicates whether 〈a, b〉 is definitely (Yes), possibly (?) or definitely not (no) a valid
policy based on Figure 1. Na is the number traces with a but not b, Nab is the number
of normal traces with a followed by b. Ea and Eab measure the same figures for error
traces. The “Filters” column indicates which of our filterting requirements the pair
meets. Only the first four pairs qualify as candidates for our miner. The “rank” column
reports Nab/(Na + Nab) and high values indicate more likely specifications. The “z-
rank” column shows the z-statistic applied to all traces as in Engler et al. [7], while
the “z-rank|N” column shows the z-statistic restricted to normal traces

We assume 〈a, b〉 is more likely to be a policy if the programmer intends to
adhere to it many times. We assume that normal traces represent the intent of
the programmer and that some error traces represent unforseen circumstances
likely to contain bugs; thus we rank pairs according to the fraction of normal
traces in which a is followed by b.

Our ranking for a candidate 〈a, b〉 is Nab/(Nab + Na). The best ranking is 1,
and a reported specification with rank 1 has a followed by b in all normal paths.

Figure 2 shows observations for Session-related events on a set of static
traces. All eight pairs could potentially be policies, but our requirements in
Section 3.1 filter out the last four. Since SF.openSession does not occur in any
error-handling code, we do not consider pairs like 〈S.close, SF.openSession〉.
As desired, we rule out pairs like 〈SF.openSession, T.commit〉 with our dataflow
requirement (there is no Transaction object available in event a). Our package
requirement correctly rules out policies involving printf-like logging methods.
Finally, while we cannot rule out pairs like 〈S.flush, S.close〉 (where S.flush
is one of the “do some work” options that would occur at state 3 of Figure 1), we
rank it lower because a smaller fraction of normal paths have that pairing (e.g., in
Figure 2 that pair ranks 0.812 while the best pair involving S.close ranks 0.971).

The z-rank and z-rank|N columns of Figure 2 show the result of using the
z-statistic for proportions [8], an alternative ranking scheme, to rank candidate
specifications, with the z-rank|N column being computed over normal traces
only. The z-rank was used by Engler et al. [7]. The z-statistic increases with the
total number of observations involving a and decreases with the number of obser-
vations involving a but not b. Ignoring some constant factors, z-rank|N is equal
to our ranking multiplied by

√
Na + Nab. We provide an empirical comparison

of these three rankings in Section 6.
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4 Other Specification Mining Techniques

We now describe the main characteristics of several existing mining approaches.

Strauss. Ammons et al. [2] present a miner in which events from dynamic traces
that are related by traditional dataflow dependencies form a scenario. The user
provides a seed event and a maximum scenario size N . A scenario contains at
most N ancestors and at most N descendants of the seed event. The seed can
be any interesting event that is assumed to play a role in the specification.
Such scenarios are fed to a probabilistic finite state machine learner. The output
of the learner, a single policy, is minimized and may further be “cored” by
removing infrequently traversed edges or “debugged” and simplified with the
user’s help [3].

WML-Static. Whaley et al. [14] propose two methods for deriving interface
specifications for classes based on an explicit representation of typestate in mem-
ber fields.

In the first (static) approach the user specifies a class in the program. Traces
are generated statically by considering all pairs 〈a, b〉 of invocations for methods a
and b of that class. If b conditionally raises an exception when a field has a certain
constant value and a always sets that field to that value, 〈a, b〉 is considered a
violation of the interface policy. For example, the close method might set the
field opened to false, and the read method might raise an exception if opened is
false. The single final specification consists of all other pairs 〈a, b〉, represented
as a DFA with one state per method. This miner explicitly looks for “a must
not be followed by b” requirements, and by considering all possible method pair
interactions it discovers what can follow a as well. In our experiments, we used an
extended version of the miner that considers multiple fields and inlines boolean
methods.

JIST. The JIST tool of Alur et al. [1] refines the WML-static miner by using
predicate abstraction for a more precise dataflow analysis. The user specifies
a class and an undesired exception, as well as providing a set of predicates
and a specification size k. A boolean model of the class is constructed based
on the predicate set, and a model checker determines if invoking a sequence of
methods raises the given exception. If it can, that sequence is removed from
the specification. The process finds the most permissive policy of that size that
is safe with respect to the predicates and the exception. As with Strauss, the
output of the analysis is minimized using an off-the-shelf FSM library. In a WML-
static policy, states represent the last invoked method. In JIST, states represent
predicate valuations, which in turn represent object state. For example, JIST
could produce a policy in which the sequence 〈a, b〉 is allowed but 〈a, a, b〉 is not.
Thus, in JIST’s more general policies, states do not correspond directly to the
last method invocation.

WML-dynamic. Whaley et al. [14] also present a dynamic trace analysis that
learns a permissive policy for a given class. Such a permissive specification is the
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most restrictive policy that accepts all of the training traces. Each field of the
class is considered separately. Only events representing client calls to methods of
that class that read or write that field are examined. If a is immediately followed
by b in the trace, an edge from a to b is added to the policy. The single output
policy for the class is formed from the per-field policies.

ECC. Engler et al. [7] describe a technique for mining rules of the form “b
must follow a” as part of a larger work on may-must beliefs, bugs, and deviant
behavior. If b follows a in any trace, the event pair 〈a, b〉 is considered as a
candidate specification.

A pair 〈a, b〉 is a candidate policy if the events a and b are related by dataflow
and if there are both traces in which a is followed by b and traces in which a
is not followed by b. A series of dependency checks is employed: two events are
related if they have either the same first argument, or have no arguments, or if
the return value from the first passed as the sole argument to the second. The
user may also restrict attention to a certain set of methods.

ECC produces a large number of candidate policies. Engler et al. use the
z-statistic for proportions to hierarchically rank candidates. The z-statistic mea-
sures the difference between the observed ratio and an expected ratio p0. Engler
et al. use the ranking because it grows with the frequency with which the pair is
observed together and decreases with the number of counter-examples observed.
They take p0 = 0.9 based on the assumption that perfect fits are uninteresting
in bug-finding and that error cases are found near counter-examples. In our ex-
periments we have found that ECC’s assumptions tend to hold true for normal
traces but not for error traces (where the frequency counts are quite high if the
traces are static and often quite low if the traces are dynamic).

5 Qualitative Comparison of Mining Techniques

In this section we present experiments comparing these mining techniques. We
evaluate a miner in terms of the policy it produces and later in terms of the
number of bugs found by that policy. When comparing miners we abbreviate
our miner (defined in Section 3) by WN.

The first experiment compares miner performance on policies governing
hibernate2’s SessionFactory, Session and Transaction classes, as described
in Section 2. This example was chosen because one policy for it is clearly de-
scribed in the documentation, and also because that policy is complex enough
that none of the miners can expect to learn it perfectly (e.g., our technique is
unable to find all of the pieces of the full specification because of its assumptions
about run-time errors). ECC and WN both find policies about these classes (and
others) automatically. For the purposes of comparison, however, we restrict all
miners to policies about these three classes. For Strauss, WML and JIST we also
provide all of the appropriate parameters (e.g., class names, predicates).
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For the purposes of the comparison we present the same raw trace data to
each algorithm that looks at client code. In addition, some amount of human
help was given to every miner. For ECC and WN, two of the top seven candidate
policies were manually selected. For Strauss and WML-dynamic, a slice or core of
the learned policy was selected. For JIST and WML-static, all relevant predicates
and fields were given.

5.1 Hibernate2 Session Specifications

Strauss, WML-dynamic, ECC, and our technique all learned policies similar to
the documentation-based policy shown in Figure 1.

Fig. 3. A slice (the “hot core”) of the Session

policy learned by Strauss: the full learned spec-
ification has 10 states and 45 transitions

The Strauss policy (Figure 3)
captures the beginning and the
end of the Figure 1 closely but
is less precise than Figure 1 in
the middle. Strauss’s use of fre-
quency information means that
common sequences of events like
find and delete are included as
part of the policy. Paths through
states 2–6 are all particular in-
stantiations of the “do some
work” state 3 in Figure 1. Com-
pared to Figure 1, a sequence
of two flush events after an
openSession is incorrectly rejected by the Strauss policy while a sequence that
has beginTransaction but no rollback or commit is incorrectly accepted.

Fig. 4. A slice of the Session policy
learned by WML-dynamic

The WML-dynamic policy permissively
accepts all of the input traces. A slice
is shown in Figure 4, the full policy has
27 states and 117 transitions. The slice
captures the highlights of Figure 1 (e.g.,
in states 1–2–3–5–6) but fails to reject
observed illegal behavior (e.g., forgetting
close) and rejects unobserved legal behav-
ior (e.g., reconnect followed by close).
WML-dynamic makes a strong frequency
assumption: a transition is valid if and only
if it is observed. By contrast, our algo-
rithm’s ex and oe filters rule out some observed illegal behavior.

Figure 5 shows the top seven policies for these classes learned by ECC and
our approach. ECC learned 350 such candidate policies. The z-statistic fa-
vors frequent pairs: the pair 〈beginTransaction, save〉 occurs on more than
1,500 traces, and is thus a common practice, but is not strictly required.
Our approach learned 15 candidate policies, of which 2 are real. Two of the
three main aspects of the documented specification, 〈openSession, close〉 and
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ECC Policies WN Policies
#z-rank Event a Event b Real RankEvent a Event b RealECC
1 9.896 S.beginTrans S.save Yes 1.000S.iterate S.close no 286
2 1.686 S.reconnect S.load no 1.000S.getIdentifier S.close no 28
3 1.634 S.getLockModeS.close no 0.971SF.openSession S.close Yes 256
4 0.609 SF.openConn SF.closeConnYes 0.971S.createQuery S.close no 269
5 0.430 S.disconnect S.reconnect no 0.969S.find S.close no 290
6 0.309 S.getLockModeS.load no 0.966S.beginTrans T.commitYes 175
7 -0.430 S.disconnect S.load no 0.966S.beginTrans S.close no 254

Fig. 5. The top seven Session policies learned by ECC and WN. Each policy requires
an instance of “Event a” to be followed an instance of the corresponding “Event b”. The
“Real” column notes whether the policy is decidedly a false positive (no) or possibly
valid (Yes). For a WN policy, the “ECC” column shows the ranked number (out of
350, low represents a likely specification) ascribed to it by the ECC algorithm

〈beginTransaction, commit,〉 appear as #3 and #6 on the list. Since we ex-
plicitly look only for pairs 〈a, b〉 that occur in almost all normal traces we will
not find the rollback policy (no normal traces include rollback events).

5.2 Hibernate2 Session Typestate Specifications

Fig. 6. Session policy learned by
WML-static

The hibernate2 documentation mentions
one notion of Session typestate. The code
does contain defensive programming checks
using this typestate that raise exceptions,
just as WML-static and JIST assume. Un-
fortunately, neither WML-static nor JIST
are able to learn this typestate because it
is checked by verifying that an instance ob-
ject is in a dynamic data structure kept at
run-time. In addition, no check raises an ex-
ception if close, commit or rollback are
forgotten, and in general inspecting library
code will miss policies about such methods,
so WML-static and JIST cannot learn the
full specification in Figure 1.

WML-static (Figure 6) discovers five illegal sequences of Session methods.
It finds a useful undocumented Session typestate: two variables track the state
of a Session as it connects to a database. The S.write method checks these
underlying typestate variables but does not set them. For WML-static and JIST,
all unlisted events (e.g., S.close) are orthogonal to the learned policy.

JIST (Figure 7) produces a more precise policy (e.g., it discovers that
connection cannot be followed by writeObject) because it does not require
methods to have a uniform impact on the object’s typestate. Each state in the
JIST policy represents a distinct valuation of two variables. The writeObject
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method may only be called when both are false. The reconnect method always
sets the second to true, so both techniques discover that it cannot be followed by
writeObject. The connection method, however, has a different effect on the
state variables depending on their current values, so WML-static cannot reason
precisely about it.

Fig. 7. JIST Session policy

In our experiments the important dif-
ference between JIST and WML-static was
not JIST’s greater dataflow precision but
JIST’s accurate characterization of interest-
ing traces. All of the data manipulation was
either too complicated for both methods to
model (e.g., heap data structures) or sim-
ple enough to meet WML-static’s assump-
tions (e.g., comparing fields and constant val-
ues). These observations support our algorithmic design choice to use a simple
dataflow requirement but to pay careful attention to characterizing exceptional
traces.

6 Experiments

We present bug-finding effectiveness results comparing the performance of all
algorithms on the Session policy and results comparing our algorithm against
ECC and generic “library” specifications for one million lines of code.

6.1 Comparison with Other Specification Miners

Given a candidate policy, we use an ESP-like tool [5] to find potential bugs by
checking the policy against the source code [4, 5, 7, 13]. Each potential bug is
classified as a false positive or a real error by manual inspection. For example, if
an application fails to close a file but immediately shuts down as a result of the
error, the “leaked” file is classed as a false positive. However, a leaked database
lock between the JVM (held on behalf of the program) and an external database
is a bug if no finalizers close the connection when the program (but not the
JVM) shuts down.

In Figure 8 we present the results of using the mined specifications to find
bugs in the hibernate2 program. Each “false positive” or “real error” represents
a method where a trace fails to adhere to the given policy. The WML-dynamic
approach is not shown because its specification accepts all of the traces by con-
struction (thus it finds no bugs but yields no false positives).

Strauss-Full, the entire 10-state policy learned by Strauss, yields too many
false positives to be effective for bug-finding. Twenty-five of the false positives
are from traces along which S.close occurs after a sequence of “work” that
the specification fails to accept. However, since the specification also has many
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Mining False Real
Technique Positives Errors
Strauss-Full 27 0
Strauss-Cored 20 46
ECC #1 30 20
ECC #4 1 0
WN #3 4 46
WN #6 3 20
WML-static 9 0
JIST 1 0

Fig. 8. Comparison of
miner bug-finding power for
hibernate2 Session policies.
“False Positives” are methods
that violate the mined policy
but are actually correct. “Real
Errors” are buggy methods that
violate the mined policy

Strauss-Cored, the sliced policy shown in
Figure 3, gives a reduced number of false pos-
itives compared to Strauss-Full, but still suf-
fers from the same problems. However, Strauss-
Cored is able to find 46 methods in which
openSession is called but close is not (and
4 false positives involving openSession).

ECC, using specification #1 (the policy
with the highest z-rank, see Figure 5), finds
20 methods that deal with beginTransaction
improperly, 3 false positives involving
beginTransaction and 27 false positives
involving save. ECC specification #4 turns out
not to be useful for bug finding. Its z-rank is
high (28 of 30 traces that mention a also men-
tion b), but it only occurs at one point in the
source code. Either the z-rank|N or our ranking
would rank it much lower (Na = 1, Nab = 1).

Our method using specification #3 finds all
46 of the Session leaks found by Strauss-Cored (and the same four false pos-
itives). In fact, the Strauss-Cored report is a superset of the WN #3 report.
Using specification #6 we are able to find the 20 methods with commit and
rollback mistakes that are also found by ECC. Along 20 of the 23 error paths
we report in which beginTransaction occurs but commit does not, rollback
does not either. The ECC #1 report is a superset of the WN #6 report (but
with additional false positives).

Neither the WML-static nor the JIST specification lead to the discovery of
any bugs in this example. No traces contain S.discon followed by S.discon, for
example (or indeed any other erroneous violations of this typestate specification).
The JIST specification yields fewer false positives because it more accurately
represents the underlying Session typestate.

We conclude from these experiments that (1) the various techniques produce
different kinds of specifications, in accordance with their assumptions about
how programmers make mistakes and (2) not all of the assumptions underly-
ing these miners were born out by this example (such as the assumption that
typestate would be explicitly and simply represented or assumptions about event
frequency). WML-static and JIST were both able to find an undocumented type-
state specification. Their low false positive count shows that they were able to
form specifications that were permissive enough to accept most client behaviors.
Strauss, ECC and our technique were all good at yielding specifications that
found bugs. Our technique found all bugs reported by other techniques on this
example and did so with the fewest false positives.

accepting states (in particular, the state after SF.openSession accepts), errors
involving forgetting S.close are not reported.
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Lines WN (our miner) ECC Library
Program of Real Bugs Real Total Bugs Policy

Code Specs via Specs Specs Specs via Specs Bugs
infinity 1.28 28k 1 / 10 4 0 / 227 6468 0 14
hibernate2 2.0b4 57k 9 / 51 93 3 / 424 9591 21 13
axion 1.0m2 65k 8 / 25 45 0 / 96 4159 0 15
hsqldb 1.7.1 71k 7 / 62 35 0 / 224 5032 0 18
cayenne 1.0b4 86k 5 / 35 18 3 / 311 8432 8 17
sablecc 2.17.4 99k 0 / 4 0 0 / 80 2506 0 3
jboss 3.0.6 107k 11 / 114 94 2 / 444 12852 4 40
mckoi-sql 1.0.2 118k 19 / 156 69 2 / 346 10860 5 37
ptolemy2 3.0.2 362k 9 / 192 72 3 / 656 23522 12 27
total 993k 69 / 649 430 13 / 2808 83422 50 172

Fig. 9. Bugs found with specifications mined by ECC and our technique. The “Real
Specs” column counts valid specifications (determined by manual inspection) against
candidate specifications. For WN, all candidate policies were inspected. For ECC, only
candidates with non-negative z-rank were inspected. The “Total Specs” column counts
all policies reported by ECC. The “Bugs via Specs” column counts methods that
violate the “Real Specs”. Finally, the last column counts methods violating a generic
“library”-based policy that was applied equally to all programs

6.2 Bug Finding and Candidate Specification Ranking

Figure 9 compares our technique and the ECC technique on various benchmarks.
The benchmarks were chosen for ease of comparison with previous work, and may
favor the “a must be followed by b” specifications that both WN and ECC are
designed to mine. We also compare the bugs found via specification mining to
the bugs found via the generic “library” specifications we used in our previous
work [13]. The library policies were two- to four-state FSMs describing network
connections, database locks and file handles. We are unable to directly compare
the other techniques because of the cost involved in manually specifying classes,
predicates, and other parameters in advance.

ECC is able to find 4 specifications missed by our algorithm. In one of these
examples, the b event never occurs in any error handling code (and thus does not
meet our ex requirement). Removing the ex requirement causes our algorithm to
produce 1,114 candidate specifications for hibernate2 alone. Given the paucity
of real specifications that are filtered by the requirement and the plethora of
false positives that it avoids, we believe that basing our algorithm on exceptional
control flow paths was a good decision.

Of the 69 real specifications we found, 24 involved methods from separate
classes, arguing against class-based module requirements. Only one valid specifi-
cation involved methods from different libraries. On the other hand, for example,
30 of the first 100 false positive specifications reported by ECC for axion could
have been avoided with our sp package-level module requirement. We believe
these results argue strongly in favor of package-level requirements.
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A common false positive for ECC paired the family of methods
ListIterator.hasNext and ListIterator.next. The vast majority of paths
that contain the former also contain the latter, and iterators occur frequently,
causing the z-rank (whether restricted to normal traces or not) for such pairs
to be high (iterator specifications occur as one of the top five candidates for
ECC on six of our nine programs).

A common false positive for our technique paired read or write (instead of
open) with close. As the 〈flush, close〉 data in Figure 2 demonstrate, work
functions like read are almost invariably followed by close if they are present,
but the more desirable open-based specification usually ranks higher.

Almost every valid specification our technique found was listed somewhere
in ECC’s voluminous output of candidate specifications. For example, our 59th
candidate jboss policy finds four real errors and is #9522 on the ECC list
(z-rank= −54, z-rank|N= −29).

Fig. 10. Bugs found as a function of the rank
order in which candidate specifications are in-
spected. “WN Rank” is Nab/(Na+Nab), the rank-
ing used by our algorithm, “z-rank|N” is the z-
statistic restricted to normal traces and “z-rank”
is the z-statistic

Figure 10 shows the number
of bugs found as a function of
the ranking used to sort can-
didate specifications produced
by our algorithm. Compared to
the z-rank, our ranking only
required 42% of the specifica-
tions to be inspected (instead of
72%) in order to find two-thirds
of the bugs. However, we con-
clude that since various rank-
ings work only moderately bet-
ter than a random shuffle, it
is very important to produce
a small number of extraneous
candidates.

Our results for ECC are con-
sistent with, but slightly better
than, previously published figures in which 23 errors were found via specification
mining on the Linux 2.4.1 kernel (about 840k LOC) [7]. ECC was designed to
target C operating systems code. It actually performs better (in errors found per
line of code) in this domain than in their reported experiments, although there
is no reason to believe that the bug density should be the same.

One additional consideration is the utility of the found bugs. Evaluating the
importance of a bug is beyond the scope of this work. Our mining technique
favors resource leaks and forgotten obligations. One of the authors of ptolemy2
was willing to rank resource leaks we found on his own scale. For that program,
11% of the bugs we reported were in tutorials or third-party code, 44% of them
rated a 3 out of 5 for taking place in “little used, experimental code”, 19% of
them rated a 4 out of 5 and were “definitely a bug in code that is used more
often”, and 26% of them rated a 5 out of 5 and were “definitely a bug in code
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that is used often.” We cannot claim that this breakdown generalizes, but it does
provide one concrete example.

Using our miner to find bugs was decidely better than using generic library
policies. We found 430 bugs using mined policies compared to 172 using generic
ones. We found 380 more bugs and 56 more policies than ECC using 2000 fewer
candidate specifications. This highlights the practical importance of our algo-
rithmic assumptions, in particular our use of exceptional control flow.

7 Conclusions

As automatic program verification tools become more prevalent, specifications
become the limiting factor in verification efforts, and specification mining for
the purposes of finding bugs becomes more important. Given a program, a spec-
ification miner emits candidate policies that describe real or common program
behavior. We propose a novel miner that uses information about exceptional
paths. We compare the bug-finding power of various miners. In 1 million lines
of Java code, we found 430 bugs using mined specifications compared to 172
using generic “library”-based ones, and we found more bugs than comparable
mining algorithms. Our experiments highlighted the relative unimportance of
candidate ranking and the practical importance of our algorithmic assumptions,
in particular our use of exceptional control flow for specification mining.
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