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Abstract

Web-based applications are growing in complexity and
criticality, increasing the need for their precise validation.
Regression testing is an established approach for providing
information about the quality of an application in the face
of recurring updates that dominate the web. We present
techniques to address a key challenge of the automated
regression testing of web-based applications. Innocuous
program evolutions often appear to fail tests and must
be manually inspected. We rely on inherent similarities
between independent web-based applications to provide
fully automated solutions for reducing the number of
false positives associated with regression testing such
applications, simultaneously focusing on returning all true
positives.

Our approach predicts which test cases merit human
inspection by applying a model derived from regression
testing other programs. We are 2.5 to 50 times as accurate
as current industrial practice, but require no user annota-
tions.

I. Introduction

Despite the ubiquitous use of web applications, most are
not developed according to a formal process model [22].
Web applications are subject to high levels of complexity
and pressure to change. This manifests in short deliv-
ery times, emerging user needs, and frequent developer
turnover, among other challenges [24]. Consequently, sys-
tems are delivered without being tested [24], potentially
resulting in functionality losses on the order of millions
of dollars per hour [21], [32], [37]. User-visible failures
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are endemic to top-performing web applications: about
70% of such sites are subject to user-visible failures, a
majority of which could have been prevented through
earlier detection [27]. One way to avoid preventable mon-
etary losses is then to design web-based applications to
meet high reliability, usability, security, and availability
requirements [20], which translates into well-designed and
well-tested software that is as free from error as possible.

Regression testing is an established approach for in-
creasing the reliability of applications in the face of
recurring updates, and testing costs sum to as much
as $35 billion annually in the United States [12], [25],
[33]. Unfortunately, testing of web applications is often
perceived as lacking a significant payoff [11]. A general
want of resources [10], [17], [39], combined with the
additional complexities of web applications [24], makes
automation a necessity if regression testing is to be adopted
in the web-based application domain. Although automated
replay of existing test suites is relatively straightforward,
regression testing is constrained by the effort required
for the comparison of test results between two program
versions.

In this paper, we propose to harness the inherent simi-
larities between web-based applications to reduce the cost
of regression testing them. We hypothesize that errors in
web-based applications can be successfully modeled due to
the tree-structured nature of XML/HTML output, and that
unrelated web-based applications fail in similar ways. We
employ these similarities to provide a precise, semantics-
based automated oracle comparator for the regression
testing of web-based applications.

Our goal is to create an automated oracle comparator
that relies on the semantics of HTML (or XML) output
to decide if a pair of test case outputs indicates an error.
An oracle produces an expected result and a comparator
validates the actual test case output against the expected
result [4]. Existing comparators for web applications typ-
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ically have false positive rates in the 4% range [31]1, but
must be trained on the target application to achieve this
value, while a diff-based approach to predicting faulty
output is wrong 70–90% of the time in our experiments.
Such training requirements and imprecision preclude the
automation of the regression testing process for web-
based applications. This is a lamentable consequence in
the web-based application world, where testing is often
sacrificed due to resource constraints and time-to-market
pressures [24]. In addition, while comparators have the po-
tential to significantly reduce the number of false positives
over diff, they may introduce false negatives.

A precise comparator is one that reduces the number
of false positives when compared to a naı̈ve approach that
reports any difference between two outputs. Our goal is
provide a precise comparator that minimizes the number
of false positives without failing to report true positives.
In previous work we presented such a precise comparator,
but it required manual annotation and human training, and
was thus not truly automatic [29]. In this paper we propose
a technique that dispenses with the need for manual anno-
tation yet performs better overall. We use other web-based
application output, unrelated to the application-at-test, to
“train” such a comparator to recognize error situations.
Though our corpus of training data is not related to the
application we are testing, the types of and manifestations
of faults in such applications are often similar in nature,
allowing us to build a general predictive fault model. By
offering this set of training data to our model and other
users, we are able to automate the comparator process by
not relying on any additional form of manual annotation
or manual fault seeding.

Our approach focuses not only on the similar ways
unrelated web applications fail, but also on the equally
important ways in which they tend to benignly evolve.
Ignoring harmless program evolutions is central to re-
ducing the number of false positives associated with a
comparator. Conversely, correctly modeling true erroneous
output allows our model to minimize false negatives.

To highlight the challenges of using such an approach,
consider a new version of a web-based application that
produces otherwise-identical HTML output, but with a
different footer that may or may not include dynamically
generated elements such as a timestamp. While compara-
tors based on standard diff or diff-like tools will
not return any false negatives, a diff of the old output
and the new output will always report a potential error,
even if no new defect has been introduced. The problem
is compounded with each new version of the software.

1These false positive results were obtained when testing on a single
version of the software using seeded faults. In this paper we focus on
regression testing to find faults between different versions of applications.
In such settings the number of false positives reported by such tools
increases due to natural, innocuous program evolutions.

We construct an automated oracle comparator that does
not report harmless updates to the application, while still
flagging actual bugs.

We present and evaluate an automated oracle com-
parator for applications with XML/HTML output. Our
comparator relies on web page similarities between unre-
lated web-based applications and needs no manual training
by developers. We distinguish between web applications
and web-based applications in that the latter, in addition
to producing HTML, may also produce XML output.
Consequently our work focuses on web-based applications,
as we are able to handle both XML and HTML output.

The structure of this paper is as follows. In Section II
we present some examples of test case output where
diff would produce too many false positives. Section III
presents related work, and Section IV gives an overview of
our approach. Our evaluational setup is described in Sec-
tion V, with experimental results following in Section VI.
Finally, Section VII presents conclusions and directions for
future work.

II. Motivating Examples

Modern functional testing of web applications (as op-
posed to HTML validation, link testing, or load testing)
relies primarily on capture-replay infrastructure where
tester input sequences are recorded and replayed [8]. In
such situations, the oracle is often HTML output of a
previous, trusted version of the application, and compar-
ison is accomplished through a diff of two outputs.
Unfortunately, the human interpretation of test results is
a “tedious and error-prone task” [32] and is decidedly
onerous for web applications because of the frequent false
positives generated by a diff-based comparator.

Fortunately, updates to web-based applications often
happen in similar and predictable ways. Consider the
following example from a diff of two GCC-XML test
case outputs [36] (the text above the dashed line was
generated by the older application, while the rest is output
from the newer version).

1 < <Namespace id="_2" name="std" context="_1
" members=""/>

2 < <Function id="_3" name="foo" returns="_4"
context="_1" location="f0:8">

3 ---
4 > <Namespace id="_2" name="std" context="_1

" members="" mangled="_Z3std"/>
5 > <Function id="_3" name="foo" returns="_4"

context="_1" mangled="_Z3fooii" location
="f0:8" file="f0" line="8" endline="15">

Notice that in both versions the same <Namespace> and
<Function> elements are being defined. Each attribute
that exists in the older version also appears in the newer
version, and with the same value. The main difference
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is that the newer version of the application contains new
functionality in the form of additional attributes, such as
mangled="_Z3fooii" on line 5. Relying on a diff-like
comparator for regression testing these two outputs would
lead to a false positive. Web-based applications frequently
evolve through the addition of new attributes to existing
elements, as one example of a typical change that should
generally not indicate an error in regression testing.

Another example is an update to HTML code that does
not change the appearance or functionality experienced
by the end user. Consider the diff output from two
TXT2HTML test case versions [34] (the newer output is
below the dashed line):

1 < <P>The same table could be indented.
2 < <TABLE border="1">
3 ---
4 > <p>The same table could be indented.</p>
5 > <table border="1" summary="">

As in the previous example, the <table> element contains
a new attribute (summary). The newer output also matches
the paragraph tag <p> with a closing tag, presumably
because future versions of HTML will not support un-
matched tags, although most browsers will display these
two bits of code equivalently. Again, a diff comparison
of these two outputs would yield a false positive due to
the additional summary attribute, the closing paragraph tag,
and the difference in case between the two table strings.

Using diff-like comparators for the above examples,
as well as for other outputs involving small natural lan-
guage changes, formatting updates, or changes in the order
of elements or attributes, would yield a high number of
false positives because the human-level interpretation of
the result remains unchanged. Simply ignoring certain
types of updates to websites, however, raises the possibility
of missing actual bugs. Consequently, we present an auto-
mated technique that reduces the number of false positives
in test output comparison while minimizing the number
of false negatives by learning characteristics of faults and
non-faults.

III. Related Work

Oracle comparators are frequently used for web testing,
where human intervention is required in the presence of
discrepancies [8], [16], [24], [32]. Lucca et al. mention a
comparator that automatically compares the actual results
against the expected values of the test execution [16]. Our
approach can be considered a working instantiation of their
outline, extending the concept of syntactic differences to
semantic ones.

Providing a precise comparator for web-based applica-
tions remains an open research area. Sprenkle et al. and
Sampath et al. have focused on oracle comparators for

testing web applications [30], [31], [32]. They investigate
features derived from diff, content, and structure, and
refine these features into oracle comparators [32] based
on HTML tags, unordered links, tag names, attributes,
forms, the document, and content. Applying decision tree
learning allows them to identify the best combination of
oracle comparators for a specific application in [31]. Our
approach also combines machine learning and automated
oracle comparators, though our features and benchmarks
are not always HTML-specific and can be more generally
applied.

A more important difference between our approaches
is that they suggest developers hand-seed faults from bug
reports to create faulty versions of code, from which
outputs can be collected and used as training data [31].
Our method does not require manual seeding of faults
and uses training data from other applications to automate
this process. Additionally, rather than introducing multiple
oracles targeted at different hypothetical types of web ap-
plications [31], [32], our model uses features that we claim
are closer to tree-based differences and human judgments
in a holistic manner to train one generic oracle-comparator
that can be tailored to the application at test automatically.
Finally, their approach is validated by measuring their
oracles’ abilities to reveal seeded faults in one version
of an application (i.e., measuring differences between the
clean application and a fault-seeded one). By contrast,
our experiments train and test on data between different
versions of the same application. Our approach contends
directly with common and benign program evolutions, in
contrast to the setting of Sprenkle et al. [31], where a
diff comparator would have no false positives for a
deterministic application.

Although recent work has explored using abstract syn-
tax tree matching [19] and semantic graph differenc-
ing [23] for analyzing source code evolution, such ap-
proaches are not helpful when comparing XML and HTML
text outputs. Not only do they depend on the presence
of source code constructs such as variables and functions
(which are not present in generic HTML or XML) to make
distinctions, but they are meant to summarize changes,
rather than to decide if a pair of test case outputs in-
dicate an error. There is currently no industry standard
for comparing pairs of XML/HTML documents beyond
that of diff used in capture-replay contexts and user-
session based testing [13]. Developers have the option
of customizing diff-like comparators for their target
applications, such as by using regular expressions to filter
out conflicting dates, but these tools must be manually
configured for each application and potentially each test
case, and may not be robust as the website evolves.

Binkley [5], [6] as well as Vokolos and Frankl [38]
approach regression testing by characterizing the semantic
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differences between two versions of program source code
using program slicing. By doing so, only program differ-
ences need to be tested and the total number of test cases
that need to be executed between versions are reduced. Our
approach focuses on the semantic different between two
versions of the program output; our technique is orthogonal
to theirs, and our tool can be used in a retest-all framework
or in conjunction with theirs in a setting in which some
regression tests have been skipped due to source code
similarity.

Sneed explores a case study on testing a web application
system for the Austrian Chamber of Commerce [28]. A
capture-replay tool was used to record the dialog tests, and
XML documents produced by the server were compared
at the element level: if the elements did not match, the test
failed. Our approach also compares XML documents, but
does not necessarily rely on exact element matching, and
thus reports fewer false positives.

Capture-replay scripts suffer from the “fragile test prob-
lem”, where a robot user fails for trivial reasons [18].
Meszaros outlines the two parts of this problem: inter-
face sensitivity, where “seemingly minor changes to the
interface can cause tests to fail even though a human
user would say the test should still pass”, and context
sensitivity, such as to the date of the given test suite [18].
Our approach prevents the fragile test problem in many
instances, reducing the number of false positives and
allowing for older test case outputs to be reused when
comparing to newer versions.

IV. Modeling Application Similarities

The main hypothesis of our work is that similarities
between unrelated web-based applications can be used to
reduce the burden on developers during regression testing
within the software life cycle. In the following section,
we summarize our approach towards modeling differences
between pairs of XML/HTML documents [29].

A. Modeling HTML Differences

Due to the tree-structured nature of XML/HTML, using
a diff-like comparator for test case outputs has the
potential for a high number of false positives. Unlike flat
text files, trees are well-formed objects with a directed edge
relationship. Certain XML/HTML characteristics, such as
the different ordering of element attributes, are recognized
as changes by diff, but are semantically unimportant
when the XML or HTML is later interpreted. By examin-
ing the tree representations of two versions of output, our
tool can make decisions about the relative importance of
changes in terms of semantic significance.

We claim that comparator judgments about XM-
L/HTML test case output should be made by inspecting
combinations of tree-structure features, rather than by us-
ing textual diff. We represent the two output documents
as trees, and then find an alignment between them such
that a minimal number of changes is required to transform
one tree into the other. To do so, we rely on an algorithm to
calculate structural differences between XML documents.
One such algorithm is DIFFX [3], which computes align-
ments on general tree-structured data by matching pairs of
elements between the newer and older trees. Once pairs
of tree elements are aligned, features can be calculated.
A feature is a measure of the similarity of a characteristic
between two XML/HTML outputs. Our goal is to delineate
features that have a significant semantic meaning — in
other words, to find visible characteristics of XML/HTML
output that are likely to indicate errors between the two
documents. Some of our features were conceived during
the manual examination of test case output pairs, while
others were obtained from first principles. Our features fall
into two main categories: those that measure differences
between the tree-like structure of the two outputs, and
those that directly characterize human-judged differences
between two documents. Features may be correlated pos-
itively or negatively with test output errors, depending on
the application being examined. Most of our features are
relatively simple, and we summarize them below:

• The number of inserts, deletes, and moves required
to transform one tree into the other, as dictated by
the DIFFX algorithm. These features are likely to be
correlated with errors such as stack traces or missing
page elements due to the large number of shifted or
replaced elements between the two trees.

• The number of element inversions (e.g.,
<b><u>The</u></b> to <u><b>The</b></u>). We
hypothesize that inversions do not indicate high-level
errors. Such changes are not likely to be rendered
differently by the browser.

• Grouped changes to a set of contiguous elements in
the tree. Such changes are likely to represent errors,
such as a missing component.

• The maximum tree depth of changes. We hypothesize
that changes closer to the root of the tree are likely
to merit inspection.

• Changes to only text nodes. We hypothesize that
text changes are not likely to represent faults. This
is one of the features that allows our approach to
outperform diff-like comparators, as the ability to
ignore natural-language text changes is integral to
reducing the false positives associated with more
naı̈ve approaches.

• Changes to child ordering. Child reorderings are not
predicted to indicate errors, as they most likely do not
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change the semantics of the rendered webpage.
• The ratio of displayed text, and the ratio of displayed

text to multimedia, between two versions. A sudden
increase in the amount of natural language text may
indicate a stack trace or other error.

• The number of programming-language based error
keywords (i.e. “exception” or “error”) that occur in
the newer version but not the older. We hypothesize
that such keywords are highly likely to signal a de-
fect. Because web applications are built using similar
programming languages, and these languages contain
analogous natural language for exceptional situations,
searching for common error keywords in the newer
output is a reasonable way to predict errors.

• Changes to functional elements, such as buttons and
forms. Such changes may signal errors, in the case
of a missing button, or may be a part of the natural
evolution of websites as new functionality is added.

• Changed attribute values of an element. We claim that
changed attribute values are unlikely to be associated
with errors in a web application, as opposed to miss-
ing attributes, which we hypothesize can be linked to
defects.

We assign each feature a numeric weight that measures
its relative importance. Our model indicates that a pair of
test case outputs should be manually inspected whenever
the weighted sum of all feature values for that pair of test
case outputs exceeds a certain cutoff value. The weights
and cutoff value can be learned empirically; we return
to this issue when discussing our experimental setup (see
Section V-A).

The key task of such a model is: given the oracle
output for a test case and the current output for that same
test case, indicate whether an error should be flagged
and the situation evaluated by a human. False positives
yield wasted developer effort as humans fruitlessly inspect
correct output, while false negatives cause the testing
process to miss bugs. We use precision and recall, metrics
from the domain of information retrieval [26], to measure
our model’s success at this task:

recall = |Desired ∩Returned| ÷ |Desired|

precision = |Desired ∩Returned| ÷ |Returned|

Here Desired refers to the test cases our model labeled
as errors that were actually errors — in other words,
the desired true positives associated with our model. Re-
turned represents all the test cases flagged as errors by
our model, which includes both true positive test cases
as well as unwanted false positive test cases that were
wrongly flagged. Recall is the ratio of desired error cases
our models returns to the total number of desired error

values; that is, how close are we to finding all the desired
error cases. A low recall value indicates that our model
is missing too many actual errors (i.e., has too many
false negatives). Precision refers to the number of true
positives our model returns as a fraction of the total
number of values returned — in other words, what fraction
of our model’s output is correct. A low precision value
implies that our model cannot successfully distinguish
between erroneous and non-erroneous output (i.e., has too
many false positives). Because precision can be trivially
maximized by returning only a single error, and recall can
be similarly maximized by returning all test case pairs as
errors, we combine precision and recall by taking their
harmonic mean: 2pr ÷ (p + r). The result is called the
F1-score, and gives equal weight to the two variables [7].

V. Experimental Setup

We experimentally tested our hypothesis that web site
similarities can be exploited to aid in the automation of
various aspects of testing web-based applications. This
section introduces our experimental setup; Section VI
presents the results. We measure the predictive power of
our precise oracle-comparator with respect to finding faults
in test case output pairs (Section V-A). Our hypothesis is
that we can train a model on one set of data, and test
on a separate, unrelated application, using the underlying
similarities between these two sets of output.

A. Experimental Setup:
Modeling Meaningful Differences

Since our approach for modeling output differences
involves supervised learning, we must first train our model
before we can test it. Recall that our model takes a
weighted sum of feature values for a pair of test case out-
puts and indicates that they should be inspected if the sum
exceeds a certain cutoff; we must determine the weights
and the cutoff. In our experiments, the feature weights
and cutoff are learned on a per-project basis using linear
regression. The data used to train the linear regression
model is a corpus of previously-annotated test output pairs
for other, unrelated web-based applications. We achieve
savings over other approaches because we provide this
annotated data-set to the user of the model, rather than
intending them to produce their own annotations.

Our goal is to use our model as a classifier that
partitions the set of test case output pairs into “should
inspect” and “can ignore” groups. To do so, we train
the linear model as if the response variable were within
the continuous range of [0,1], where a cutoff represents
the transformation of the real-valued model into a binary
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classifier. The cutoff is calculated through a linear search
that finds the highest F1-score.

Training our model requires a set of test case out-
put pairs with known labels (i.e., annotations indicating
whether the pair should be inspected or not). One option
is to annotate a subset of test cases from the application-at-
test to be used as training data, but this has the disadvan-
tage of requiring human effort. Instead, we use pairs of test
case output from unrelated, publicly-available applications
as training data for our model. This has the advantage of
not requiring new manual annotations of test case output,
with the potential drawback of not being as effective
as training data tailored to the application-at-test. Our
experimental results in Section VI-A show, however, that
we are able to achieve very high levels of accuracy using
this approach, due to the underlying similarities between
web-based applications and their failure modes.

Figure 1 describes the XML/HTML applications from
which we obtain a corpus of test case output pairs to train
our model. Our benchmarks were selected based on the
availability of multiple versions and test cases, with the
goal of application diversity in mind. In total we exercised
over 473,000 lines of code to produce 7154 pairs of test
case output as our training data set.

As an option, a developer using our approach may also
add their own test cases from previous projects to the set
of training data, assuming that they have already annotated
those output pairs, but in general we do not require any
developer annotations.

We manually inspected the test case output pairs for
the two versions of each benchmark, arriving at 919 pairs
that were labeled as errors. In this case, an error is defined
as “possibly a bug, merits human inspection”, as opposed
to a passed test case which translates into “definitely
not a bug”. Intuitively, we flagged situations where the
acceptability of the output was in question, based on
either a functional or a visual difference for the user. Our
annotations erred on the side of conservatism: we only
passed test cases when we were highly certain they did
not signal an error. Consequently, it is possible we labeled
non-errors as errors, which reduces our opportunity to
outperform a diff-like baseline comparator, but does not
impact the correctness of our approach.

We selected four benchmarks, shown in Figure 2,
to serve as our test data, and used the applications in
Figure 1 as our training data. Although we used ten
benchmarks as our training corpus, only two of them
(HTMLTIDY and GCC-XML) had enough test case output
pairs that were labeled as faults (given by the “Test Cases
to Inspect” column) to serve as testing (as opposed to
training) subjects. We also chose two open source web
applications (CLICK and VQWIKI) to supplement our test
benchmarks in a “worst-case scenario” fashion: none of the

training benchmarks are web applications, so successful
performance on them further supports our claim about
inherent application similarities.

VQWIKI [2] is wiki server software that can be used
out-of-the-box as a web application. CLICK [1] is a
Java Enterprise Edition web application framework that
ships with a sample web application demonstrating the
framework’s features. Our other two testing benchmarks,
HTMLTIDY and GCC-XML, are open-source XML-based
applications that are also a part of our training benchmarks.
For these two applications, we removed each benchmark’s
respective test case outputs from the corpus of training
data, so that we never tested and trained on the same
data. Therefore, the training data for CLICK and VQWIKI
were the test case output pairs from the ten benchmarks in
Figure 1, while GCC-XML and HTMLTIDY were trained
with the nine remaining benchmarks from Figure 1, when
the test cases for each respective application were removed
from the training data set — in no case did we test and
train on the same data. In total we tested our model on
6728 test case pairs, 941 of which were labeled as errors
by manual inspection (see Figure 2).

VI. Experimental Results

This section presents empirical measurements of our
model’s predictive power at detecting faults between test
case output pairs (see Section VI-A).

A. Experiment 1: Results

Figure 3 shows our model’s F1-score values for each
test benchmark. An score of 1 indicates perfect perfor-
mance. We also include F1-score values for unbiased and
biased coin toss, standard diff, and xmldiff [35], an
off-the-shelf diff-like comparator for XML and HTML.
xmldiff is able to ignore features such as whitespace,
namespaces, and case in text elements when comparing
two XML/HTML files. The unbiased coin toss returns
“inspect” with a probability of 0.5, while the biased coin
toss returns “inspect” with the dataset’s actual underlying
ratio: (6728 − 941)/6728 (note that it is not possible to
know this ratio a priori in the field). We chose diff and
xmldiff instead of the Struct comparator of Sprenkle et
al. [30] to avoid false negatives.

Our tool is anywhere from over 2.5 to almost 50
times as good as diff at correctly labeling test case
outputs, with similar improvements over xmldiff. For
the two web applications, we achieve perfect precision
and recall — an optimal result. Our scores for our large
XML benchmark, HTMLTIDY, are also close to perfect
(an F1-score of 0.98). Overall, we judge that using test
case output pairs from unrelated web-based applications
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Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
LIBXML2 v2.3.5 v2.3.10 84K XML parser 441 0
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
CODE2WEB v1.0 v1.1 23K pretty printer 3 3
DOCBOOK v1.72 v1.74 182K document creation 7 5
FREEMARKER v2.3.11 v2.3.13 69K template engine 42 1
JSPPP v0.5a v0.5.1a 10K pretty printer 25 0
TEXT2HTML v2.23 v2.51 6K text converter 23 6
TXT2TAGS v2.3 v2.4 26K text converter 94 4
UMT v0.8 v0.98 15K UML transformations 6 0
Total 473K 7154 919

Fig. 1. The benchmarks used as training data for Experiment 1. The “Test cases” column gives the number of
regression tests used; the “Test cases to Inspect” column counts those tests for which our manual inspection indicated
a possible bug.

Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
VQWIKI 2.8-beta 2.8-RC1 39K wiki web application 135 34
CLICK 1.5-RC2 1.5-RC3 11K JEE web application 80 7
Total 108K 6728 941

Fig. 2. The benchmarks used as test data for Experiment 1. The “Test cases” column gives the number of regression
tests used; the “Test cases to Inspect” column counts those tests for which our manual inspection indicated a possible
bug. When testing on HTMLTIDY or GCC-XML, we remove it from the training set.

to train a model to predict errors in the application-at-test
is a successful approach. We claim that the underlying
similarities between web-based applications in general
make this possible. We performed an analysis of variance;
features associated with text-only changes were strongly
negatively associated with errors in most benchmarks. By
employing an available model and training set such as
ours, developers would be able to significantly reduce the
number of false positive test case output pairs they must
inspect, without requiring annotations or additional human
effort to train the model.

Figure 4 shows our model’s precision scores for each
benchmark, as well as our baseline comparators, high-
lighting our predictive power over diff-like comparators.
Figure 5 presents our model’s recall scores, where we are
challenged by diff in that the latter will always be able to
return all true positive errors. For the two web applications
(VQWIKI and CLICK), we are equally as good as diff
at returning error cases, while for HTMLTIDY our score is
competitive.

We can estimate the savings using our approach by
defining the cost of looking at a test case (LookCost) and
the cost of missing a bug (MissCost). Our approach is

advantageous when its associated cost:

(TruePos+FalsePos)×LookCost+FalseNeg×MissCost

is less than the cost of current industrial practice of
|diff| × LookCost . We are able to save developers effort
when the cost of examining false positives flagged by
diff, but not our technique, is greater than the cost of
missing any relevant test cases with our tool:

LookCost
MissCost

>
− FalseNeg

TruePos + FalsePos − |diff|
We assume LookCost � MissCost, so we aim to minimize
this ratio. For our two web applications, our perfect F1-
scores imply we always produce savings with respect
to diff: 75% and 96% of the test case pairs reported
as errors by diff were false positives for CLICK and
VQWIKI respectively, and we eliminate the need to check
any of these while, at the same time, correctly flagging
all potential errors. For HTMLTIDY, we achieve savings
over diff if the ratio of LookCost to MissCost is at least
0.0004 (in other words, if the cost of missing a bug is no
more than 2500 times the cost of looking at a report). This
is significantly better than the 0.0015 ratio of previous,
non-automatic work [29].
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Fig. 3. F1-score on each test benchmark
(HTMLTIDY, GCC-XML, VQWIKI, CLICK using
our Model, and other baseline comparators. 1.0 is a
perfect score: no false positives or false negatives.

Fig. 4. Recall on each test benchmark (HTMLTIDY,
GCC-XML, VQWIKI, CLICK using our Model, and
other baseline comparators.

Fig. 5. Precision on each test benchmark
(HTMLTIDY, GCC-XML, VQWIKI, CLICK using
our Model, and other baseline comparators.

While our F1-score for our other XML benchmark,
GCC-XML, was three times better than that of diff,
its recall score of 0.84 implies that we may be miss-
ing a significant number of actual errors. Our analysis
of variance revealed that GCC-XML relied heavily on
deletions being positively associated with errors, while
in GCC-XML’s training data the opposite was the case.
Rather than recommend that developers return to using a
diff-like comparator to avoid missing bugs, or employ
other methods where manual annotation is required, we
suggest they continue to apply our approach with one
modification: they should extend the training data with
test case output pairs between unmodified source code
executions and fault-injected source code executions. A
cautious development organization might randomly spot-
check 10% of the results predicted by our technique. Such
a spot-check would still involve less effort than a standard
diff comparator. If the results are insufficiently accurate,
the test suite can be augmented by defect seeding, as
described in the next subsection.

B. Training Data from Defect Seeding

In this subsection we detail our experience with using
defect seeding to generate additional training data for
GCC-XML. Defect seeding offers the benefit of annotation-
free training data generation, while still tailoring the train-
ing data to the current application under test.

Our relatively low recall value for GCC-XML suggests
that the application-at-test may exhibit some errors that are
different from the instances of errors in the general training
data set we provide. Given the semantic difference between
GCC-XML and the rest of our training applications, this is
not surprising. We claim that developers can automatically
tailor the training set to their application as needed using
defect seeding.

The basic approach is to seed the source code of
the application with defects [14] and run the resulting
mutated program on its existing regression test suite. Any
difference in the output can be attributed to the injected
fault, and that output pair can be added to the training data
with the label “should inspect”. The process is repeated
until a sufficient number of training instances have been
generated. Using defect seeding or mutation to simulate
errors in test case output for web-based applications has
previously been explored [15], [31]. While automatically
generating, compiling and running mutants can be CPU-
intensive, it does not require manual intervention.

We implemented defect seeding for GCC-XML with a
subset of mutation operators described by Ellims et al. [9].
Examples of mutation operators include deleting a line of
code, replacing a statement with a return, or changing a
binary operator, such as swapping AND for OR. To generate
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a mutant version of GCC-XML, we randomly choose a
single line of source code from all of the source code
files for that project and apply a mutation to it. For each
mutant version of the program, only a single line was
mutated. We compiled each mutant version of the source
code separately, and re-ran the test suite, recording as
erroneous any cases where the output from the mutant
source code differed from that of the original output. The
overall process was quite rapid: using single-line seeded
faults we were able to obtain 11,000 usable erroneous
output pairs within 90 minutes on a 3 GHz Intel Xeon
computer.

Figure 6 shows our F1-scores when adding between 0
and 5 defect-seeded output pairs to the set of training data.
Selecting 0 mutants is provided as a baseline. The large
margin of error when adding only one mutant output pair
implies that performance depends on selecting the most
useful mutant outputs to include as a part of the training
data set. However, we note that selecting any mutant output
is always better than selecting none. We hypothesize that
it is possible to dramatically affect our model’s predictive
power by adding a single mutant because for the case
of GCC-XML, there were only 44 errors in the training
data set, and adding one more to such a small number can
significantly change the results. For training data sets that
contained more errors, it is possible that more mutants will
be required, although we have demonstrated that it is quite
simple to automatically generate these defects.

In addition, no significant performance gains are wit-
nessed beyond adding 5 mutant output pairs, at which
point the F1-score was an essentially-perfect 0.999. We
conclude that very little application-specific training data
(5 labeled output pairs) is needed to bring even our-worst
performing benchmark up to almost-perfect performance,
and we demonstrate that even that application-specific data
can be obtained automatically.

C. Summary of Experiments

Inherent web site similarities are a promising way to
reduce the burden of human effort in regression testing for
web-based applications. In Section V-A we demonstrated
that using test case output pairs from unrelated web
applications to train a model to predict errors in output
in the application-at-test is a viable strategy, achieving
perfect recall and precision for our two web application
benchmarks, while close to perfect (0.98 and 0.99) F1-
scores for our two XML-based applications. To obtain the
F1-score of 0.999 for GCC-XML, we augment the training
data with five automatically generated outputs obtained
via defect seeding. In all cases we outperform diff-like
comparator by a factor between 2.5 and 50 times, thereby
significantly reducing the number of false positives, and
thus the developer cost, with respect to diff.

Fig. 6. F1-score for GCC-XML using our model
with different numbers of test case output pairs from
original-mutant versions of the source code. The “0”
column indicates no mutant test outputs were used
as part of the training data. Each bar represents the
average of 1000 random trails; error bars indicate the
standard deviation.

D. Threats to Validity

Although we show significant savings in the amount of
effort required to automate parts of the regression testing
process, our results may not generalize to industry practice.
It is possible that the benchmarks we selected to test on
were not indicative of other applications. To mitigate this
threat, we attempted to choose open-source benchmarks
rather than toy applications, and select them from a variety
of domains. Our combined benchmarks are over seven
times larger than the combined benchmarks of the previous
work that we are most closely related to [32] in terms
of lines of code, and we have over twice as many total
test cases. In addition, all of our benchmarks are freely-
available open source applications.

In cases where our technique does not work as well
as desired, our defect-seeding results suggest that largely-
automatic improvement is possible. Adding mutant test
case outputs to the set of training data for our precise
comparator can help to tailor our model to the application-
at-test, and the low number of mutants required implies
that it may even be possible to provide a very small (≤ 5)
set of manually-generated error instances to tailor our tool
to a specific application.

It may also be possible that there are certain web
applications for which we do poorly, despite defect seed-
ing, because the specification of the application-at-test
has unusual properties. For example, consider a Wiki
application where the formatting and content of displayed
natural language text is important. If fault seeding is unable
to provide suitable defects on which to train our model to
recognize small changes in natural language text as errors,
we will be unable to use our approach. Although we did
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not explore such unusual cases, in future work we seek to
examine such scenarios.

VII. Conclusion

Testing web-based applications is often overlooked due
to a lack of time and resources, despite their high reliability
requirements. Although automating test suite replay is
relatively simple, comparing test results with expected
output remains a challenge for this domain. We present a
new technique that takes advantage of inherent similarities
between web-based applications to automate parts of the
regression testing process for this domain. Using a diff-
like comparator for web-based output yields a significant
number of false positives that must be manually inspected:
instead, we offer a fully automated precise comparator that
is based on a model trained on data from unrelated web-
based applications. We evaluated our technique on 6728
test case pairs, and found that our approach outperforms
the current industrial practice anywhere from 2.5 to 50
times, achieving perfect precision and recall half the time,
and very close to perfect precision and recall otherwise.
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