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ABSTRACT

Understanding the relationship between cognition and program-
ming outcomes is important: it can inform interventions that help
novices become experts faster. Neuroimaging techniques can mea-
sure brain activity, but prior studies of programming report only
correlations. We present the first causal neurological investigation
of the cognition of programming by using Transcranial Magnetic
Stimulation (TMS). TMS permits temporary and noninvasive dis-
ruption of specific brain regions. By disrupting brain regions and
then measuring programming outcomes, we discover whether a
true causal relationship exists. To the best of our knowledge, this is
the first use of TMS to study software engineering.

Where multiple previous studies reported correlations, we find
no direct causal relationships between implicated brain regions and
programming. Using a protocol that follows TMS best practices and
mitigates for biases, we replicate psychology findings that TMS af-
fects spatial tasks. We then find that neurostimulation can affect
programming outcomes. Multi-level regression analysis shows
that TMS stimulation of different regions significantly accounts
for 2.2% of the variance in task completion time. Our results have
implications for interventions in education and training as well as
research into causal cognitive relationships.
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Figure 1: High-level experimental architecture: “Does im-
pairing a brain region influence programming outcomes?”

1 INTRODUCTION

Recently, neuroimaging studies, which noninvasively measure brain
activity, have been used by software engineering researchers to
pinpoint the brain regions most correlated with common program-
ming activities such as comprehension [35, 70, 86, 87], code reading
and writing [39], debugging [13, 29], and data structure manipula-
tion [48, 56]. These studies, and subsequent work, identified key
cognitive processes correlated with software engineering tasks.

For example, data structures are often described spatially (e.g.,
“balanced”, “length”, “height”, etc.), suggesting a potential relation-
ship between how humans reason spatially and how they reason
about data structures. Spatial reasoning (or spatial visualization)
refers to the ability to mentally manipulate three dimensional ob-
jects. Huang et al. confirmed a correlative relationship between
spatial visualization and data structure manipulation [48]. Neu-
roimaging results have the potential to improve our understanding
of expertise, to inform pedagogy, and to guide tool development
and retraining (see Floyd et al. [39, Sec. II-D] for a summary).

The Problem. Despite these potential benefits and despite re-
searcher interest, to the best of our knowledge, no prior neuroimag-
ing study in software engineering has confirmed a causal relation-
ship between patterns of neural activation and software engineering
activities. Specific causal relationships from one variable to another
cannot usually be assessed from an observed association between
them [1, 47] (cf. “correlation is not causation”, confounds, etc.).
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Proposed Solution. To scientifically investigate the plausible
existence of a causal connection between spatial visualization and
programming tasks, we require an approach that limits the ef-
fects of any confounding variables: manipulating and influencing
brain regions directly. The desired approach should: (1) admit high-
confidence causal inference, (2) comprise a noninvasive process,
and (3) apply to indicative software engineering tasks.

We propose the first investigation of a causal relationship be-
tween spatial reasoning and programming tasks. We use Tran-
scranial Magnetic Stimulation (TMS) to noninvasively and directly
impede or facilitate visualization-associated regions [88, Sec. 5] of
the brain and then analyze the effects on programmer performance.
Unlike medical imaging, TMS induces a current within a region of
the brain itself, temporarily changing transmembrane potentials
and causing neurons to be more or less excitable. Stimulation that
interferes with task performance indicates that the affected brain
region is necessary for the task (i.e., establishes causality).

Unlike neuroimaging methods, such as functional magnetic reso-
nance imaging (fMRI), that indicate correlations between brain and
behavior, TMS can be used to demonstrate causal brain-behavior
relations [69, Sec. 3][82, pp. 595-596].

Our Study. We applied TMS to 16 participants, disrupting three
regions of their brains to probe causal relationships between soft-
ware engineering and neural activity. The regions were stimulated
on different days via an established TMS protocol (Section 3.3) and
state-of-the-art per-subject brain region localization (Section 3.3.1).
To the best of our knowledge, this is also the first such study in soft-
ware engineering to feature multiple treatments and visits, more
naturally admitting both within-one-subject and between-multiple-
subjects analyses (cf. previous SE neuroimaging replications using
different subjects each time [86]). After TMS, subjects completed a
randomized set of 180 tasks: code comprehension, data structure
manipulation, and mental rotation. Differences in outcomes (e.g.,
time) give confidence in a causal relationship (see Figure 1).

Experimental Rigor. Care is necessary to avoid bias as we
probe causal relationships (cf. “absence of evidence is not evidence
of absence”). We pre-register hypotheses (mitigating some threats
from researcher bias), correct for multiple comparisons (mitigating
some threats of false discovery), use special active controls (miti-
gating some threats of participant response bias [25]), and conduct
some analyses with condition labels anonymized (mitigating some
threats from researcher bias). In addition, with over 1,600 minutes
of neurostimulated performance, our study involves comparable
observation to correlative studies (e.g., 1,300 [39], 600 [86], etc.).

Findings and Contributions. Analyzing standard performance
measures (e.g., time taken), not medical scans, we find:

o “Interpreting computing cognition is not simple.” We find
no evidence of causal relationships for multiple previously-

published correlations (e.g., for code understanding [86, Sec. 5.1],

data structures [48, Sec. V.B], code complexity [70, Sec. IILB],
or code writing [56, Sec. 5.2]). That is, disrupting a single
region does not uniformly impair performance.

o “Neurostimulation can affect spatial ability.” We replicate
prior findings that stimulation of supplementary motor area
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degrades mental rotation task completion time. This is impor-
tant both as a replication and also because it gives confidence
that we are applying TMS correctly.

o “Neurostimulation can affect computing outcomes.” We find
that TMS treatment condition contributes to time outcome
dispersion in experimental observations (participants com-
pleting task stimuli). Via multi-level regression analysis, we
find that TMS accounts for 2.2% of the variance in task com-
pletion times after accounting for learning effect. This is a
particularly exciting result, since neurostimulation has
been used to improve performance in other domains.

e We make our materials (recruiting, stimuli, analysis scripts,
and de-identified data) available for replication. We discuss
experiences conducting a TMS study for future researchers.

2 BACKGROUND

In this section, we discuss causal inference in software engineering,
provide relevant background on transcranial magnetic stimulation
as a neurostimualtion technique, and summarize spatial ability.

2.1 Causation in Software Engineering

Understanding causation is important for many reasons, including
the potential of misdirected software engineering research if corre-
lation and causation are confused. For example, some early work
on the program repair tool GenProg [99] assumed that correlated
components (e.g., fitness functions) were important for success and
worth improving [37] — only for subsequent work causally testing
that supposition by removing those components [75, 98] to find just
as much success without them. Similarly, in deep learning, overlap
between training and testing datasets can increase perceived per-
formance. However, some early work assumed that correlated com-
ponents (e.g., model techniques) were primary drivers of success
— only for subsequent work to causally test that supposition (e.g.,
by renaming variables or otherwise avoiding “contamination” [52,
Sec. VIIT]). Within the intersection of software engineering and neu-
roscience, a longitudinal study by Endres et al. [33] demonstrated
the benefits of medical imaging for pedagogy, evaluating a training
method based on prior neuroimaging results [34]. However, the
training based on spatial visualization actually produced worse
results than technical reading [33, Sec. 7.1], a result not in line with
prior correlative studies (e.g., [48]). While other fields place a more
direct emphasis on reproducing or replicating findings and follow-
ing correlative analyses with causal ones (cf. some aspects of the
replication crisis in psychology [27]), with some notable exceptions
(e.g., [85]), software engineering does not yet have a comparable
tradition of accepting negative results or replications.

2.2 Transcranial Magnetic Stimulation (TMS)

Transcranial Magnetic Stimulation (TMS) is a safe and noninva-
sive technique that is well-established for a variety of clinical and
scientific use cases. When administered, TMS produces magnetic
fields which stimulate (or disrupt) activity in a region of the brain
by inducing an electric current in the neurons of this region [10].
Clinically, TMS is used as a treatment for major depressive disor-
der, smoking cessation, and obsessive-compulsive disorder, among
others (see Section 2.3). It is also a well-established research tool:
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in the past 10 years, the National Library of Medicine has recorded
over 1000 academic papers published each year which investigate
the use of TMS. By using this neurostimulation technique to dis-
rupt brain activity and subsequently measuring task outcomes on
programming tasks, we can examine potential causal relationships.

Compared to other methods, TMS is a time-efficient way to in-
vestigate the causal link between neural activity and programming
ability. Other medical approaches that affect the brain in specific ar-
eas tend to be quite invasive, requiring implanted electrodes, drug
treatments, or neurological surgeries. By contrast, non-medical
approaches, such as transfer training or pedagogy, are typically
studied over a longer period of time (see Section 8). In such longi-
tudinal A/B studies, the participant dropout rate may reach 70%,
primarily due to the effort and time required [45]. Our protocol only
required about five hours per participant to establish the control
and treatment effects, mitigating participant dropout.

Short applications also eliminate variance and potential con-
founds in long-term studies. In longitudinal studies, it is important
to control environmental factors, such as what a participant is
learning elsewhere and variance in intra-individual factors (such as
mood, energy, etc.). For example, longitudinal studies on CS student
retention span weeks or years that can lead to uncontrolled factors,
such as the recent pandemic [33, 83]. By contrast, the direct and im-
mediate effects of TMS can be observed in a controlled environment
for a specific trial of programming-related questions.

TMS is well-suited to elevate a correlative neural relationship to
one that can be suspected to be causal: (1) it is time-efficient and
noninvasive, and (2) minimizes confounding variables.

2.3 Current TMS Applications and Successes

This is the first time TMS has been applied to software engineer-
ing, but it has been used successfully in a variety of contexts. We
highlight advances in aspects such as creativity, memory, language
and mathematics that are relevant for software engineering.
Creativity and Memory. Hertenstein et al. clarified the neural
basis of creativity (broadly construed as the “use of original ideas
to accomplish something innovative”), as well as ways to modu-
late that creativity, based on TMS stimulation of the prefrontal
cortex [46]. They found that deactivating the left prefrontal cortex
and activating the right prefrontal cortex with transcranial stim-
ulation is associated with increased creativity, whereas doing the
opposite (activating the left, deactivating the right) is significantly
associated with decreased creativity. Other activities that fall under
this definition of creativity, such as the sudden insight gained when
solving anagrams, “aesthetic experience”, and “divergent think-
ing”, have been effectively studied for their neural correlates via
TMS [17, 73, 81]. Moreover, participants in a TMS study on working
memory were tasked to remember various numbers and do addition
on them: neurostimulation resulted in a 30% accuracy increase [43].
Language. TMS has been applied to explore language processing.
Willems et al. observed that stimulating the premotor cortex re-
sulted in increased verb processing speed for manual actions [100].
This is particularly interesting because it not only demonstrates
that two seemingly disparate activities can be connected by similar
activity in the brain, but also shows that stimulation of one area
can improve processing in another (cf. transfer training [19, 33]).
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Mathematics. TMS has been employed for brain region causal
inference for various mathematical tasks. In one study, TMS signif-
icantly improved calculation accuracy for mental arithmetic done
on three-digit numbers [96]. In another study, TMS was used to
investigate neural models of mathematical cognition via the task
of mentally considering the prices of items [54].

Health. In the medical domain, TMS is used to treat several
neurological conditions. For example, TMS has been applied to
word-finding difficulty (anomia), a common problem in early stages
of Alzheimer’s disease [21]. TMS is also widely used to counter-
act the effects and recurrence of depression. TMS applied to 301
previously-untreated participants with depression showed a signif-
icant reduction in depressive symptoms and twice the likelihood of
remission after 6 weeks [68]. TMS has also diminished the effects of
PTSD, OCD, Tourette’s, and other mental health conditions [61, 63].
Software engineering may involve stress, novel demands, or tox-
icity [76], high rates of burnout and depression [102], and lower
rates of treatment for such mental health issues [59]. Software-
specific challenges can impair the productivity of employees (e.g.,
the “happy-productive thesis” [22]). Mental health may thus be as
relevant to programming as language, creativity, or math.

TMS Summary. TMS has successfully influenced tasks requir-
ing complex interactions in many different areas of the brain, in-
cluding programming-relevant aspects such as creativity, memory,
language, and mathematics. Although TMS has not previously been
used for software engineering, we propose its use to investigate
the relationship between neural activity and programming.

2.4 Spatial Reasoning and Programming

Spatial reasoning is the capacity to understand, remember, and ma-
nipulate the orientation of objects in space, including both physical
and abstract objects [62]. The particular task of mental rotation
involves visualizing 2D or 3D objects in the mind and imagining
pivoting them [71]. Mental rotation has been shown to be a signifi-
cant predictor for ability with many different STEM-related disci-
plines [16]. While spatial reasoning has been studied for decades
[11], it has only been recently linked to programming.

Huang et al. observed similar patterns of neural activation be-
tween spatial reasoning tasks and programming with tree-based
data structures [48]. Endres et al. found even greater similarity be-
tween neural activation for spatial visualization and programming
ability in novices [33]. Given that spatial ability could be a predic-
tor for aptitude with a variety of data structures or programming
tasks, it is important to establish a causal, rather than correlative,
relationship between it and programming ability.

3 EXPERIMENTAL SETUP AND METHODS

We present our study design for investigating the causal link be-
tween neural activity and computation via Transcranial Magnetic
Stimulation (TMS). Each individual underwent a localizing (fMRI)
scan and two to four subsequent TMS sessions, each on a different
day. At each TMS session, an experimental condition was applied:
stimulation of one of two spatial reasoning-associated regions or
stimulation of an active control (leg-associated) region. After treat-
ment, participants were tested on a set of stimuli. This design allows
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for a controlled investigation of a potential causal link between
spatial reasoning and program comprehension for programmers.

3.1 Participant Recruitment

We recruited 16 participants via a combination of email, course
forums, posters, and in-class presentations. Eligible subjects were
required to be 18 years or older, right-handed, native English speak-
ers, have normal to corrected vision, and had at least 1.5 years of
programming experience. Due to TMS safety policies, participants
were also required to pass a medical screening form. Participants
whose medical history indicated any neurological risk factors, drugs
active in the central nervous system (e.g., antipsychotics, antide-
pressants, or recreational stimulants), or poor levels of sleep were
excluded from the study [79, 97]. We note that the risks associated
with TMS are minimal, with only one known case of a seizure [79].

Because individual humans vary slightly in brain anatomy [3],
we scanned each individual to produce a personalized localization.
We collected 23 brain scans, of which 16 are part of our final analysis
(others dropped out or failed later safety screenings). Additionally,
data from one participant was removed from the final analyses due
to inconsistencies and outlier data points (i.e., response times more
than 2 standard deviations away from the mean). Overall, our final
analysis considered 16 participants: 8 male and 8 female.

Background and demographic information were collected from
14 out of 16 participants. 6 of our participants reported being un-
dergraduate students, 4 as graduate computer science students, 2 as
software engineers, 1 as a non-computing student, and 1 as a non-
computing-related professional. All subjects were also screened for
basic programming knowledge of C++. Participants who completed
the study in full, which consisted of a localizing anatomical scan
and three subsequent TMS sessions, received $125.

3.2 Stimuli and Tasks

After each TMS treatment, participants were shown a varied set
of 61 stimuli from three tasks: Code Comprehension, Data Struc-
ture Manipulation, and Mental Rotation. In total, participants were
presented 183 stimuli over three treatment sessions. We selected
stimuli that were short and concise to fit well within the 60-minute
effect window of the TMS treatment (see Section 3.3.1). Data struc-
ture and mental rotation stimuli were acquired from previously-
published studies that examined spatial visualization and program-
ming [33, 48] and thus relate to our research questions. Code com-
prehension stimuli were taken from previous quizzes and exams
administered in a data structures and algorithms course at a large
public university in the US. Responses to each stimulus were given
by selecting one of two answer choices via the ‘A’ or ‘B’ keys on a
standard laptop keyboard. Stimuli were administered via the pop-
ular PyschoPy (version 2022.2.5) package. Individual tasks took
15-60s to complete, with 35 minutes to complete all 61 stimuli. We
now describe the stimuli in further detail.

3.2.1 Data Structure Manipulation Task. We obtained a total of
89 validated data structure task stimuli from a prior publication
reporting a neural correlation with software engineering tasks [48].
Stimuli cover arrays, linked lists, and trees. Each stimulus included
a starting data structure, an operation to perform, and two answer
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choices (Figure 2a). Answers were either numerical values to de-
scribe the outcome of an operation or candidate data structures
resulting from an operation. The tree tasks include binary search
tree (BST) rotation, insertion, and traversal operations.

3.2.2 Mental Rotation Task. We use both the Huang et al. [48]
and Endres et al. [33] spatial skills stimuli. These include Men-
tal Rotation Stimulus Library questions established by Peters and
Battista [71] with varying rotational angle difficulty as well as
the Revised Purdue Spatial Visualization Test (PSVT:R II) [105].
PSVT:R I is a standard assessment of different facets of spatial
ability. Mental rotation tasks asked participants to compare two 3D
objects rotated about an axis (Figure 2b). Participants selected the
object that matched the starter object, accounting for rotation. Our
stimuli include 56 distinct mental rotation tasks.

3.23 Code Comprehension Task. Code comprehension tasks were
acquired from exams and quizzes for a data structures and algo-
rithms course at the University of Michigan, a large public univer-
sity. All tasks have previously been used to assess thousands of
undergraduate students on their knowledge of data structures. For
each stimulus, participants were asked to trace through snippets of
C++ code and select one of two answer choices (Figure 2c). Tasks
included deducing the values printed or returned by a function, and
analyzing the time and memory complexity of the code. A total of
38 distinct code comprehension stimuli were included in our study.

3.3 TMS Treatment

We summarize our experimental design decisions at a high level.
We claim no novelty in the mechanics of TMS application — indeed,
we intentionally use a high-quality but “off-the-shelf” TMS protocol
(see Figure 3) for this application in software engineering. In brief:

(1) “How do we apply TMS at all?” We use a best-practice proto-
col and off-the-shelf hardware and software (Section 3.3.1).

(2) “How much TMS do we apply?” Following best practices, we
find a per-participant stimulation thresholds (Section 3.3.2).

(3) “Where do we apply TMS?” Following best practices, we
measure each participant’s individual brain anatomy and tar-
get brain regions implicated in previous correlative studies
(Sections 3.3.3 and 3.3.4).

(4) “How do we minimize bias?” We use a best-practice active
control in which an unrelated brain region is stimulated
(in a process that still feels like other TMS treatment, Sec-
tion 3.3.3). We randomize treatment conditions and stimuli
and blind conditions when possible (Section 3.3.5).

Knowledge of TMS details (e.g., “theta-burst stimulation”) is not
necessary to understand our results or their import. TMS can be
viewed as an effective“black box” that temporarily impairs brain
regions (see Section 2); the remainder of this section provides details
relevant for replication and justification of best-practice decisions.

3.3.1 Stimulation Protocol. We applied a continuous theta-burst
stimulation (cTBS) protocol consisting of 3 pulses of stimulation
at 50 Hz, repeated every 200 ms, for a total of 600 pulses in 40
seconds. The method is an accepted form of stimulation in various
psychology and medicine research papers studying TMS effects [49,
93]. This method is effective in providing long-lasting effects of
approximately 60 minutes [49]. This is essential for our experiment,
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Given the top array, after performing the first bubble in bubble sort, which
candidate array will be the result?

indices [0 12 3 4 5 6 7 8 9 10 11 12 13 1]
nums[78 [ 9 [53[21]11]63[98] 1 [82]39[90]54[68[15][13]

A 012 3 a5 6 7 8 9 10 11 12 13 1)
[9]78]53]21]11]63[98] 1 [82]39]90[54]68]15]13]

B: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[9[s3[78]21]11]63]98] 1 [82]39]90[54]68]15]13] @

(a) Data structure manipulation stimulus

(b) Mental rotation stimulus
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Consider the snippet of code below:

vector<int> myFunc (vector<int>& nums, int target) ({

for (int i = 0; i < nums.size(); i++) {
for (int j = i + 1; j < nums.size(); j++) {
if (nums[i] + nums[j] == target) {

return {i, j};
}
}

15 ROTATED TO )

return {-1, -1};

}

What does myFunc return on the input nums=[2,7,11,15] and
B target=9?

@ A:[0,2] B:[0,1]

(c) Code comprehension stimulus

Figure 2: Example stimuli. Data structures also include linked lists and trees, code also include Big-O complexity.

Figure 3: Transcranial magnetic stimulation treatment setup.
The researcher (standing right) uses the per-participant localization
(top screen) and hand-held magnetic coil (center right) on the scalp
of the participant (seated center) to induce current in a brain region.

since effects should last long enough to complete the 35-minute
task block presented after TMS treatment, but short enough to limit
effects post-study to mitigate safety concerns. The time to complete
this protocol is drastically smaller than that of other stimulation
protocols (cf. “repetitive TMS” [12]), facilitating recruitment.

We used a well-established stimulation procedure to maximize
accuracy and time [49]. cTBS was delivered over the scalp through
a MagPro X100 magnetic stimulator and a 90 mm figure-8 coil (MC-
B70, MagVenture Inc.). The cTBS protocol was tolerated well by all
subjects with no negative side effects reported.

3.3.2 Thresholding. Because each human is slightly different, we
use a well-established protocol to determine an appropriate stimu-
lation intensity for each participant. We first find the participant’s
individualized active motor threshold (AMT) for the first dorsal
interosseous muscle (FDI) of the right hand as they contract the FDI
[74, 80]. This common method involves stimulating the primary
motor cortex on the left hemisphere at various levels with the aim
of eliciting a motor evoked potential (MEP) of > 50 y/V peak-to-peak
on five out of ten trials while the participant is subjectively contract-
ing the FDI muscle at 20% of maximum. A stimulation threshold that

meets such requirements is known as the AMT and allows us to ef-
fectively stimulate each participant safely [74, 80]. In most subjects,
the lowest stimulation threshold can be found in this manner [80].
To ensure accurate recording of MEPs and AMT, the participant
is adjusted with disposable self-adhesive electromyograph (EMG)
on their right hand. EMG activity was amplified (x1000) with a
BioAmp (AD Instruments, USA) using a Powerlab 4/35 system and
digitized (10 kHz) and recorded using “Brainsight TMS” neuronavi-
gation software (Rogue Research, Montréal, Canada). Physiological
responses were visually monitored because twitches near or around
the FDI of the right hand can indicate if stimulation is occurring
at the correct positioning [79]. Once AMT was determined for the
participant, cTBS stimulations were applied at 80% AMT to comply
with commonly-accepted safety standards [79, 97].

3.3.3 Treatment and Control Conditions. Participants were stim-
ulated in multiple brain regions to assess the causal relationship
between neural activity and programming. In particular, we stim-
ulated the primary motor cortex (M1) (reported as correlated with
code understanding [86, Sec. 5.1], data structures [48, Sec. V.B], and
code complexity [70, Sec. IIL.B]) and the supplementary motor cortex
(SMA) (reported as correlated with code writing [56, Sec. 5.2]). The
left primary motor cortex was chosen as the motor sub-area for
stimulation since all participants were required to be right-handed.

To ensure that any changes observed in the participant are
caused by the stimulation, as opposed to some other general fac-
tor (e.g., arousal, attention, altering response to the TMS sounds),
we apply an active control condition in which the cranial vertex (a
leg-associated brain region) is stimulated. The vertex region is a
commonly-used control in TMS studies with ¢TBS protocols [28, 60].
Introducing an active control is shown to provide the same sen-
sation of TMS stimulation without affecting the brain areas of
interest [51, 65, 78, 89]. An active control thus further mitigates
participant response bias [25, 51]. In total, participants were stimu-
lated in three different brain regions, one on each of three different
TMS sessions in randomized order.

3.3.4 Stimulation Localization. Every brain is slightly different [3],
so we collected individual 3D brain scans to accurately target stim-
ulation on each participant. While some studies report localizing
brain anatomy by sight or by feel, we used an fMRI to collect high-
resolution imaging following best TMS localization practices [51].
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All imaging procedures were conducted on a 3T General Electric
MR750 with a 32-channel head coil at the University of Michi-
gan Functional MRI Laboratory. Participants attended a single
45-minute scanning session for brain region localization. High-
resolution anatomical images were acquired with a T;-weighted
spoiled gradient recall (SPGR) sequence (TR = 2300.80 ms, TE = 24
ms, TI = 975 ms, FA = 8°: 208 slices, 1 mm thickness). We obtained
estimates of the static magnetic field using spin-echo fieldmap se-
quences (TR = 7400 ms, TE = 80 ms; 2.4 mm slice thickness).

Subjects’ heads were reconstructed in 3D using the Brainsight
TMS neuronavigation software from their T; anatomical scans and
the locations of the left primary motor cortex (M1), SMA, and
cranial vertex were determined for stimulation. The M1 region was
identified using axial scans by locating the “hand knob” and hook
in MRI images [9, 23, 97]. The SMA region was located by selecting
the voxel in individual anatomical scans best corresponding to
the Brodmann area definition for pre-SMA and SMA (Talairach
coordinates x = —28,y = 0,z = 48) [57, 58] (cf. [67]). The cranial
vertex control region was located by selecting the intersection of an
abscissa between the nasion and the inion, and an abscissa between
the left and right tragus on individual structural brain scans [51, 72].
Localization methods used were overseen by two independent TMS
experts (not authors on this work), adding confidence.

Localized regions were marked for stimulation as targets via
Brainsight’s frameless stereotaxy system which uses an infrared
camera for monitoring head locations of the participant by tracking
reflexive markers attached to the head of the participant [91, Sec. 2].
Head locations are then related to the structural MRI brain data of
the participant, guiding precise positioning of the magnetic coil.

3.3.5 Minimizing Bias. In addition to our use of an active control
(see Section 3.3.3), we took additional steps to reduce bias. First,
participants were not informed of which brain region was being
stimulated at the time of the session. Second, participants were not
given information on the expected effects [25]. This was single-
blind, not double-blind, since the researcher manually targets the
TMS coil at the brain region and thus knows the treatment con-
dition. Third, however, after each TMS stimulation was applied,
participants were presented with randomized task stimuli on an
automated, online platform which required no interaction with
the researchers. A final post-test survey was administered on a
printed page. We believe that these (non-)interaction procedures
help minimize threats associated with participant response bias.

4 ANALYSIS METHODOLOGY

We analyze our results via statistical assessments and modeling.
Critically, unlike fMRI-based software engineering papers (which
must use nuanced methods to account for large numbers of noisy
voxels, etc., when analyzing brain scans, e.g., [39, Sec. IV]), our
primary analyses are of the broad form “did the participants in the
treatment condition answer the test questions better (or faster) than
those in the control condition?”. While some modeling sophistica-
tion is required (e.g., to account for heterogeneity, see Section 4.2),
we never analyze brain scan data.

However, to form robust experimental conclusions, especially
involving potential “negative” results, we must minimize the poten-
tial for bias, including researcher bias during analysis. In addition to
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approaches taken in our experimental protocol (e.g., randomization,
single-blind, etc., see Section 3) we also follow two practices in our
analysis: pre-registering our hypotheses and partial blind analysis.

4.1 Pre-Registration and Bias

Pre-registration is a scientific process in which the “research ra-
tionale, hypotheses, design and analytic strategy” are submitted
before beginning the study [44]. This helps mitigate biases associ-
ated with researchers choosing which results to present post hoc:
“pre-registration can prevent or suppress HARKing, p-hacking, and
cherry picking since hypotheses and analytical methods have al-
ready been declared before experiments are performed” [104]. Sim-
ilarly, following a discipline of pre-registration may mean that “re-
searchers will not be motivated to engage in practices that increase
the likelihood of making a type I error” [44]. While not as common
in software engineering (but see the “Registered Reports” track of
Mining Software Repositories [85], for example), pre-registration
is increasingly adopted by journals and researchers, especially in
fields such as psychology and social science (e.g., [90]).

Our hypotheses, such as “TMS stimulation in the SMA or motor
cortex will significantly disrupt accuracy and or reaction times
on both mental rotation and programming tasks compared to an
active control condition (TMS stimulation in the vertex)”, were pre-
registered with the Open Science Framework (https://osf.io/m4p6e)
along with our data collection strategy and statistical analysis meth-
ods. This includes our criteria for excluding data and inferring
significant correlations.

In addition, our final analysis was conducted blind: labels rep-
resenting the treatments (vertex, SMA and M1) were randomly
coded as A, B, and C, before the analysis strategy was set. This helps
mitigate researcher bias in the choice of analysis tools or methods.

Finally, the Benjamini-Hochberg (BH) adjustment was used to
correct for multiple comparisons when necessary in evaluating p-
values [7]. Prior work has shown the choice of statistical software
is important [31]: our analysis primarily used the R package 1me4
and the Python package scikit-learn.

4.2 Multi-level Regression Analysis

Our experimental design produces item-level assessment data, where
each response to a question contributes an observation to the
dataset. We broadly follow the framework of Item Response Theory
(IRT), a branch of psychometrics which is concerned with the anal-
ysis of this type of data [4, 103]. Specifically, we employ multi-level
regression models to examine relationships between a response
variable, stimulated brain region, and control variables. We lin-
early model response time and self-reported perceived difficulty,
and logistically model accuracy. This is collectively referred to as
multi-level regression analysis, or mixed-effects modeling.

We claim no novelty in statistics, and focus our discussion on
why this analysis appropriately incorporates important aspects of
our data and research hypotheses. For general information about
our methods, we refer the reader to [5] and [36, Ch. 8].

4.2.1 Suitability of Multi-level Regression. Multi-level regression
analysis is well-suited to handling heterogeneity between groups of
observations, such as arise from repeated measures [42]. In our ex-
periment, each participant response (to 150-183 stimuli) is a distinct
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data item; these may be correlated due to an underlying person-
dependent “skill”. We also have repeated measures for each stimulus,
as multiple participants answer every question; such observations
may be correlated due to variation in question difficulty. We can
also posit heterogeneity between content domains (e.g., code com-
prehension vs. data structures). Such considerations are common in
the analysis of item-level assessment data [38, 64]. Multi-level mod-
els also perform well with unbalanced group sizes. Our experiment
has modest imbalance (e.g., 843 observations of SMA stimulation
vs. 939 of M1). Moreover, not all questions have responses from all
participants (e.g., from drop-out).

Multi-level regression analysis allows us to test hypotheses about
both systematic and heterogeneous TMS effects, as discussed below.

4.2.2 Systematic and Heterogeneous Effects. A mixed-effects model
can include independent variables whose effects are systematic
(fixed effects), heterogeneous (random effects), or both. Interactions
of fixed effects further permit modeling effects that are systematic
within specific groups of observations. This is relevant because
we hypothesize a systematic TMS treatment effect within each
programming task (e.g., data structures vs. code comprehension).
Random effects can pertain to multiple levels of grouping in
the data. For example, they can model heterogeneity between peo-
ple, between person-domains, or both. This is relevant because
we hypothesize a heterogeneous TMS treatment effect that varies
between people, as has been found in TMS studies of other disci-
plines [10, 17, 46, 54, 73, 74, 80, 81, 95]. That is, some people may
improve performance under TMS while others reduce performance.
We are interested in the TMS effect distribution over the popu-
lation represented by our study subjects. This is mirrored in our
experiment design, which features person-specific localization (Sec-
tion 3.3.4) and person-specific TMS intensity thresholding (Sec-
tion 3.3.2). Mixed-effects models can express our hypothesized
person-dependent TMS effect using a random effect that describes
interactions (combinations) of TMS conditions and participants.

4.2.3 Model Specification, Parameter Estimation, and Inference. The
dependent variables we consider are per-question accuracy, per-
question response time, and perceived difficulty. We first consider
plausible effect structures for the available independent variables,
based on existing literature and our experimental design [64]. Ex-
amples are given in Section 4.2.2 (see replication package for full
list). We apply logarithmic transformation to response times to
address skew (discussed in Sections 5.1 and 5.3). All models are fit
by maximum likelihood estimation (MLE) to the programming and
mental rotation data separately. To find the best-fitting candidate
model for each dependent variable, we optimize Akaike Information
Criterion (AIC), a widely-used model selection metric [2, 14].

We are interested in the TMS treatment condition (i.e., which
brain region was stimulated), which may exhibit a fixed or a random
effect. If the best-fitting model has a fixed (systematic) TMS effect,
we explicitly verify statistical significance via a likelihood ratio “om-
nibus” test relative to a model without the TMS effect [36, Appendix
A.2]. We then pinpoint the source using post-hoc pairwise contrasts,
with Benjamini-Hochberg adjustment for the 3 comparisons. Al-
ternatively, if the best-fitting model has a random (heterogeneous)
TMS effect, we explicitly verify statistical significance using profile
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likelihood analysis [5] and parametric bootstrap methods [24] to
find the 95% confidence bounds of the statistic.

4.3 Replication

Our replication package contains raw data for de-identified partic-
ipants as well as relevant analysis information, including scripts,
data management, and statistical assumption checking, and is pub-
licly available at https://github.com/hammad-a/ICSE24_TMS.

5 RESULTS

With behavioral and survey data, we ask:

RQ1: Can we replicate prior findings that neurostimulation of
the SMA reduces mental rotation completion times?

RQ2: Is there a direct causal relationship between activity in the
SMA (or M1) brain region alone and performance?

RQ3: Does neurostimulation of the SMA or M1 brain regions
affect objective computing performance outcomes?

RQ4: Does neurostimulation in the SMA or M1 brain region
affect self-perceived problem difficulty?

5.1 RQ1: TMS and Mental Rotation

Prior psychology studies using TMS found a causal link between
the SMA and mental rotation, but no such link for the M1 [18].
To gain confidence in the accuracy of our results regarding the
SMA, M1, and computing, we attempt to replicate this causal link
between the SMA and mental rotation.

We find that TMS stimulation of the SMA impairs response time
for spatial reasoning stimuli, compared to TMS of the vertex region
(our active control condition). With p < 0.02, TMS stimulation of
the SMA results in an increase of 0.143 log-seconds in expected
per-question log-transformed response time! (a 15.3% increase in
raw response time, or 1.5 s slower on our median response time of
9.82 s) relative to stimulation of the vertex region.

5.2 RQ2: SMA, M1 and Computing

The supplementary motor area (SMA, Broadmann area #6) is a part
of the motor cortex that coordinates complex and internally-guided
motor actions for extremities. The primary motor cortex (M1, Broad-
mann area #4) is in the anterior bank of the precentral sulcus and is
involved in the execution of voluntary, external body movements
(such as contracting skeletal muscles).

Overall, we find no evidence of a causal relationship between ac-
tivity in the supplementary motor area and computing outcomes. In
particular, we find no question type (data structure, mental rotation,
or code comprehension) for which accuracy in the SMA treatment
condition and accuracy in the control condition are statistically
different (p > 0.81). Similarly, there is no question type for which
response times for the SMA treatment condition and time taken in
the control condition are statistically different (p > 0.22).

We also find no evidence of a causal relationship between activ-
ity in the primary motor area and computing outcomes for any
question type (p > 0.50 for accuracy, p > 0.73 for time taken).

Quite surprisingly, our results do not agree with multiple
previously-established correlations. For instance, for the SMA

'We log-transform the dependent variable to address right skew in raw response times
(skewness 3.18 — 0.35) and residuals of the optimal-AIC fitted model (2.93 — 0.59).
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region, Siegmund et al. found a correlation between brain activity
and code understanding [86, Sec. 5.1], Huang et al. found a correla-
tion between activity and data structure manipulation [48, Sec. V.B],
and, most recently, Peitek et al. found a correlation between neural
activity and comprehension of code with higher complexity met-
rics [70, Sec. IIL.B]. Likewise, for the M1 region, Krueger et al. found
a correlation between it and code writing (as opposed to prose
writing) [56, Sec. 5.2]. The lack of evidence of a causal relationship
between single-region brain activity and computing outcomes calls
into question the research community’s understanding of cognition
for software engineering tasks. Simply disrupting activity in one
region does not uniformly result in lower outcomes. Our results
suggest that interpreting cognition for CS is complex: multi-
ple brain regions could be causally responsible for outcomes for
programming tasks (cf. [53]).

Our null results further argue for nuance in pedagogical
interventions based on cognition. Indeed, a recent investiga-
tion by Endres et al. [33] concluded that student training based on
spatial visualization produced worse results than technical reading,
a result not in line with prior correlative studies (e.g., [48]). The
lack of a causal relationship between brain regions associated with
spatial reasoning and computing outcomes helps further explain
these recent results, and cautions against misdirected software engi-
neering research and pedagogical interventions that may otherwise
be undertaken if correlation and causation are confused.

We fit a multi-level linear model to mental rotation responses (see
Section 4.2, details in replication package). Critically, our optimal-
AIC model contains the TMS condition as a fixed effect. We cal-
culate post-hoc pairwise contrasts between TMS conditions (with
Benjamini-Hochberg adjustment), to obtain the significance result
(p < 0.02). This result generalizes over both types of mental rota-
tion stimuli from prior work: we find no significant difference in
the impact by stimulus source (see Section 3.2.2).

Of note, we also find no significant difference in response times
between TMS stimulation of the M1 and control (p = 0.18). Our
results thus replicate prior findings that TMS of the SMA impacts
mental rotation response times, but that TMS of the M1 does not
have a significant effect [18]. Our replication results give confi-
dence that we have applied TMS correctly.

5.3 RQ3: TMS and Computing Outcomes

While our analyses for RQ2 find no evidence of a monotonic causal
relationship (e.g., “stimulating the SMA alone always reduces per-
formance on data structure questions”), multi-level regression anal-
ysis finds that TMS stimulation does have a statistically significant
non-systematic person-dependent effect on response time. Per Section
4.2, we produce a best-fit model of response times.? Table 1 shows
point estimates and 95% confidence intervals.

The confidence interval for the standard deviation of the “Par-
ticipant by Brain Region Stimulated” random effect excludes zero,
indicating a significant effect. The estimated proportion of variance
explained (PVE, equal to the variance of estimate interest divided

2As with RQ1, we log-transform to reduce right skew in raw times (skewness 2.21 —
0.17) and model residuals (2.26 — 0.11).
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Table 1: Mixed-effects model parameter estimates predicting
log-transformed response times. The “C.I” columns give the
confidence interval for the standard deviation estimate of the corre-
sponding random effect. Critically, the “Participant by Brain Region”
interval (bolded) excludes 0, indicating a statistically significant
person-specific effect involving TMS neurostimulation.

Std. 2.5% 97.5%
Random Effect Vari. Dev. ClL ClL

Stimulus 204 452 398 517
Participant by Question Type 019  .137  .100 .190
Participant by Brain Region .010 .099 .066 .143
Participant .037 193 118 .308

Residual 175 418 404 .433

by the sum of all variances) of this effect is 2.2%. The 95% confi-
dence interval for that figure is (0.7%, 4.0%), as calculated using the
methods in Section 4.2 (see replication package for derivation).

This is evidence for a person-dependent TMS effect that is highly
heterogeneous (see Section 4.2). Any non-zero effect is important
for a new intervention, and we place our result in context in Sec-
tion 6. This result is particularly exciting, since while TMS has
successfully been used to improve performance in other domains
(see Section 2.3), ours is the first study providing evidence that
TMS can alter outcomes for programming tasks. Our results
argue for further exploration of using TMS (e.g., with protocol that
strictly excites brain activity) to improve computing outcomes.

We also note that there is no evidence for a systematic effect
from certain TMS conditions that improves or impairs programming
ability relative to other TMS conditions. That is, while the effects
of SMA and M1 stimulation on programming question response
times are different (p = 0.028, see replication package for details),
one is not overall better or worse at improving outcomes. This is
expected from our protocol (which focused on demonstrating the
possibility of any effect, not on positive-only effects).

We can interpret our result using a “difference-in-differences”
approach from generalization theory [77]. Consider an arbitrary
member of the population placed in two scenarios. In each scenario,
they are presented with the same set of questions from our stimuli.
We consider the subject’s average response time in each scenario,
with the set of questions large enough that residual variance is neg-
ligible. If the subject undergoes TMS stimulation to the same brain
region in both scenarios, then the difference in average response
times is zero (with probability 1). By contrast, if the brain regions
stimulated differ, the “difference in differences” of log-transformed
response times is 0.099, equivalent to a ratio of 1.10X between the
two differences in raw response times.

5.4 RQ4: TMS and Self Perception

Following each TMS treatment, participants reported their subjec-
tive perception of the task difficulty, both in isolation and relative
to the last session (if applicable), on a Likert scale. Overall, we find
no statistically significant evidence of differentiation in the subjec-
tive perception of participants across all treatments and all question

types (p > 0.21).
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While we observed no differences in participants’ subjective
perception of task difficulty following treatments, we note that par-
ticipants self-reports are generally not reliable [25], and TMS may
still be influencing task difficulty without participant conscious per-
ception. Conversely, the lack of perceived differences may remove
a potential barrier to participant retention in future investigations
of TMS-based treatments for software engineering (e.g., if TMS
were to make tasks seem more difficult or frustrating, participants
drop-out might be impacted, cf. [19, 33], etc.).

6 DISCUSSION

TMS has been shown to significantly improve or impair results in
many other fields (see Section 2.3), and our results extend this to
software engineering. Although the effect size noted in Section 5.3
shows that the treatment condition (i.e., the region of the brain that
is stimulated by TMS) accounts for 2.2% of the variance we see in
response times this is a more substantial report than it may first ap-
pear. Many papers on CS interventions do not include effect size in
their results at all, or omit comparisons to a non-intervention base-
line: in a 2018 review of 129 papers on pedagogical interventions
in computer science, none included an effect size [94].

Some published results of interventions in computer science
that do include such information may report similar variance in
outcomes to our results. For example, one longitudinal study by
Cooper et al. [19] considered a two-week, full-day workshop com-
pleted by high school students, of which 7.5 hours were devoted
to spatial skills for a treatment group. They report that “the treat-
ment group improved by an average score of 1.06 [out of 16 APCS
questions], and that this was significant at the p = 0.07 level” [19,
Sec. 4.2]. Although our approach uses a very different methodology
and the results are not directly comparable, we note that that initial
study provided the basis for subsequent studies of hundreds of
students [8] and is associated with a 1-credit spatial skills course
at a large university [92] where it improved retention in the major
and grade outcomes for other classes. A small effect in an initial
study may lead to a useful intervention later.

Additionally, since our main goal was to determine if neurostim-
ulation could impact computing outcomes, we selected a protocol
that may help or hinder ability. However, other TMS protocols exist
that solely excite regions of the brain and/or otherwise observe
predominantly positive results (e.g., [43, 46, 96], see Section 2.3). As
a concrete example, an intermittent protocol (rather than the con-
tinuous protocol used for this experiment) involving applying theta
burst TMS for 2s every 10s or a repetitive TMS (rTMS) treatment
may result in heightened neural signal transmission [55]. Future
work should investigate whether such heightened transmission
translates to improved outcomes on computing tasks.

In addition to varying the protocol, future studies would benefit
from varying the target brain area. While this paper investigated
spatial skills, other studies implicate that brain regions associated
with working memory (e.g., the dorsolateral prefrontal cortex) or
language skills (e.g., Wernicke’s or Broca’s areas) may be correlated
with other programming activities [33, 34]. Having demonstrated
the applicability of TMS neurostimulation to computing outcomes,
we encourage investigating positive impacts on other tasks.
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7 THREATS TO VALIDITY

Since our presentation considers threats to validity throughout
(e.g., from experimental design and execution to analysis), in this
section we briefly summarize internal (e.g., did we apply TMS cor-
rectly?) and external (e.g., do our participants generalize to other
populations?) threats, referencing earlier mitigation details.

Stimulation procedures. We adopt a well-established TMS pro-
tocol, supervised and approved by an outside TMS expert (Section
3.3.1). We individualized the treatment intensity (Section 3.3.2).

Brain region localization. We use fMRI brain scans for accurate
brain region localization (Section 3.3.4).

Participant bias. We use an active stimulation control and did
not convey expected effects (Section 3.3.3).

Tasks. We use stimuli validated in prior work and covering
multiple distinct domains (Section 3.2). We acknowledge that the
tasks considered may not generalize to other activities (e.g., pair
programming) and defer such exploration to future research.

Population. Our participants (largely students) may not gener-
alize to other populations (e.g., professional developers). We par-
tially mitigate this by observing each subject longer, strengthening
within-one-subject analyses (Section 3.3.1).

Training. We observe a statistically significant (p < 0.01) ques-
tion type-dependent training/learning effect, which we account for
in our data analysis (Section 4.2.3).

Subject variability. We use multi-level regression analysis, a
well-established method to effectively account for between-subject
heterogeneity (Section 4.2).

Researcher bias. We pre-registered hypotheses and methodol-
ogy, conducted our preliminary analysis with anonymized labels,
and corrected for multiple comparisons (Section 4.1).

Replication. Finally, our explicit replication of a previously-
published [18] non-computing TMS result (the impact of SMA
stimulation on mental rotation, Section 5.1) gives strong confidence
in aspects of interval validity (i.e., applying TMS correctly).

8 RELATED WORK

In this section, we discuss other interventions impacting program-
ming outcomes, contrasting them with TMS.

Neurostimulation represents a different, possibly orthogonal,
mechanism for improving software developer abilities compared to
standard approaches such as pedagogical structures (e.g., transfer
training, tools, gamified or flipped classrooms), environmental fac-
tors and development methodologies at software jobs (e.g., work
from home, Agile/Scrum), and the use of substances in software
workplaces (e.g., Adderall, cannabis).

Pedagogy. Dozens of studies have investigated the benefits of
the flipped classroom model (in which instruction/learning is com-
pleted externally and discussion is done during traditional lecture
time to enforce concepts) in computer science pedagogy [41]. Simi-
larly, gamified learning (in which elements of games, such as leader-
boards or points, are used in class) has been studied to see how
extrinsic rewards can motivate engagement of students [50].

There has been preliminary success with pedagogical interven-
tions involving spatial reasoning and STEM outcomes [8, 20, 92].
Despite positive outcomes, pure spatial reasoning training in en-
gineering or computer science educations has not been widely
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adopted. We believe that a more rigorous understanding of why
spatial reasoning cross-training improves behavioral outcomes, and
its costs and benefits, would make it easier for institutions to adopt.
Work Structure. The structure of offices and work hierarchies
has been an ongoing and evolving topic broadly in the field of
computer science for many decades, especially with the express
goal of improving company or individual programmer productiv-
ity [30]. For example, since the COVID-19 pandemic, working from
home has become more relevant, and a survey of 3,634 software
developers and managers from Microsoft found that 68% perceived
they were just as, or more, productive working from home [40].
Similarly, pair programming, a key component associated with Ag-
ile development and some pedagogical methodologies, has been
linked to higher satisfaction and learning outcomes, fewer bugs,
and better communication between software engineers [6, 84, 101].
Medication. Many individuals program with the aid of psy-
choactive substances, citing enhanced abilities or the alleviation of
symptoms. For example, recent surveys and interviews of 801 and
26 professional programmers (respectively) in software workplaces
who use such substances found that many who use cannabis while
programming do so for enjoyment, but also to enhance creativity
or brainstorming, while many who use stimulant medications do so
for perceived enhancements for focus and specific focus-intensive
software tasks such as debugging [32, 66]. Although many sub-
stances may improve the abilities or health, administering them
at a company level may have serious legal or health impacts (e.g.,
Adderall usage among people not diagnosed with ADHD has been
linked to stress or the pressure to make tight deadlines [26]).
Intervention Summary. In contrast to such traditional inter-
ventions, TMS does not require the use of language, effort on the
part of either a teacher or a student, or much time to use. If TMS
is found to be effective in some capacity for computer science out-
comes, it could be used as a non-pedagogical intervention in tandem
with other instructional, structural, or medical interventions.

9 COSTS AND SUBJECTIVE EXPERIENCE

In this section, we outline the unique costs and considerations we
encountered during our TMS study, emphasizing the differences
from correlative studies that solely employ fMRI or fNIRS.

Recruiting. Unlike fMRI or fNIRS, TMS protocols may preclude
subjects with a history of seizures or anxiety-related disorders, as
well as those reporting a lack of sleep the prior night. However,
TMS does not suffer from fNIRS data quality issues from hair types
(cf. [48]). TMS causal studies require participants to attend multiple
sessions (treatment and control) on different days. Subjectively, we
found the multi-session constraint to be challenging for recruiting.

Time. For both TMS (e.g., applied quickly in advance, lasting
up to an hour) and fMRI/fNIRS (e.g., typically measured over an
hour-long session) the effective interaction duration per session is
similar. Critically, however, TMS is not limited to 60-second stimuli
(unlike fMRI or fNIRS, which use the BOLD signal and are thus
limited by the hemodynamic response function [15]). We used short
stimuli here for comparison to previous work, but future studies
could use more complex programming tasks.

Cost. TMS and fNIRS offer cost advantages over fMRI in terms
of both initial costs and operating costs. An institution with an
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fMRI lab often charges per scan (e.g., $500 per hour [39]); a TMS or
fNIRS machine can typically be used for free if present.

Our base experiment cost was $2,200 ($125 per participant for
reimbursement, $200 for electrodes); we elected to use high-quality
fMRI localization (30 scan-minutes per participant, an additional
$4,000). Future work may investigate the necessity of fMRI-quality
localization for programming-related TMS treatments.

Training. Each research team member completed over 20 hours
of training before being authorized to operate the TMS machine.

IRB. An Institutional Review Board or Ethics Board handles
human study research at our institution. Depending on the review
board’s experience with neuroimaging or stimulation techniques,
getting approval for a study with fMRI or TMS can require a sub-
stantial amount of time and effort. For reference, this TMS study
involved a 24-page IRB application plus a 14-page consent form.
Using fMRI to localize brain regions required an additional 4-page
data protection and privacy plan (in the United States, brain scans
are HIPAA-protected). From our first submission to approval, the
IRB process took four months.

Lessons Learned. Subjectively, the most difficult aspects of the
experiment were training and participant scheduling. Conducting
thresholding sessions under time constraints and manually tar-
geting the hand-held TMS magnetic coil required practice. Our
multi-visit protocol amplified scheduling intersection challenges
between researcher, TMS equipment and subject availability.

10 CONCLUSION

To the best of our knowledge, this paper is the first exploration of
the causal relationship between software engineering and neural
activity via Transcranial Magnetic Stimulation (TMS), a noninvasive
technique well-established in the literature. Previous correlative
findings have revealed intriguing connections between specific
neural regions and programming tasks. These findings laid the
foundation for enhanced understandings of expertise, pedagogy,
and retraining. However, the absence of studies confirming the
causal nature of these relationships has constrained their practical
applications and interpretations in the real world.

We address causality by applying TMS treatment to 16 partici-
pants, directly targeting two indicative brain regions (M1 and SMA)
known to exhibit correlative connections to programming tasks. We
compare stimulation effects to participant performance on comput-
ing tasks, including data structure manipulation, mental rotation,
and coding comprehension. We followed established, state-of-the-
art TMS practices that were overseen by independent TMS experts.
To mitigate bias, we used a special active control, pre-registered
our hypothesis, conducted aspects of the experiment and analysis
blinded, and correct for multiple comparisons.

We replicate prior psychology results that TMS impacts
mental rotation (Section 5.1, p < 0.02) — supporting replication in
science and giving confidence that we are applying TMS correctly.
We find no evidence of a simple causal relationship: disrupting
activity in M1 or SMA does not uniformly reduce outcomes on
computing tasks (Section 5.2, p > 0.22) — results that do not agree
with multiple previously-established correlations [48, 56, 70, 86]
and suggest that interpreting cognition for CS is complex (cf. [53]).
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Most critically, we find that TMS has an effect on response
time for data structure and code comprehension tasks. TMS

accounts for 2.2% of the variance in observed outcomes, a statistically-

significant effect (Section 5.3). This provides evidence that TMS

(neurostimulation) can alter outcomes for programming tasks.

Neurostimulation is a distinct approach from traditional pedagogy

(e.g.,

it does not require a shared language, or indeed any commu-

nication at all) and has produced positive outcomes in computing-
related areas (e.g., creativity, mathematics, etc., Section 2.3). Now
that TMS has been demonstrated to impact programming outcomes,
we look forward to future work investigating, and making real, the
potential benefits of neurostimulation for software engineering.
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