19th International Symposium on Software Reliability Engineering

Changing Java’s Semantics for Handling Null Pointer Exceptions

Kinga Dobolyi*
University of Virginia
dobolyi@virginia.edu

Abstract

We envision a world where no exceptions are raised; in-
stead, language semantics are changed so that operations
are total functions. Either an operation executes normally
or tailored recovery code is applied where exceptions would
have been raised. As an initial step and evaluation of this
idea, we propose to transform programs so that null pointer
dereferences are handled automatically without a large run-
time overhead. We increase robustness by replacing code
that raises null pointer exceptions with error-handling code,
allowing the program to continue execution. Our technique
first finds potential null pointer dereferences and then au-
tomatically transforms programs to insert null checks and
error-handling code. These transformations are guided
by composable, context-sensitive recovery policies. Error-
handling code may, for example, create default objects of
the appropriate types, or restore data structure invariants.
If no null pointers would be dereferenced, the transformed
program behaves just as the original.

We applied our transformation in experiments involving
multiple benchmarks, the Java Standard Library, and exter-
nally reported null pointer exceptions. Our technique was
able to handle the reported exceptions and allow the pro-
grams to continue to do useful work, with an average execu-
tion time overhead of less than 1% and an average bytecode
space overhead of 22%.

1. Introduction

This paper introduces APPEND, an automated approach
to preventing and handling null pointer exceptions in Java
programs. Removing null pointer exceptions is an impor-
tant first step on the road to dependable total functions.
Checking for null pointers manually is tedious and error-

*This research was supported in part by National Science Foun-
dation Grants CNS 0627523 and CNS 0716478, Air Force Office
of Scientific Research grant FA9550-07-1-0532, and NASA grant
NAS1-02117, as well as gifts from Microsoft Research. The infor-
mation presented here does not necessarily reflect their positions
or policies and no official endorsement should be inferred.

47

Westley Weimer*
University of Virginia
weimer@cs.virginia.edu

prone, especially when pointer values are created by exter-
nal components or are part of a chain of object references.
We analyze programs to locate possible null pointer deref-
erences and then insert null checks and error handling code.
The error-handling code is specified at compile-time via
composable, context-sensitive recovery policies. Generated
handling code might, for example, create a default object of
an appropriate type to replace the null value, skip instruc-
tions, perform logging, restore invariants, or some combi-
nation of the above. This approach is especially desirable
in web services or dynamic web content, where users inter-
pret the final results with respect to an acceptability enve-
lope [23] and high availability is of paramount importance.
Because program behavior is preserved when no null point-
ers are dereferenced, our approach can be applied to any
Java program. Instead of raising null pointer exceptions, we
change Java’s semantics for pointer dereferences to a total
mapping for all possible pointer values. Rather than hav-
ing non-exceptional behavior defined only for valid pointer
dereferences, we generate recovery code for the null values
as well. We aim to transform programs so that null pointer
exceptions are avoided and programs can continue execut-
ing without incurring a high run-time cost in space or speed.

Null pointer exceptions, while conceptually simple, re-
main prevalent in practice. Null pointer dereferences are
frequent [31], and have been reported as “a very serious
threat to the safety of programs” and are the most common
error in Java programs [7]. Many classes of null pointer ex-
ceptions can be found automatically by static analyses [15].
Addressing such risks with fault-tolerance techniques is
a promising avenue. For example, techniques that mask
memory errors have successfully eliminated security vul-
nerabilities in servers [25].

Some programming idioms make static null pointer anal-
yses unattractive. For example, many programs simplify
database interaction by creating and populating objects with
field values based on columns in database tables (e.g., [2]).
The validity or nullity of a reference to such an object de-
pends on what is stored in the database at run-time. Conser-
vative static analyses typically flag all such uses as potential
null dereferences, but some reports may be viewed as spuri-

1071-9458/08 $25.00 © 2008 IEEE

|IEEE
@) computer
DOI 10.1109/ISSRE.2008.59 Soclef

ty

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

ous false positives if there are external invariants requiring
the presence of certain objects. In addition, not all defect
reports from static analysis tools are addressed [33]. Pro-
grams ship with known bugs [18], and resources may not
be available to fix null pointer errors.

We propose a program transformation that automatically
inserts null checks and error handling code. No program
annotations are required, and developers need not wade
through defect reports. Programs are modified according
to composable recovery policies. Recovery policies are ex-
ecuted at compile-time and, depending on the context, re-
covery code is inserted that is then executed at run-time if
the null checks return true. Recovery policies are concep-
tually related to theorem prover tactics and tacticals or to
certain classes of aspect-oriented programming. If no null
values are dereferenced at run-time, the transformed pro-
gram behaves just as the original program. If the original
program would dereference a null value, the transformed
program instead executes the policy-dictated error-handling
code, such as creating a default value on the fly or not calcu-
lating that expression. Previous research has suggested that
programs might successfully continue even with discarded
instructions (e.g., [24]); we present and measure a concrete,
low-level, annotation-free version of such a system, and ex-
tend it to allow for user-specified actions.

We choose to work at the application rather than modi-
fying the existing null checking behavior of a Java Virtual
Machine. This has the advantages of retaining portability
between different virtual machines and of conceptual sim-
plicity, and the disadvantages of requiring that all relevant
source code be processed in advance.

Our transformation can be implemented directly atop
existing program transformation frameworks and dovetails
easily with standard development processes. It can be ap-
plied to individual source or class files, entire programs, and
separate libraries, in any combination. The main contribu-
tions of this paper are a presentation of our technique (Sec-
tion 3, including our definition of soundness in Section 3.3),
our notion of recovery policies (Section 4), and experimen-
tal evidence (Section 5) to support the claim that our ap-
proach can handle null pointer exceptions in practice with
minimal execution time overhead and low code size over-
head (Section 5.3). We begin with a motivating example.

2 Motivating Examples

In this section we walk through the application of our
technique to a simple example and to a publicly-reported
defect. We illustrate the process taken by our automatic
transformation and highlight the difficulties in manually
handling null pointer exceptions.

In practice it is common to perform null pointer checks
before dereferencing an object. Unfortunately, manually in-

48

33 Document doc =

35 Node table =

serting null pointer checks is tedious and error-prone. Null
pointers can arise from program defects or violated as-
sumptions, but are perhaps more insidious when they result
from external sources or components. For example, many
database APIs that convert table entries into objects for ease
of programmer manipulation may return null objects if the
requested entity is not in the database. Runtime dependency
on external systems (e.g., databases) can significantly re-
duce the effectiveness of testing in finding potential null
pointer dereferences [21, 28].

| Person prs = database.getPerson (personID);
2 println("Name: " + prs.getName());
3 println("Zipcode: " + prs.getAddr () .getZip());

In the example above, if the requested person is not in
the database or if the database has been corrupted, a null
Person object will be returned. One standard defensive
approach is to guard statements with non-null predicates:

I Person prs =
2 if (prs != null)

3 println("Name: " + prs.getName());

4 if (prs !'= null && prs.getAddr() !'= null)

database.getPerson (personID) ;

println("Zipcode:

This way, if a valid Person is returned, the informa-
tion is printed out normally. If a null pointer is returned,
whether as a valid part of the program API or as an invalid
record from the database, the null pointer dereference will
be prevented.

Note that a even when a valid Person object is re-
turned, the Address object within the Person may be null,
and must also be explicitly checked. While this example
is for an object from a database, any value that is deref-
erenced could be a null pointer, and should be checked to
avoid a null pointer exception (NPE). The number of NPEs
encountered and the research devoted to preventing them is
a testament to the inconsistency of null pointer prevention
in practice [15]. At the same time, manually placing checks
in the code is not only time-consuming and error-prone, but
can also make the code more complex and difficult to read.

One real-world example of problematic handling of
NPEs comes from JTIDY, a tool for analyzing and trans-
forming HTML. This example is taken from a bug report
submitted by a user on a public mailing list." In the code
below, the NPE occurs on line 36:

Doc xhtml = tidy.parseDOM(in, null);

31 // translate DOM for dom4j

32 DOMReader xmlReader = new DOMReader () ;

xmlReader.read (xhtml) ;

doc.selectNode (" /html/body") ;
System.err.println("table:" + table.asXML());

"http://www.mail-archive.com/dom4j-user@
lists.sourceforge.net/msg01435.html

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

" + prs.getAddr () .getZip());

In some cases the table returned from selectNode
is null, but it is always dereferenced without being checked.
Thus it would be advantageous to guard the deference with
a null pointer check. In Section 5 we show how APPEND is
able to automatically prevent the NPE from being raised in
this example, allowing JTIDY to do other useful work even
if the "/html /body" Node cannot be retrieved.

3 Proposed Technique

Our goal is to prevent and recover from null pointer ex-
ceptions in Java programs in a way that avoids failures with-
out incurring a high cost. We view this as a key initial step
in a move toward programming with total functions instead
of exceptions. We specifically target application domains
where producing some output is better than having the pro-
gram crash. For example, an e-commerce application could
lose customers and revenue if it fails to display a webpage
because of an NPE raised somewhere in the back end. Per-
haps the webpage was displaying product information from
a database, and the database contained null values as in the
example in Section 2. Similarly, it would be undesirable for
a vital system to crash entirely due to an obscure NPE not
along a critical path of execution. We propose that the ap-
plication prevent the NPEs, avoid crashing, and continue to
do useful work.

APPEND addresses null pointer exceptions in an auto-
matic manner by transforming programs. To be practical,
most such transformations must not require user annota-
tions or incur high overhead costs. We propose a source-
to-source (or bytecode-to-bytecode) analysis and transfor-
mation as part of the compilation process. For maximal
ease-of-use the transformations can be applied to bytecode
object files, so as not to clutter source code with null checks.
In situations such as debugging where source code to byte-
code alignment is of paramount importance, the transforma-
tion can also be applied at the source level, and the resulting
code with additional null checks can be compiled as normal.

We conjecture that using APPEND could improve devel-
opment efficiency by decreasing source code complexity;
instead of having the user patch their source code with man-
ual null checks, they could encapsulate recovery policies
into a separate file and rely on APPEND to modify the byte-
code directly. In our benchmark applications, only 5% of
the null checks required by our tool were already present
in the source code. We obtained this number by counting
the number of null checks originally in the code, and com-
paring it to the total number of null checks after the code
was instrumented with APPEND. Additionally, to make sure
the null checks inserted by our tool were sensical, we con-
ducted a random sampling of files to check for “useless”
null checks that our tool put in — that is, places where a
human could easily verify that a null was not going to oc-

49

cur. For our three benchmark applications (described in
Section 5), we found that in the two larger applications,
none of our APPEND-inserted null checks were obviously
useless, while the smallest application revealed about 20%
of our checks could have been considered false positives.
We do strive to eliminate the number of false positives by
not checking the results of constructor calls and other id-
ioms described in Section 3.1. We show in Section 5 that
our overhead is so low that our transformation has a negli-
gible effect on running time. Furthermore, handling classes
of null pointer checks in a systematic and complete way
has the potential to avoid mistakes or forgotten corner cases
while saving coding effort.

There are two key steps in our technique. First, in the
analysis phase, a set of potential null pointer dereference
sites is located. Second, in the transformation phase, a null
check is inserted to guard each such potential dereference.
The transformation takes place according to a user-supplied
top-level recovery policy. The policy uses context and loca-
tion information to compose and query lower-level policies
at compile-time. Each policy transforms the program and
inserts error handling routines that are executed at run-time
if the null checks return true. The analysis and transforma-
tion are carried out on a standard intermediate representa-
tion. We use the SOOT transformation and analysis frame-
work in our prototype implementation [30].

Our technique takes as input an unannotated program,
a global recovery policy, and optionally a number of other
context-specific recovery policies. After the set of potential
null pointer dereferences is identified, the program is trans-
formed according to the global recovery policy; a null check
guards each potential null pointer dereference, and depend-
ing on what the recovery policy states, recovery code is in-
serted for each null check in the case the check fails.

3.1 Finding Potential Null Pointers

The number of dereference sites identified affects both
the completeness and the overhead of our approach. Flag-
ging all dereferences could lead to high levels of overhead
from inserted checks. Flagging too few dereferences may
prevent actual NPEs from being guarded.

We use a conservative flow-sensitive intraprocedural
dataflow analysis to statically determine if an expression is
non-null. Expressions that are not known to be non-null
are flagged for transformation. We do not flag the results
of Java constructors, such as new Person (), which typ-
ically return a valid object or raise an exception. We do not
flag field accesses, such as System.out, or static func-
tion calls. We do not flag array accesses, suchasp [i], and
view array bounds check elimination as an orthogonal re-
search problem. Any false negatives in the use of APPEND
would result from assumptions made here.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

A more precise interprocedural analysis would result in
lower overhead in transformed programs. However, analy-
sis time is also important for our technique if we propose
to use it as part of the compile chain. Recent work has
made context-sensitive flow-sensitive analyses more scal-
able (e.g., [11]), but we chose a flow-sensitive intraprocedu-
ral analysis for performance and for predictability. Java pro-
grammers are already used to simple and predictable anal-
yses, such as Java’s definite assignment rules, and under-
standing the transformation simplifies reasoning about and
debugging the transformed code.

3.2 Error Handling Transformations

Raising an exception or otherwise terminating the pro-
gram represents the current state of affairs. APPEND im-
proves on the state of the art by inserting null checks guard-
ing every dereference that has been flagged as potentially
null. However, we must also insert behavior in the case
where the check fails. Our technique is modular with re-
spect to user-defined recovery actions.

As a concrete example of an error-handling policy, we
consider inserting well-typed default values. If a null value
would be dereferenced we replace it with a pointer to a de-
fault initialized value of the appropriate type. We obtain
such values by calling the default constructors for the given
class; this policy is only applicable if such a default con-
structor is available for the type under consideration. In
Section 4 we categorize and describe possible recovery poli-
cies in more generality.

Consider the following pseudocode:

I r6 = virtualinvoke r4.<java.util.Vector:

2 java.lang.String toString()>();

If the value of r4 may be null, then a check would be
placed before this line of code to prevent a null pointer
dereference. If r4 is of type Vector, the transformed code
would be:

1 if (r4 == null)
2 r4 = new Vector();

3 r6 = virtualinvoke r4.<java.lang.Vector:
4 java.lang.String toString()>();

In this manner r4 is sure to be non-null before it is deref-
erenced, thereby avoiding the NPE. In addition, if r4 is sub-
sequently referenced without any intervening assignments
to it, no additional checks are necessary.

3.3 Soundness

Our notion of soundness is that the transformed program
should behave exactly as the original program behaves in
cases where the original program would not produce a null
pointer exception. If a NPE would be raised we apply the

50

appropriate error-handling behavior. We explicitly assume
that programs do not rely on NPEs for uses beyond signal-
ing errors (e.g., using try and catch with NPEs as non-
local gotos). In practice, this assumption is reasonable:
for example, in the 3.5 million lines of code of Eclipse ver-
sion 3.3.1, there were only 23 source code locations that
caught NPEs or their supertypes. We further assume that
the user-specified error-handling code will result in accept-
able behavior.

Soundness is thus dependent on the user-specified error
handling code. For example, in the particular case of de-
fault constructors, we assume that referencing the default
object will not have unintended, permanent side effects be-
yond the scope of program execution, such as storing the
result of a computation involving these default values back
in a database. Such assumptions are common for domain-
specific recovery actions [1, 23, 25], but, admittedly, may
result in unexpected or unintended consequences. Although
we cannot offer a solution for all such situations, we be-
lieve that careful policy construction, combined with log-
ging functionality, will minimize the risk of unwanted situa-
tions and allow for directed debugging efforts in the rare in-
stances when any APPEND inserted recovery code is called.

4 Error-Handling and Recovery Policies

Section 3 discussed how APPEND locates potential null-
pointer dereferences. In this section, we describe a frame-
work for user-specified, composable recovery policies that
are applied at compile-time to instrument the code with
context-specific recovery actions.

A recovery policy is a first-class object that is ma-
nipulated and executed at compile-time and adheres to a
particular interface. Each recovery policy has a method
applicable that takes as input the program as a whole
and the location of the potential NPE and outputs a boolean
indicating whether that policy can be applied to that loca-
tion in that context. Here the confext represents the standard
information that a compiler or source-to-source transforma-
tion would have available (e.g., class hierarchies, abstract
syntax trees, control flow graphs) and the location gives the
particular statement or expression that contains the potential
error. Each policy also has an apply method that takes as
input the program as a whole and the location of the poten-
tial NPE and outputs a transformed program that has been
adapted to follow the recovery policy at that location. A
recovery policy can be global or it can be associated with
a particular class, both as a subject and as a context. Re-
covery policies can query and compose the actions of other
recovery policies.

Our notion of composable recovery policies is inspired
by the cooperating decision procedure and tactical approach
used in many automated theorem provers. In this context,

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

decision procedures (or abstract interpreters) for separate
areas, such as linear arithmetic and uninterpreted function
symbols, work together on a common substrate to soundly
decide queries that involve both of their domains [22]. In
interactive theorem proving, proof obligations in the object
language can be manipulated and simplified by tactics (see
e.g., [13, 14]), programs written in a metalanguage. Tac-
tics can be composed using combining forms called tacti-
cals, allowing users to express notions such as “repeat” and
“or else”. Just as a theorem prover tactic might embody a
notion such as, “try to instantiate universally-quantified hy-
potheses on in scope variables, and if that does not work
try algebraic simplification”, a recovery policy in our sys-
tem might embody a notion such as, “try to instantiate the
default constructor for this object, and if that does not work
try to log the error and continue.” Our recovery policy no-
tion is also similar to aspect-oriented programming [16], in
that rule- and context- based program transformations are
applied at compile-time, although aspects typically do not
call or direct other aspects [17].

One example of a recovery policy is the default con-
structor insertion described in Section 3.2. That policy is
applicable () when the type under consideration has a
default constructor with no arguments. A 1ogging policy
is another example: its apply () method inserts calls to a
logger and it is applicable () whenever the enclosing
context is not that logger class (i.e., to avoid infinite recur-
sion at run-time). As a final example, a particular skip
policy’s apply () function elides the problematic compu-
tation and it is applicable () if the location under con-
sideration is not a ret urn statement, so as not to propagate
likely design errors.

4.1 Policy Granularity

We require the user to provide a global recovery pol-
icy or use one of the default ones we provide. Individual
classes and contexts can be annotated with specific recov-
ery policies if desired. Example pseudocode for the apply
function of a global recover policy is given in Figure 1. At
compile-time, during the program analysis and transforma-
tion, we invoke global.apply () on each potential null-
pointer dereference. The resulting modified code is the final
result of our source-to-source transformation. Because we
do not change any user-provided null checking functional-
ity already implemented in the source code, APPEND will
not override such null checks and recovery instances be-
cause they will already by flagged as not-null by our static
analysis.

The example global policy in Figure 1 gives priority to
policies associated with the potentially-null object and with
the surrounding class. As an example of the former, a par-
ticular application might require that all NPEs associated

51

Input: The program context C' and an error location L.
1: if the dereferenced object at L has a policy P;
A Py .applicable(C,L) then
return P;.apply(C, L)
3: else if the context class at L in C has a policy P
A Py .applicable(C, L) then
return P .apply(C, L)
else if the context method at L in C' has a policy Ps
A Ps.applicable(C, L) then

AN~

6: return P;.apply(C, L)

7: else

8 if logging.applicable(C, L) then

9: C,L < logging.apply(C,L)

10: end if

11: if constructor.applicable(C, L) then
12: C,L < constructor.apply(C,L)
13: end if

14: return (C, L)

15: end if

Figure 1. An example global recovery policy. This
policy checks the dereferenced object and the enclos-
ing class for an overriding policy. If no such spe-
cific policy is found, it applies both the 1ogging and
constructor policies.

with GUI Widget objects be handled by recreating the de-
fault widget set and redrawing the application, rather than
by creating a newly-constructed and unattached widget and
operating on it.

An application might also associate a policy with a class
context. For example, in a UserLevelTransaction
class, any null-pointer error encountered might be re-
placed by “throw new AbortException ()” since
the caller presumably knows how to handle transactional
semantics. Policies might also be specified at the method
level; a particular method expected to return a value might
make a best-effort substitution and return. Sidiroglou et al.
have examined various heuristics for determining an appro-
priate return value for a non-void function [27]. In general,
attempts that stop the execution of a block or function when
an NPE is prevented are variations of fail-stop computing.
It is important to note that in our system, the code for these
halting actions is stored with the policy and is present in the
transformed code but not the program source code.

4.2 Data Structure Consistency

While skipping one or more statements that depend on
the dereferenced value may be reasonable in some circum-
stances (e.g., if the value is merely being printed), an or-
thogonal approach to such fail-stop options is to enforce
data structure consistency. The program may be in an un-

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

Input: The program context C' and an error location L.

1. if other policy.applicable(C,L) then

C,L <+ other policy.apply(C,L)

end if
: for all database writes W (z) reached by L do
C,L « replace W(x) by “if invariant(z) then
W (z) else throw new DatabaseException()”
6: end for
return (C, L)

AN

~

Figure 2. An example class-specific recovery policy
that maintains an invariant. This policy recovers from
NPEs in objects that can be stored in a database. The
“if invariant(x) ..” code is added at compile-time
and executed at run-time. The other_policy rep-
resents any other policy that might be composed with
this one, such as the constructor policy from
Section 4.

safe state when the NPE is prevented and the transformed
code is executed instead. Local handling of errors may have
unexpected effects on the rest of the program if important
invariants are not restored. For example, an object created
by default in our constructor policy might be written
to a database that expects post-processed, validated objects.
Many proposals exist for using user-defined or computer-
generated constraints (e.g., [10]) on data structures in the
program or database to enforce consistency. A simple re-
covery tactic to prevent cascading errors in such a case
would be to prevent APPEND from persisting any recovery
objects in the database.

If such constraints were provided as part of the policy,
they could be used to transform the code in such a way
that the invariants are maintained. Figure 2 shows how a
class-specific policy might make additional changes to the
code to enforce that only objects matching a particular in-
variant were written to the database. A simple conservative
dataflow analysis could be used to find all of the database
write statements that the potentially-null object might reach.
Only those write statements are then guarded with invariant
checks. In practice such a policy would benefit from dead-
code elimination or other ways of preventing the insertion
of duplicate checks.

The user may also be able to specify context-based,
rather than object-based, recovery actions related to object
consistency. Context at the class level, as opposed to task
blocks as described by Rinard [23], are a lower-level ver-
sion of compartmentalization. For example, the corruption
of an object could imply, based on the policy, that no op-
erations be performed with that object, such as passing it
as a parameter to a function. This would involve a context-
sensitive disabling of execution associated with the corrupt
object at runtime.

5 Experimental Results

Although source code complexity need not increase with
our transformation, bytecode size, running time and utility
must be considered. To address these issues, we have con-
ducted several experiments to evaluate APPEND’s:

o cffectiveness at preventing NPEs in sample code

o cffectiveness at preventing NPEs in the Java Standard
Library

e effect on running time and class file size

To provide a baseline for measurement, our experiments
used our default policies: if the constructor policy
from Section 3.2 is applicable (i.e., if the dereferenced ob-
ject has a default constructor), we apply it. Otherwise, if
the skip policy from Section 4 is applicable (i.e., if the
statement under consideration is not a return), we ap-
ply it. Otherwise we do nothing. In our experiments de-
fault constructors were unavailable 65% of the time, and
thus this policy did involve making compile-time decisions
about which transformation to apply.

5.1 Examples from Application Programs

In this section we show how APPEND can be applied to
real-world examples of NPEs. We searched various bug
repositories and forums for examples of code that raised
NPEs, and after verifying that the NPE could be reliably
reproduced, we applied our transformation. We then exe-
cuted the resulting code, making sure that the NPE was no
longer raised.

Returning to the JTIDY example described in Section 2,
the output of the original program raised an NPE on line 36
due to the following initialization of the t able variable:

Node table = doc.selectNode ("/html/body") ;
36 System.err.println("table:" + table.asXML());

After passing the test file through APPEND, we obtained
this output from line 36:

table : null

Even though the selectNode function at line 35 re-
turns a null, APPEND is able to prevent the NPE while still
allowing the print 1n statement to execute.

The previous example showed how APPEND can pre-
vent NPEs arising from unexpected or unknown behavior
of function calls. NPEs are common in practice, and we
had no trouble locating a second defect report’ for JTIDY
related to this code:

’http://sourceforge.net/mailarchive/forum.
php?forum_name=dom4 j-user&viewmonth=200110

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

ObjectInputStream in = new ObjectInputStream (
new FileInputStream("doc.ser"));
Document newDoc = (Document)in.readObject();

N e

NN
N — O W

newDoc.getRootElement () .addElement ("TEST") ;

Here, an NPE on line 22 is caused by behavior in other
parts of the program; newDoc is not properly initialized,
and an element cannot be added to it as above. After
running the code sample through APPEND, the NPE is no
longer raised and the result is sensical. Again, APPEND is
able to handle the fault and allow execution to continue.

5.2 Java Standard Library Examples

APPEND can also help prevent NPEs in library files. An
incremental benefit can be gained by transforming standard
libraries or untrusted third-party components, even if an or-
ganization is unwilling to transform its primary codebase.

We demonstrate this approach on a defect in the Java
Standard Library, version 1.1.6 (Sun Developer Network
bug ID 4191214). The defect itself lies in the library’s URL
class. The bug report included sample code to elicit the NPE
by accessing a Vector vl of five URLs:

1 System.out.println(vl.indexOf(new

2 URL("file",null, "C:\\jdkl.1.6\\src\\test"
+ i+ "txt")));

The uncaught exception in this example originated from
the hostEqual method of the URL class in the library,
which was called form the equals method of URL, which
was itself called by the indexOf method of the Vector
library class. After transforming the library with our tech-
nique, the hostEqual function no longer raises an un-
caught exception, and the overall output is a correct printout
of the indices of the URLs in the Vect or. Interestingly, the
fix suggested by the defect reporter involves checking that
the values passed in to hostEquals are not null before
they are dereferenced, which is exactly what APPEND im-
plements.

These three examples in Section 5.1 and Section 5.2
show that APPEND is able to prevent real-world NPEs at
both the application and library levels, even with a simple
recovery policy of calling default constructors, or skipping
statements when no default constructor is available. Exper-
iments in the next section show that converting all classes
and libraries used incurs little overhead. Ideally, APPEND
would be applied to the entire source package and all li-
braries, but as demonstrated, an incremental benefit can be
observed by transforming even a single file.

5.3 Performance and Overhead

Because APPEND inserts code into class files for null
checking and recovery, to be usable it must have only a

53

£ 1.05 1102 0581003 1006, 1006
C 1004 | 7 P Toroor
s 17
2
3095 -
i
® 0.9 -
=
=
=085
z
08 +—— P
& KCQ @'\\&?}0 o ‘a_ T
< \}gfé& C}@é(\'q@ \(5\ &
. & &
2
&

Figure 3. Runtime overhead on DaCapo, SpecJVM
and application benchmarks. Each column is sepa-
rately normalized so that 1.0 is the unmodified exe-
cution time. Higher values indicate slowdowns. The
nine light columns on the left shown times for unmod-
ified DaCapo and SpecJVM benchmarks run against a
transformed standard library. The three dark columns
on the right are transformed applications run against a
transformed library. The error bars represent standard
deviations from twenty trials.

minor impact on on code size and execution time. Using
two separate benchmark suites we compared the running
time and bytecode size of unmodified programs as well as
programs subject to our transformation. We measured the
performance of both of our usage models: transforming the
library, and transforming the application.

To measure the impact of transforming the library, we
converted classes in Java’s 1ang, net, ioand ut il pack-
ages with our prototype tool. We then ran the benchmark
programs against the unmodified library and against our
transformed library. We used the April 30, 2007 build of
Apache Harmony JRE, an independent implementation of
the Java SE 5 JDK.

We used benchmark programs from the the DaCapo [4]
project, a benchmark suite intended for Java that uses open
source, real world applications with non-trivial memory
loads, as well as programs from SPEC JVM9S. Figure 3
summarizes the results, reporting the average of twenty tri-
als (the nine lighter bars on the left). Each program is sepa-
rately normalized so that 1.0 is the runtime with the unmod-
ified library; higher numbers indicate slowdowns. In these
experiments the average slowdown was less than 1%.

We also measured the overhead of our technique
when both the program and the library are transformed.
We selected three popular open source applications:
JAVASCRIPTZIP version 1.0.3, a web application opti-

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

mizer; HTMLPARSER version 1.1, an HTML front-end; and
SKARINGA version r3p7, a Java-XML binding API. All
three were run out-of-the-box using the standard library,
and those running times were compared to versions where
both the applications and the library had been converted by
APPEND. Figure 3 shows the average execution time for
twenty trials of each benchmark in rightmost dark gray bars,
with an average slowdown for the three applications-plus-
libraries of less than 1%.

Though the average slowdown for our benchmarks was
less than 1%, the number of null checks inserted by AP-
PEND and applied at runtime is a substantial increase over
the base amount of checking performed by the unmodified
programs. Figure 4 summarizes the number of null checks
that were inserted for three benchmarks at runtime. For the
two larger benchmarks, the number of executed null-checks
increased by an average factor of three without a significant
runtime slowdown. JAVASCRIPTZIP, the benchmark that
showed the greatest runtime slowdown, performed over a
thousand times more null-checks when instrumented with
APPEND. To be sure that the inserted null checks were ac-
tually being called during program execution, we counted
the number of times our null checks are called, versus the
number of times user provided null checks are called, for
our three benchmarks. Figure 4 also shows the number of
times a null check was called by the program for both Ap-
PEND and user-inserted guards.

From these three experiments we can conclude both that
our transformation is actually affecting the program, in that
many additional null-checks are performed, and also that
the run-time cost of this checking is low.

On the other hand, class files subject to our transforma-
tion grew moderately. Figure 5 summarizes the changes
in bytecode size with each entry separately normalized to
1.0. The three programs and the standard library comprised
582 class files totaling 1663k before the transformation and
2036k worth of class files after, for a total increase of 22%.

6 Related Work

Our approach falls somewhere between error prevention
and fault isolation. In this section we contrast it to similar
efforts to improve software quality.

Static analyses to find program defects have been the fo-
cus of much recent research [3, 6, 8, 9]. Many static analysis
tools are able to detect possible null pointer dereferences,
as well as and other defects, typically at the cost of false
positives and false negatives. False positive rates for null
pointer analyses are often high for the reasons discussed in
Section 1, and our transformation approach entirely avoids
false positives at the cost of program overhead. False neg-
atives do not arise (with some assumptions and restrictions
stated in Section 3) since each potential null pointer deref-
erence is guarded by a check.

54

1.8
1.6
1.4
1.2

0.8
0.6
04
0.2

Reldive Size

JavaScriptZip HTML Parser
v1.0.3 vl

Skaringa Java Standard
rap7 Library

Figure 5. Bytecode size changes for transformed
programs and libraries. Each column is separately
normalized so that the unmodified bytecode size is
1.0. Larger values indicate code size increases. The
“Java Standard Library” column indicates the java,
util, lang and io components of the Harmony
Java 1.5 standard library.

Checkpointing and transactions are common approaches
to dealing with run-time errors. Borg et al. [5] describe a
checkpointing system that allows unmodified programs to
survive hardware failures. Essentially, every system call is
intercepted and logged. Others (e.g., [20, 26]) provide sim-
ilar services. Our approach deals only with null pointer ex-
ceptions, not with all system faults.

In addition, such techniques address an orthogonal error
handling issue. In Borg et al.’s system, a buggy process that
reads a null value from a database on initialization will con-
tinue to fail no matter how often it is recovered unless some-
thing else changes. Lowell et al. [19] formalize this point
by noting that the desire to log all events actually conflicts
with the ability to recover from all errors. Such systems are
very good at preventing hardware failures and quite poor at
preventing software failures; Lowell et al. suggest that 85—
95% of application bugs cause crashes that would not be
prevented by a failure-transparent systems. Our technique
addresses an important subset of such application bugs.

Rinard also proposes to use a metalanguage to partition
computation into tasks [24]. If a software error or hardware
fault is encountered, the task is discarded and execution
continues. The system allows users to bound the distortion
of the output when tasks area discarded, which may allow
users to confidently accept results of computations that have
encountered failures. Our work provides no formal bound
but also requires no task-division annotations.

Vo et al. describe XEPT, an instrumentation language
that can be used to help detect, mask, recover, and propagate
exceptions from library functions when source code is not
available [32]. APPEND can also be used in situations where

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

Benchmark Static Null Checks Dynamic Null Checks
Program Normal | With APPEND | Increase || Normal | With APPEND | Increase
JAVASCRIPTZIP 9 9932 1100x 0 19848 00
HTMLPARSER 170499 623361 3.66x || 190384 1146002 6.02x
SKARINGA 371 1732 4.66x 296 1360 4.60x

Figure 4. Increase in the number of null checks in the final code by three benchmarks on their indicative workloads.
The null check columns give counts obtained by instrumenting both the original program and the APPEND-modified
program at the bytecode level to record null checks before they are made. The “Static” column counts the number of
checks in the bytecode; the “Dynamic” column measures checks actually performed at run-time.

the source code is not available directly, and in Section 5
we presented experimental results for a library-protection
usage model that is similar to the XEPT approach.

Exception handling and error recovery have been studied
by Fu et al. [12]. Because it is difficult to generate excep-
tional situations, their approach focuses on white box test-
ing error of handling code by injecting faults. Their tech-
nique applies to checked exceptions, where it achieves high
coverage. By contrast, the null pointer exceptions addressed
by our approach are usually unchecked exceptions.

Inasmuch as our notion of recovery policies involves
program transformations that operate on code at compile-
time according to rules and contexts, it is tempting to phrase
them in terms of aspect-oriented programming (e.g., [16]).
Transformations of the form foo(x); — if (x
== null) { x = new Bar(); } foo(x); could
be reasonably phrased using around advice in popular
AOP systems, although it might require separate advice
for each class Bar. However, transformations such as
a.b.c; = if (a && a.b && a.b.c) { x
= a.b.c; } cannot always be conveniently phrased in
commonly-available AOP systems. In addition, composing
aspect mechanisms and understanding the semantics when
multiple pieces of advice apply to the same bit of code is
still an active area of research (e.g., [17]). Our system is
much more specialized than AOP, but we claim it is more
convenient for composing context-sensitive transformations
that apply after null-checks fail.

Recovery blocks [1] are a way of organizing programs
to include tests for potential errors and recovery actions if
those errors are detected. The error detection takes the form
of an acceptability check that is explicitly inserted into the
code. As long as the acceptability check fails, correction
code is executed and the original code is tried again. Re-
covery blocks are quite expressive, and many error-handling
techniques can be phrased in terms of them. The code trans-
formation portion of our approach could be simulated using
recovery blocks by inlining the entire policy in to the pro-
gram at each potential null-pointer dereference. Instead, we
evaluate the policy at compile-time with respect to the con-
text of the error and use the result to transform the code.

X =

55

This allows users to gain the advantages of composable and
reusable policies without paying time and space overhead
for inapplicable recovery policies at run-time. More recent
work (e.g., [29]) applies recovery blocks to algorithm-based
fault tolerance, providing additional examples of efficient
ways of detecting and responding to errors with the recov-
ery block scheme.

Rinard explores acceptability-oriented and failure-
oblivious computing [23, 25]. In the former, systems are
built to satisfy key properties rather than to be completely
free of errors. Our work can be viewed in that framework as
an application of resilient computing at the low level of in-
dividual instructions with automatically-generated recovery
actions and no developer-provided specifications.

7 Conclusions

We presented APPEND, a technique for handling null
pointer exceptions in Java programs. Checking for null
pointers by hand can be tedious and error-prone. We an-
alyze programs to locate possible null pointer dereferences
and then insert null checks and error handling code. The
handling code is determined by composable recovery poli-
cies that are queried at compile-time and transform the pro-
gram to add context-sensitive error handling. Such preven-
tion and handling of null pointer exceptions is a first step to-
wards changing Java’s exceptional behavior semantics. We
desire a world where exceptions are not raised: instead, op-
erations become total functions where both valid and invalid
inputs are mapped to specific and tailored actions.

In our experiments we were able to take externally re-
ported null pointer exceptions and transform programs,
showing that our technique can do useful work. We also
measured the overhead it induces when applied to pro-
grams and to standard libraries. Our approach supports
incremental adoption, allowing files and components to be
transformed as desired, both at the bytecode level (e.g., for
each of development and code readability) and at the source
code level (e.g., for debugging). Although many more null-
checks were executed at run-time, the average execution
time slowdown was less than 1% and the average class file
size increase was 22%. We believe that this technique can

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

improve availability by allowing programs to continue to
execute, especially in scenarios where finding and fixing an
entire class of bugs manually is not practical.

Acknowledgments

We gratefully acknowledge John C. Knight, who first pro-
posed the idea of changing the language’s exception seman-
tics and also first proposed total functions as the core issue.

References

(1]

(2]
(3]

[4

—_

[5

—

(6]

[7

—

(8]

[9

—

(10]

(11]

[12]

[13]

T. Anderson and R. Kerr. Recovery blocks in action: A sys-
tem supporting high reliability. In International Conference
on Software Engineering, pages 447-457, 1976.

M. Atkinson and R. Morrison. Orthogonally persistent ob-
ject systems. The VLDB Journal, 4(3):319-402, 1995.

T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN Workshop on
Model Checking of Software, volume 2057 of Lecture Notes
in Computer Science, pages 103—122, May 2001.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanovié¢, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In
Object-Oriented Programing, Systems, Languages, and Ap-
plications, Oct. 2006.

A.Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.
Fault tolerance under UNIX. ACM Transactions on Com-
puter Systems, 7(1), Feb. 1989.

H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of C code. In Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2004.
M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz.
Propagation of JML non-null annotations in java programs.
In Principles and practice of programming in Java, pages
135-140, 2006.

M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive pro-
gram verification in polynomial time. SIGPLAN Notices,
37(5):57-68, 2002.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In Operating Systems Design and Imple-
mentation, 2000.

M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In Interna-
tional Conference on Software Engineering, pages 449-458,
2000.

S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing. In
International Symposium on Software Testing and Analysis,
pages 133144, 2006.

C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott. Ro-
bustness testing of java server applications. [EEE Trans.
Software Eng., 31(4):292-311, 2005.

F. Giunchiglia and P. Traverso. Program tactics and logic
tactics. Ann. Math. Artif. Intell., 17(3-4):235-259, 1996.

56

(14]

(15]

(16]

(7]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

J. Hickey and A. Nogin. Extensible hierarchical tactic con-
struction in a logical framework. In Theorem Proving in
Higher Order Logics, pages 136—151, 2004.

D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and
tuning a static analysis to find null pointer bugs. SIGSOFT
Softw. Eng. Notes, 31(1):13-19, 2006.

G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In International Conference on Soft-
ware Engineering, pages 49-58, 2005.

S. Kojarski and D. H. Lorenz. Awesome: an aspect co-
weaving system for composing multiple aspect-oriented ex-
tensions. In Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 515-534, 2007.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Programming

Language Design and Implementation, June 9—-11 2003.
D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure

transparency and the limits of generic recovery. In Operat-
ing System Design and Implementation, Oct. 2000.

D. E. Lowell and P. M. Chen. Discount checking: transpar-
ent, low-overhead recovery for general applications. Techni-
cal Report CSE-TR-410-99, University of Michigan, 1998.
D. Malayeri and J. Aldrich. Practical exception specifi-
cations. In Advanced Topics in Exception Handling Tech-
niques, pages 200-220, 2006.

G. Nelson and D. C. Oppen. Simplification by cooperat-
ing decision procedures. ACM Trans. Program. Lang. Syst.,
1(2):245-257, 1979.

M. Rinard. Acceptability-oriented computing. In Object-
oriented programming, systems, languages, and applica-
tions, pages 221-239, 2003.

M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In International Conference
on Supercomputing, pages 324-334, 2006.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing server availability and se-
curity through failure-oblivious computing. In Opearting

Systems Design & Implementation, pages 21-21, 2004.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast ca-
pability system. In Symposium on Operating Systems Prin-
ciples, pages 170-185, 1999.

S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis.
Building a reactive immune system for software services.
In USENIX Annual Technical Conference, 2005.

S. Sinha and M. J. Harrold. Ceriteria for testing exception-
handling constructs in java programs. In Internal Confer-
ence on Software Maintenance, pages 265—, 1999.

A. M. Tyrrell. Recovery blocks and algorithm-based fault
tolerance. In EUROMICRO, pages 292—, 1996.

R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a java optimization framework.

In CASCON 1999, pages 125-135, 1999.

A. van Hoff. The case for java as a programming language.
IEEE Internet Computing, 1(1):51-56, 1997.

P. Vo and Y. Huang. Xept: a software instrumentation
method for exception handling. In Symposium on Software
Reliability Engineering, pages 60—-69, Nov. 1997.

W. Weimer. Patches as better bug reports. In Generative
Programming and Component Engineering, pages 181-190,
2006.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 5, 2009 at 11:00 from IEEE Xplore. Restrictions apply.

