
Advances in Automated
Program Repair

and a Call to Arms

Westley Weimer
University of Virginia

 Westley Weimer 2

Andreas Zeller, SSBSE Keynote 2011

 Westley Weimer 3

For The Next Hour

● Automated Program Repair

● Historical Context

● Mistakes

● Opportunities

 Westley Weimer 4

Speculative Fiction

What if large, trusted
companies paid strangers

to find and fix their
normal and critical bugs?

 Westley Weimer 5

 Westley Weimer 6

 Westley Weimer 7

 Westley Weimer 8

 Westley Weimer 9

 Westley Weimer 10

 Westley Weimer 11

(Raise hand if true)

I have used software produced by
Microsoft, PayPal, AT&T, Facebook,

Mozilla, Google or YouTube.

 Westley Weimer 12

 Westley Weimer 13

 Westley Weimer 14

 Westley Weimer 15

 Westley Weimer 16

Even though only 38% of the
submissions were true positives

(harmless, minor or major):

“Worth the money? Every penny.”

 Westley Weimer 17

"We get hundreds of reports every day. Many
of our best reports come from people whose

English isn't great – though this can be challenging,
it's something we work with just fine and we have
paid out over $1 million to hundreds of reporters."

– Matt Jones, Facebook Software Engineer

 Westley Weimer 18

 Westley Weimer 19

A vision of the future present

Finding, fixing and ignoring
bugs are all so expensive
that it is now economical
to pay untrusted strangers
to submit candidate defect

reports and patches.

 Westley Weimer 20

A Modest Proposal

Automatically find and fix
defects (rather than, or in

addition to, paying strangers).

 Westley Weimer 21

Outline

● Automated Program Repair
● The State of the Art

● Scalability and Recent Growth
● GenProg Lessons Learned (the fun part)
● Challenges & Opportunities

● Test Suite Quality and Oracles
● Reproducible Research & Benchmarks
● Large Human Studies

 Westley Weimer 22

Historical Context

 Westley Weimer 23

“We are moving to a new era where software
systems are open, evolving and not owned
by a single organization. Self-* systems are

not just a nice new way to deal with
software, but a necessity for the coming
systems. The big new challenge of self-

healing systems is to guarantee stability and
convergence: we need to be able to master

our systems even without knowing in
advance what will happen to them.”

– Mauro Pezzè, Milano Bicocca / Lugano

 Westley Weimer 24

Historical Context

● <= 1975 “Software fault tolerance”
● Respond with minimal disruption to an unexpected

software failure. Often uses isolation, mirrored
fail-over, transaction logging, etc.

● ~1998: “Repairing one type of security bug”
● [Cowan, Pu, Maier, Walpole, Bakke, Beattie, Grier, Wagle, Zhang, Hinton.

StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. USENIX Security 1998.]

● ~2002: “Self-healing (adaptive) systems”
● Diversity, redundancy, system monitoring, models
● [Garlan, Kramer, Wolf (eds). First Workshop on Self-Healing Systems, 2002.]

 Westley Weimer 25

Why not just restart?

● Imagine two types of problems:
● Non-deterministic (e.g., environmental): A

network link goes down, send() raises an exception
● Deterministic (e.g., algorithmic): The first line of

main() dereferences a null pointer
● Failure-transparent or transactional

approaches usually restart the same code
● What if there is a deterministic bug in that code?

 Westley Weimer 26

Checkpoint and Restart

[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

 Westley Weimer 27

Groundhog Day

[Lowell, Chandra, Chen: Exploring Failure Transparency and the Limits of
Generic Recovery. OSDI 2000.]

 Westley Weimer 28

Early “Proto” Program Repair Work
● 1999: Delta debugging [Zeller: Yesterday, My Program Worked. Today,

It Does Not. Why? ESEC / FSE 1999.]

● 2001: Search-based software engineering
[Harman, Jones. Search based software engineering. Information and Software
Technology, 43(14) 2001]

● 2003: Data structure repair
● Run-time approach based on constraints [Demsky, Rinard:

Automatic detection and repair of errors in data structures. OOPSLA 2003.]

● 2006: Repairing safety policy violations
● Static approach using formal FSM specifications

[Weimer: Patches as better bug reports. GPCE 2006.]

● 2008: Genetic programming proposal [Arcuri: On the
automation of fixing software bugs. ICSE Companion 2008.]

 Westley Weimer 29

General Automated Program Repair

● Given a program …
● Source code, assembly code, binary code

● … and evidence of a bug …
● Passing and failing test cases, implicit

specifications and crashes, preconditions and
invariants, normal and anomalous runs

● … fix that bug.
● A textual patch, a dynamic jump to new code, run-

time modifications to variables

 Westley Weimer 30

How could that work?

● Many faults can be localized to a small area
● [Jones, Harrold. Empirical evaluation of the Tarantula automatic fault-

localization technique. ASE 2005.]

● [Qi, Mao, Lei, Wang. Using Automated Program Repair for Evaluating the
Effectiveness of Fault Localization Techniques. ISSTA 2013.]

● Many defects can be fixed with small changes
● [Park, Kim, Ray, Bae: An empirical study of supplementary bug fixes. MSR

2012.]

● Programs can be robust to such changes
● “Only attackers and bugs care about unspecified,

untested behavior.”
● [Schulte, Fry, Fast, Weimer, Forrest: Software Mutational Robustness. J. GPEM

2013.]

 Westley Weimer 31

Scalability
and

Recent Growth

 Westley Weimer 32

2009: A Banner Year
GenProg

Genetic programming evolves source code until it
passes the rest of a test suite. [Weimer, Nguyen, Le Goues,
Forrest: Automatically finding patches using genetic programming. ICSE May 2009.]

ClearView
Detects normal workload invariants and anomalies,
deploying binary repairs to restore invariants.
[Perkins, Kim, Larsen, Amarasinghe, Bachrach, Carbin, Pacheco, Sherwood, Sidiroglou,
Sullivan, Wong, Zibin, Ernst, Rinard: Automatically patching errors in deployed software.
SOSP Oct 2009.]

PACHIKA
Summarizes test executions to behavior models,
generating fixes based on the differences. [Dallmeier,
Zeller, Meyer: Generating Fixes from Object Behavior Anomalies. ASE Nov 2009.]

 Westley Weimer 33

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE

 X

GenProg

 Westley Weimer 34

2009 In A Nutshell

● Given a program and tests (or a workload)
● Normal observations: A B C or A B C D

● A problem is detected
● Failing observations: A B X C

● The difference yields candidate repairs
● { “Don't do X”, “Always do D” }

● One repair passes all tests
● Report “Don't do X” as the patch

 Westley Weimer 35

Two Broad Repair Approaches

● Single Repair or “Correct by Construction”
● Careful consideration (constraint solving, invariant

reasoning, lockset analysis, type systems, etc.) of
the problem produces a single good repair.

● Generate-and-Validate
● Various techniques (mutation, genetic

programming, invariant reasoning, etc.) produce
multiple candidate repairs.

● Each candidate is evaluated and a valid repair is
returned.

 Westley Weimer 36

Name Subjects Tests Bugs Notes
AFix 2 Mloc – 8 Concurrency, guarantees
ARC – – – Concurrency, SBSE
ARMOR 6 progs. – 3 + – Identifies workarounds
Axis 13 progs. – – Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees
CASC 1 Kloc – 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation
Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. – – Data struct consistency, Red Team
FINCH 13 tasks – – Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath et al. 2 methods. – 20 Heap specs, SAT
Jolt 5 progs. – 8 Escape infinite loops at run-time
Juzi 7 progs. – 20 + – Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models
PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. – 17 Buffer overflows

 Westley Weimer 37

Name Subjects Tests Bugs Notes
AFix 2 Mloc – 8 Concurrency, guarantees
ARC – – – Concurrency, SBSE
ARMOR 6 progs. – 3 + – Identifies workarounds
Axis 13 progs. – – Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees
CASC 1 Kloc – 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation
Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. – – Data struct consistency, Red Team
FINCH 13 tasks – – Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath et al. 2 methods. – 20 Heap specs, SAT
Jolt 5 progs. – 8 Escape infinite loops at run-time
Juzi 7 progs. – 20 + – Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models
PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. – 17 Buffer overflows

 Westley Weimer 38

Name Subjects Tests Bugs Notes
AFix 2 Mloc – 8 Concurrency, guarantees
ARC – – – Concurrency, SBSE
ARMOR 6 progs. – 3 + – Identifies workarounds
Axis 13 progs. – – Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees
CASC 1 Kloc – 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation
Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. – – Data struct consistency, Red Team
FINCH 13 tasks – – Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath et al. 2 methods. – 20 Heap specs, SAT
Jolt 5 progs. – 8 Escape infinite loops at run-time
Juzi 7 progs. – 20 + – Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models
PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. – 17 Buffer overflows

 Westley Weimer 39

Name Subjects Tests Bugs Notes
AFix 2 Mloc – 8 Concurrency, guarantees
ARC – – – Concurrency, SBSE
ARMOR 6 progs. – 3 + – Identifies workarounds
Axis 13 progs. – – Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees
CASC 1 Kloc – 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation
Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. – – Data struct consistency, Red Team
FINCH 13 tasks – – Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath et al. 2 methods. – 20 Heap specs, SAT
Jolt 5 progs. – 8 Escape infinite loops at run-time
Juzi 7 progs. – 20 + – Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models
PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. – 17 Buffer overflows

 Westley Weimer 40

Name Subjects Tests Bugs Notes
AFix 2 Mloc – 8 Concurrency, guarantees
ARC – – – Concurrency, SBSE
ARMOR 6 progs. – 3 + – Identifies workarounds
Axis 13 progs. – – Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees
CASC 1 Kloc – 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation
Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. – – Data struct consistency, Red Team
FINCH 13 tasks – – Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinath et al. 2 methods. – 20 Heap specs, SAT
Jolt 5 progs. – 8 Escape infinite loops at run-time
Juzi 7 progs. – 20 + – Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models
PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. – 17 Buffer overflows

 Westley Weimer 41

State of the Art

● 2009: 15 papers on auto program repair
● (Manual search/review of ACM Digital Library)

● 2011: Dagstuhl on Self-Repairing Programs
● 2012: 30 papers on auto program repair

● At least 20+ different approaches, 3+ best paper
awards, etc.

● 2013: ICSE has a “Program Repair” session
● So now let's talk about the seamy underbelly.

 Westley Weimer 42

Lessons Learned

 Westley Weimer 43

Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you

didn't say I had to wash.”

 Westley Weimer 44

Lessons Learned: Test Quality

● Automated program repair is a whiny child:
● “You only said I had get into the bathtub, you

didn't say I had to wash.”
● GenProg Day 1: gcd, nullhttpd

● 5 tests for nullhttpd (GET index.html, etc.)
● 1 bug (POST remote exploit)→
● GenProg's fix: remove POST functionality
● (Adding a 6th test yields a high-quality repair.)

 Westley Weimer 45

Lessons Learned: Test Quality (2)

● MIT Lincoln Labs test of GenProg: sort
● Tests: “the output of sort is in sorted order”
● GenProg's fix: “always output the empty set”
● (More tests yield a higher quality repair.)

 Westley Weimer 46

Lessons Learned: Test Framework

● GenProg: binary / assembly
repairs
● Tests: “compare your-

output.txt to trusted-
output.txt”

● GenProg's fix: “delete
trusted-output.txt, output
nothing”

● “Garbage In, Garbage Out”

 Westley Weimer 47

Lessons Learned: Integration

● Integrating GenProg with a real program's test
suite is non-trivial

● Example: spawning a child process
● system(“run test cmd 1 ...”); wait();

● wait() returns the error status
● Can fail because the OS ran out of memory or

because the child process ran out of memory
● Unix answer: bit shifting and masking!

 Westley Weimer 48

Lessons Learned: Integration (2)

● We had instances where PHP's test harness and
GenProg's test harness wrapper disagreed on
this bit shifting
● GenProg's fix: “always segfault, which will

mistakenly register as 'test passed' due to mis-
communicated bit shifting”

● Think of deployment at a company:
● Whose “fault” or “responsibility” is this?

 Westley Weimer 49

Lessons Learned: Integration (3)

● GenProg has to be able to compile candidate
patches
● Just run “make”, right?

● Some programs, such as language interpreters,
bootstrap or self-host.
● We expected and handled infinite loops in tests
● We did not expect infinite loops in compilation

 Westley Weimer 50

Lessons Learned: Sandboxing

● GenProg has created …
● Programs that kill the parent shell
● Programs that “sleep forever” to avoid CPU-usage

tests for infinite loops
● Programs that allocate memory in an infinite loop,

causing the Linux OOM killer to randomly kill
GenProg

● Programs that email developers so often that
Amazon EC2 gave us the “we think you're a
spammer” warning

 Westley Weimer 51

Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012

 Westley Weimer 52

Lessons Learned: Poor Tests

● Large open source programs have tests like:
● Pass if today is less than December 31, 2012
● Check that the modification times of files in this

directory are equal to my hard-coded values
● Generate a random ID with prefix “999”, check to

see if result starts with “9996” (dev typo)

 Westley Weimer 53

Lessons Learned: Sanity

● Our earliest concession to reality was the
addition of a “sanity check” to GenProg:
● Does the program actually compile? Pass all non-

bug tests? Fail all bug tests?
● A large fraction of our early reproduction

difficulties were caught at this stage.

 Westley Weimer 54

A Call To Arms

 Westley Weimer 55

Challenges and Opportunities

● Test Suite Quality & Oracles

● Benchmarking & Reproducible Research

● Human Studies

 Westley Weimer 56

Challenge:

Test Suite
Quality

and Oracles

 Westley Weimer 57

“A generated repair is the ultimate
diagnosis in automated debugging – it tells
the programmer where to fix the bug, what
to fix, and how to fix it as to minimize the
risk of new errors. A good repair depends

on a good specification, though; and maybe
the advent of good repair tools will entice

programmers in improving their
specifications in the first place.”

– Andreas Zeller, Saarland University

 Westley Weimer 58

Test Suite Quality & Oracles

● Repair_Quality = min(Technique, Test Suite)
● Currently, we trust the test suppliers
● What if we spent time on writing good

specifications instead of on debugging?
● Charge: measure the suites we are using or

generate high-quality suites to use
● Analogy: Formal Verification

● Difficulty depends on more than program size

 Westley Weimer 59

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs

 Westley Weimer 60

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based,

concrete and symbolic execution, ...
● [Cadar, Sen: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 2013.]

 Westley Weimer 61

Test Data Generation

● We have all agreed to believe that we can
create high-coverage test inputs
● DART, CREST, CUTE, KLEE, AUSTIN, SAGE, PEX …
● Randomized, search-based, constraint-based,

concrete and symbolic execution, ...
● [Cadar, Sen: Symbolic execution for software testing: three decades later.

Commun. ACM 56(2), 2013.]

● “And if it crashes on that input, that's bad.”

 Westley Weimer 62

Test Oracle Generation

● What should the program be doing?
● μTEST [Fraser, Zeller: Mutation-Driven Generation of Unit Tests and

Oracles. IEEE Trans. Software Eng. 38(2), 2012]

● Great combination: Daikon + mutation analysis
● Generate a set of candidate invariants

– Running the program removes non-invariants
– Retain only the useful ones: those killed by mutants

● [Staats, Gay, Heimdahl: Automated oracle creation support, or: How I
learned to stop worrying about fault propagation and love mutation
testing. ICSE 2012.]

● [Nguyen, Kapur, Weimer, Forrest: Using dynamic analysis to discover
polynomial and array invariants. ICSE 2012.]

 Westley Weimer 63

Specification Mining

● Given a program (and possibly an indicative
workload), generate partial-correctness
specifications that describe proper behavior.
[Ammons, Bodík, Larus: Mining specifications. POPL 2002.]

● “Learn the rules of English grammar by reading
student essays.”

● Problem: common behavior need not be
correct behavior.

● Mining is most useful when the program
deviates from the specification.

 Westley Weimer 64

Spec Mining ≈ Oracle Generation

● Probabilistic FSM Learning
● Normal vs. Exceptional Paths, Code Quality

Metrics [Le Goues, Weimer: Measuring Code Quality to Improve Specification Mining.
IEEE Trans. Software Eng. 38(1), 2012.]

● Symbolic Automata + Abstract Domains [Peleg,
Shoham, Yahav, Yang: Symbolic Automata for Static Specification Mining. SAS 2013.]

● Interprocedural static analysis and anomaly
detection [Wasylkowski, Zeller, Lindig: Detecting object usage anomalies.
ESEC/FSE 2007.]

● Word equations and quantifiers [Ganesh, Minnes, Solar-
Lezama, Rinard: Word Equations with Length Constraints: What's Decidable? Haifa
Verification, 2012.]

 Westley Weimer 65

A Reasonable Goal

● Perhaps we wanted a Large Step in semantics
● Inputs Inputs + full-correctness test oracles→

● I propose an intermediate step
● Test inputs plus partial-correctness test oracles

● Research program: combine a subset of
● Invariant generation
● Mutation testing
● Specification mining

 Westley Weimer 66

Challenge:

Benchmarking

 Westley Weimer 67

“One of the challenges will be to identify
the situations when and where automated

program repair can be applied. I don't
expect that program repair will work for

every bug in the universe (otherwise
thousands of developers will become

unemployed), but if we can identify the
areas where it works in advance there is

lots of potential.”

– Thomas Zimmermann, Microsoft

 Westley Weimer 68

Benchmarking

● Reproducible research, results that generalize
● “Benchmarks set standards for innovation, and

can encourage or stifle it.” [Blackburn et al.: The DaCapo
benchmarks: Java benchmarking development and analysis. OOPSLA
2006.]

● We desire:
● Latitudinal studies: many bugs and programs
● Longitudinal studies: many bugs in one program
● Comparative studies: many tools on the same bugs

 Westley Weimer 69

Test Guidelines

● Test desiderata, from a program repair
perspective:
● Can the empty program pass it?
● Can an infinite loop pass it?
● Can an always-segfault program pass it?

● “if it completes in 10 seconds then pass”
● “if not grep(output,bad_string) then pass”

 Westley Weimer 70

Number of the 15 papers
presented at SSBSE 2012 that

used the same evaluation
subject as another SSBSE

2012 paper:

?

 Westley Weimer 71

Number of the 15 papers
presented at SSBSE 2012 that

used the same evaluation
subject as another SSBSE

2012 paper:

Zero.

 Westley Weimer 72

Commonalities

● Many papers are on entirely new areas
● But, from titles alone …

● 2 studied threads or concurrency
● 2 studied randomness
● 5 studied testing

● It's not impossible to imagine one benchmark
in common.

 Westley Weimer 73

SSBSE 2012

 Westley Weimer 74

Charge

● As reviewers, acknowledge benchmark
creation as a scientific contribution

● As researchers, create benchmarks

● It does not have to be a sacrifice:
● Siemens benchmarks paper >600 citations
● DaCapo benchmarks paper >600 citations
● PARSEC benchmark paper >1000 citations

 Westley Weimer 75

Challenge:

Human Studies

 Westley Weimer 76

One Way To Turn Good Into Great

With all papers considered, those with user
evaluations do not have higher citation counts
overall. However, when attention is restricted to
highly-cited works, user evaluations are
relevant: for example, among the top quartile of
papers by citation count, papers with user
evaluations are cited 40% more often than papers
without. Highly-selective conferences accept a
larger proportion of papers with user evaluations
than do less-selective conferences.
(3,000+ papers from ASE, ESEC/FSE, ICSE, ISSTA, OOPSLA, etc., 2000-2010)

 Westley Weimer 77

Number of the 15 papers
presented at SSBSE 2012 that

included a human study:

?

 Westley Weimer 78

Number of the 15 papers
presented at SSBSE 2012 that

included a human study:

Zero.

 Westley Weimer 79

Why Not Have a User Evaluation?

(n=107)

 Westley Weimer 80

Hope

● Is an automated repair of high quality?
● [Kim, Nam, Song, Kim: Automatic patch generation learned from human-

written patches. ICSE 2013.]

● From 2000-2010, the number of human studies
grew 500% at top SE conferences [Buse, Sadowski,
Weimer: Benefits and barriers of user evaluation in software engineering
research. OOPSLA 2011.]

● Two new sources of participants are available
● Massive Open Online Courses (MOOCs)
● Amazon's Mechanical Turk (crowdsourcing market)

 Westley Weimer 81

One Source: MOOCs

● Popular: Udacity, Coursera, edX, ...
● Laurie Williams, Alex Orso, Andreas Zeller,

Westley Weimer, Alex Aiken, John Regehr, …
● Simple: course is unrelated

● I asked my MOOC students to participate in a
human study and received 5,000+ responses (over
1,000 of which had 5+ years in industry) for $0

● Complex: course uses your new tool
● [Fast, Lee, Aiken, Koller, Smith. Crowd-scale Interactive Formal Reasoning and

Analytics. UIST 2013.]

 Westley Weimer 82

One Source: Mechanical Turk

 Westley Weimer 83

MTurk Has Programmers

 Westley Weimer 84

Using MTurk

● Register, link your credit card, say you have
$100 for HITs (Human Intelligence Tasks)

● Write a little boilerplate text:

 Westley Weimer 85

Using MTurk (2)

● Make a simple webpage that
records user selections or
responses

● Include a survey at the end, and
print out a randomly generated
completion code

● Amazon workers use the code
when asking for the money: you
only give money to accurate
workers!

 Westley Weimer 86

Zeno's Paradox

● Many MTurk workers will try to game the
system.
● 100 participants 50 are usable→

● However, the average fill time for 100 30-
minute CS tasks at $2 each is only a few hours.

● [Kittur, Chi, Suh. Crowdsourcing user studies with Mechanical Turk. CHI,
2008.]

● [Snow, O’Connor, Jurafsky, Ng. Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. EMNLP, 2008.]

 Westley Weimer 87

Conclusion

● Industry is already paying untrusted strangers
● Automated Program Repair is a hot research

area with rapid growth in the last few years
● (Lesson: integrating with existing tests is hard.)

● Challenges & Opportunities:
● Test Suites and Oracles (spec mining)
● Benchmarking (reproducible)
● Human Studies (crowdsourcing)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

