High Expectations: An Observational Study of
Programming and Cannabis Intoxication

Wenxin He
wenxinhe@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Westley Weimer
weimerw@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

ABSTRACT

Anecdotal evidence of cannabis use by professional programmers
abounds. Recent studies have found that some professionals regu-
larly use cannabis while programming, even for work-related tasks.
However, accounts of the impacts of cannabis on programming vary
widely and are often contradictory. For example, some program-
mers claim that it impairs their ability to generate correct solutions,
while others claim it enhances creativity and focus. There remains a
need for an empirical understanding of the true impacts of cannabis
on programming. This paper presents the first controlled observa-
tional study of cannabis’s effects on programming ability. Based
on a within-subjects design with over 70 participants, we find that,
at ecologically valid dosages, cannabis significantly impairs pro-
gramming performance. Programs implemented while high
contain more bugs and take longer to write (p < 0.05) — a
small to medium effect (0.22 < d < 0.44). We also did not find
any evidence that high programmers generate more divergent so-
lutions. However, programmers can accurately assess differences
in their programming performance (r = 0.59), even when under
the influence of cannabis. We hope that this research will facili-
tate evidence-based policies and help developers make informed
decisions regarding cannabis use while programming.

CCS CONCEPTS

« Social and professional topics — User characteristics; Govern-
mental regulations; Testing, certification and licensing; Employment
issues; « Human-centered computing — User studies; « Software
and its engineering — Software development techniques.

KEYWORDS

programming preferences, cannabis, controlled user study, drug
policy, preregistered hypotheses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3639145

Manasvi Parikh
manasvi@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

Madeline Endres

endremad@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

ACM Reference Format:

Wenxin He, Manasvi Parikh, Westley Weimer, and Madeline Endres. 2024.
High Expectations: An Observational Study of Programming and Cannabis
Intoxication. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE "24), April 14-20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639145

1 INTRODUCTION

Software developers commonly use psychoactive substances while
programming [15], a behavior at odds with many company drug and
hiring policies [35]. Cannabis sativa (or “cannabis”) is the world’s
most common illicit substance, used by more than 192 million peo-
ple in 2018 [48] and representing a market of 20.5 billion USD [53].
Claims, biases, and folk wisdom about the actual effects of cannabis
intoxication on programming do not agree. This lack of a firm un-
derstanding prevents individuals and companies alike from making
informed policy decisions and accurately balancing risk and reward.

A 2022 study of 800 programmers (including 450 full-time de-
velopers) found that 35% had used cannabis while programming,
and that 18% did so at least once per month [15]. Motivations
included enjoyment, thinking of more creative programming solu-
tions, enhancing brainstorming, and improving focus [15, Tab. 3].
A 2023 study interviewing 25 professional programmers who used
psychoactive substances reported positive views on the impact of
cannabis on brainstorming, neutral views on coding and testing,
and negative views on debugging, design, and documentation [35,
Tab. IIT]. Psychoactive substances including cannabis are seen as
part of the historical tradition of software [32], with advocates
touting focus [4] and creativity [51] benefits [50].

In broader contexts, views may be more negative. Cannabis in-
toxication can impair decision-making accuracy and consistency,
resulting in losses being under-estimated (“treating each loss as a
constant and minor negative outcome regardless of the size of the
loss”) [20]. It can also impair motor control and reaction times.
For example, “acute cannabis intoxication is associated with a
statistically significant increase in motor vehicle crash risk” [41].
These more-negative views often inform both general and software-
specific regulation. Anti-cannabis hiring and retention policies are
prevalent in software companies (e.g., [26, pp. 12-13] and [9, p. 12])
and almost one-third of developers reported taking a drug test for a
programming job [15, Sec. 6]. However, questions have been raised


https://doi.org/10.1145/3597503.3639145
https://doi.org/10.1145/3597503.3639145

ICSE °24, April 14-20, 2024, Lisbon, Portugal

about the efficacy of such policies [35, Sec. IX.B] and whether they
are either needed or beneficial [27] in a modern context.

Understanding the impacts of cannabis intoxication on particular
aspects of software development would help fill this knowledge gap,
allowing for evidence-based corporate policies and informed deci-
sions by developers regarding when and if to use cannabis while
programming. An effective understanding would be based on an
indicative sample size, ecologically-valid conditions and both quan-
titative and qualitative aspects of produced software. In addition,
any such study must be conducted ethically, given the rapidly-
changing legal landscape around cannabis use.

We conducted the first rigorous observational study of the ef-
fects of cannabis intoxication on programming. We assessed n = 74
participants from multiple American metropolitan areas across four
states and used pre-registered hypotheses to mitigate researcher bias.
Each participant completed two sessions on different days, one
while sober and one while using cannabis, in a randomly-assigned
order. This design permits both within-subject and between-subjects
comparisons. In each session, participants completed both short
targeted programming tasks as well as multiple LeetCode [2] prob-
lems using a standard development environment (Visual Studio)
on their personal computers. In the cannabis condition, partici-
pants were asked to use the amount they would normally use while
programming, an ecologically-valid context that allows us to learn
actionable insights. Our contributions are:

(1) The first rigorous observational study of programming in both
sober and cannabis-intoxicated conditions.

(2) We find that ecologically-valid cannabis intoxication has a
small to medium effect on program correctness: programs
written by cannabis-intoxicated programmers exhibit more
bugs, failing 10% more test cases, on average (p < 0.05).

(3) Cannabis-intoxicated programmers take more time to write
non-trivial functions than do sober programmers (11% more
on time average, p = 0.39).

(4) Cannabis-intoxicated programmers exhibit different typing pat-
terns, including deleting and rewriting code more frequently
and pausing for longer without typing (p < 0.003, d > 0.35).

(5) Despite anecdotes of cannabis improving creativity, we observe
no evidence that cannabis-intoxicated programmers make dif-
ferent algorithmic or stylistic programming choices.

(6) Cannabis-using programmers accurately recognize their pro-
gramming performance, even when intoxicated, r = 0.59.

The low impact of cannabis compared to individual differences,
and the ability of developers to recognize cannabis impairment,
suggest caution when crafting anti-cannabis policies (see Section 7).

To the best of our knowledge, this is the first study of how of
cannabis intoxication impacts programming. We believe aspects of
our design (pre-registered hypotheses, ecologically-valid settings,
broad participant pool, etc.) make it generalizable and useful for
informing policies and individual developer decisions surrounding
cannabis. We make our (de-identified) replication package available,
including raw data, stimuli, analysis scripts, and design documents.

2 BACKGROUND AND RELATED WORK

In this section we briefly present related work on cannabis intoxi-
cation, computing-related cannabis use, and software creativity.

Trovato and Tobin, et al.

Impacts of Cannabis Intoxication. Cannabis is well-known
for its mind-altering effects. In particular, acute cannabis use (espe-
cially for non-heavy users) can impair various cognitive processes
such as memory and learning, attention control, fine motor control,
and emotion processing [29]. The use of cannabis in medical con-
texts (e.g., to treat chronic pain) has been examined in the literature,
including via observational studies [5]; we focus here on cognitive
aspects such as memory, fine motor control, decision-making, and
creativity [20] that are related to programming [46].

Acute cannabis use impairs memory and learning as well in-
hibiting motor responses and reaction times [6, 29]. These cog-
nitive processes are used while programming (e.g., during code
comprehension tasks [46] or while typing code [30]). The impact
of cannabis on other programming-related cognitive processes is
less understood. Recent reviews report insufficient evidence of how
cannabis impairs working memory or decision making [6, 29], both
essential to software [11, 38, 46]. Similarly, cannabis’s impact on cre-
ativity is the subject of contradictory claims: For example, LaFrance
et al. found that cannabis users exhibit higher creativity due to
increased openness to experiences [31] while Kowal et al. found
that cannabis impairs aspects of creativity at high dosages [28].
These conflicting claims preclude using a “bottom up” approach
to infer the impact of cannabis on programming by considering
its impact on relevant cognitive processes. We instead use a “top
down” approach, studying the relationship between cannabis use
and programming performance directly in a real-world context.

Cannabis and Programming. Endres et al. surveyed 800 de-
velopers. Their results provide a general context of the landscape
of cannabis use in software engineering [15]. They report that over
one-third of their sample had used cannabis while programming
and over one-sixth did so at least once per month. They also re-
ported on cannabis use during work-related tasks. Key motivations
were not medicinal but instead focused on “perceived enhancement”
to software development skills. Newman et al. conducted interviews
of 26 developers, identifying themes related to soft skills, social
stigma, and organizational policies [35]. Critically, both of these
prior studies rely on self-reported impacts (e.g., cannabis-using pro-
grammers say that cannabis enhances or hurts their programming).

Software Creativity. Researchers have identified creativity as
important to multiple aspects of software engineering, from re-
quirements elicitation [36] to Agile development [10]. Creativity in
software engineering is often associated with the novelty and effec-
tiveness of the solutions [34] and approaching problems from differ-
ent angles [24]. Models and reviews have identified knowledge [25],
communication [24], happiness [23], or personality [1, 24] as factors
relevant to creativity. Our study looks at divergent method-level
implementation choice as one piece of creativity.

3 EXPERIMENTAL SETUP AND DESIGN

To understand the impact of cannabis intoxication on programming
performance, we conduct a controlled observational study with
74 participants. Eligible participants were at least 21, had used
cannabis in the last year, and had smoked or vaped cannabis before.
We also required Python familiarity and programming experience
comparable to that of a senior undergraduate. We first explain our



High Expectations: An Observational Study of
Programming and Cannabis Intoxication

study design in more detail. Then, in Section 3.2, we describe the
surveys, programming tasks, and metrics used in our experiment.

3.1 Study Design

We had three main design considerations: achieving sufficient sta-
tistical power for our pre-registered hypotheses (see Section 5.1),
balancing ecological validity with experimental control, and maxi-
mizing participant privacy and safety.

Overall Study Design. To maintain statistical power, we use a
within-subjects design. Participants completed a 20-minute ques-
tionnaire with demographics, cannabis usage history, programming
history, and a four-minute training video introducing the study plat-
form. Next, they attended two structurally-identical programming
sessions: one cannabis-intoxicated and one sober. The session or-
der was counterbalanced: participants were randomly assigned the
cannabis-first or sober-first condition (35/71 cannabis first vs. 36/71
sober first). This counterbalanced and within-subject design miti-
gates the impact of individual differences in programming ability,
cannabis tolerance, and session ordering effects in our analysis.

Study Session Structure. All programming sessions lasted 1.5
hours and included two cognitive assessments, a series of short pro-
gramming problems, and three “interview-style” coding questions.
We included cognitive assessments for data validation (see replica-
tion package), short programming problems for controlled observa-
tions of the impact of cannabis on programming, and “interview-
style” coding questions to capture more complex coding algorith-
mic options. The short programming problems permit a controlled
investigation of the impact of cannabis on specific aspects of pro-
gramming while the “interview-style” questions enable a holistic
and ecologically-valid analysis at the expense of statistical power
and experimental control. Section 3.2 details all experimental tasks.

For the short programming problems, participants completed an
online Qualtrics survey, a platform that permits randomization and
timing collection via custom JavaScript. For the “interview-style”
questions, participants wrote and executed code using a browser-
based instance of VSCode (a popular programming text editor)
via a Github Codespace configured to collect keystrokes, termi-
nal/compiler interactions, and program file contents. Participants
were also permitted to search (Google) for help with syntax errors.
This design allowed our programming environment to have higher
ecological validity, while remaining controlled enough to permit
straight-forward statistical analysis. Sessions were conducted re-
motely (via Zoom) and participants were required to screen share.

Cannabis Session Logistics. Participants used cannabis 10-15
minutes before the start of the session, then uploaded pictures of the
product and indicated the amount. Participants were instructed to
consume cannabis via vaping or smoking, rather than by taking an
edible to reduce variability: edibles can have very different effects
than vaping or smoking [7]. We chose vaping based on its popularity
in the the supplemental data from the Endres et al. report [15].

Participants who had used cannabis while programming before
were asked to use the amount they would typically use when pro-
gramming. If they had not, they were asked to use a mild to medium
dosage, consistent with the amount they use when not program-
ming. Allowing participants to choose the amount of cannabis to
consume is different than the approach taken by many studies of

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

cannabis use on behavior or cognition (cf. [12]). However, allowing
participants to self-select their usual cannabis dosage improves
ecological validity. Informally, in this study we are not interested
in learning the amount of impairment per milligram of cannabis,
but instead in the amount of impairment an average cannabis-
intoxicated programmer faces while programming. We view the
latter as significantly more actionable (e.g., to managers).

Ethical Considerations. The varying legality of cannabis re-
quires special care in study design. Throughout the design and
implementation of this study, we worked with our IRB (ethical
review board) to ensure participant privacy and safety. Additional
safety precautions were incorporated into our protocol including
requiring that participants have used cannabis in the last year,
and participating using a personally-owned computer (e.g., not a
company-distributed laptop that may have tracking software) from
a location where they would not have to travel for several hours.

Ethical research practice also influenced our selection of a remote
study design, rather than an in-person lab study. Design decisions
such as directly administering specific amounts of cannabis at a
central location or analyzing blood samples to assess intoxication
were considered and rejected given our focus on ecological validity,
as well as for reasons related to logistics and privacy.

3.2 Surveys and Stimuli: Content and Metrics

We describe our survey instruments, programming tasks, and met-
rics. All surveys and stimuli are in our replication package.’

3.2.1 Demographics. We collected demographics such as gender,
age, and employment status. We also asked programming experi-
ence, cannabis usage history, and prior experiences using cannabis
while programming. Questions about programming experience and
prior cannabis use while programming were adapted from a pub-
lished survey [15] to admit comparison with prior work. For general
cannabis usage, we used the validated Daily Sessions, Frequency, Age
of Onset, and Quantity of Cannabis Use Inventory (DFAQ-CU) [13].

3.2.2  Short Programming Problem Stimuli. Each session included
a series of short programming questions. We adapted stimuli from
the programming comprehension literature, specifically those that
use neuroimaging [17, 30]. We chose to do this because such stimuli
are explicitly designed to study targeted programming aspects in a
controlled manner while still being completed quickly. We included
three types of programming tasks: Boolean questions, code-tracing
questions, and code-writing questions (see Figure 1 for examples).
The Boolean and code-tracing stimuli were adapted from a study of
novice programmer cognition [17], while the code-writing stimuli
were adapted from a study of code writing and prose writing [30].

Consistent with their design and use in program comprehension
studies, each stimulus was timed: participants had at most 30 sec-
onds for each Boolean problem, 45 seconds for each code-tracing
problem, and 90 seconds for each code-writing problem. In each ses-
sion, each participant completed six problems from each sub-type
that were randomly sampled from our corpus.

!The replication package can be found through the OSF pre-registration (available
here: https://osf.io/g6fds). A living repository for the project can be found on GitHub
at https://github.com/CelloCorgi/CannabisObservationalStudy.


https://osf.io/g6fds
https://github.com/CelloCorgi/CannabisObservationalStudy

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Please click letter which best the function call below:

def func
return I= and (not or not
<
True False
A B

(a) Boolean problem (answer is False)

Please type the output of the function call below:

def func

for i in
+=

(b) Code-tracing problem (answer is 12)

Implement a function containsDuplicate that accepts a list of integers and returns true
if it contains a duplicate element, and false otherwise.

(c) Code writing problem

Figure 1: Example short programming stimuli, adapted from
the program comprehension literature.

Metrics and Scoring. Boolean problems were graded automati-
cally. Code-tracing and code-writing problems were assessed man-
ually by marking responses as either correct (full score), partially
correct (half score), or incorrect (zero). Manual assessment of re-
sponses was done without knowing if the response was produced
while high or sober. Our full rubric is available in our replication
package. Graded responses were aggregated into percent-correct
values per sub-type per programming session for use in analysis.

3.2.3  “Programming Interview” Style Stimuli. Each session included
three “Programming Interview” problems. These were taken di-
rectly from LeetCode, a popular platform for practicing technical
interview skills. Performance on these coding challenges has been
found to reflect a software engineer’s fundamental computer sci-
ence knowledge, ability to find efficient and scalable algorithms
for unknown problems, and skill at testing or debugging a short
piece of code [33]. Each problem consisted of a natural language
specification, a function stub, and 2-3 basic tests. They admit imple-
mentation in a file where programmers can type, run, and edit code.
We recorded the state of each program every 15 seconds, along
with all keystrokes and terminal interactions. Figure 2 shows an
example of the study platform and an indicative stimulus.

To choose our stimuli, we first selected 20 potential problems
labeled “easy” or “medium” on LeetCode. We avoided those marked
“hard” due to the time constraints imposed by our study design.
We categorized these problems into three groups by their primary
data structure: a 1D-array, 2D-array, or a recursive data structure
(list or tree). Through a series of pilot experiments, we selected
six problems (two of each type) that were non-trivial but could
be completed in the available time. In each session, participants
completed one each of the two 1D-array, recursive, and 2D-array
problems. A participant never saw the same problem twice. Problem
order was randomized across sessions and study conditions to
minimize between-problem variance and learning effect impacts.
We partially controlled the difficulty of the problem pairs using the

Trovato and Tobin, et al.

@ easylpy U X

stimuli > problemsetA > & easyl.py

1 class Solution:

2 """ You are given a string ‘s’ consisting of lowercase English letters. A duplicate
removal consists of choosing two adjacent and equal letters and removing them. We
repeatedly make duplicate removals on ‘s’ until we no longer can. Return the final
string after all such duplicate removals have been made. It can be proven that the

% o © |

answer is unique. Full stimulus has 10 Examples and input constraints here """

def removeDuplicates(self, s: str) -> str:
Participant implementation goes here

28

Duplicates(self):
est 1======\n")
Solution()
olution. removeDuplicates("abbaca")

@ 1 answerl

PROBLEMS  OUTPUT  DEBUGCONSOLE  TERMINAL PORTS @)  COMMENTS g bosh +

{g} [2023/07/29-02:03:18)

EXTII i main O ®0AO WO

-+ /workspaces/CodeSpaceTest (main x) $ [

Ln21,Col5 Spaces:4 UTF-8 CRLF Python

Figure 2: Example “interview-style” programming stimulus,
presented in the study platform (shortened for space).

LeetCode problem difficulty and solve rate. For example, the two 1D-
array and two recursive problems were “easy” on LeetCode, while
the two 2D-array problems were marked as “medium”. Participants
had 15 minutes for each easy problem (1D-array, recursive) and 20
minutes for the medium problem (2D-array).

Automated Metrics and Scoring. We assessed correctness via
held-out test suites. As LeetCode does not publish its own hidden
tests, we constructed our own held-out correctness tests. The number
of correctness test cases ranged from 24 to 34 per problem. All
held-out test suites achieved full branch coverage on the published
LeetCode solution. We analyzed the maximum correctness score
across all saved file versions for a given solution. We use the best
score rather than the final score because in cases where a participant
ran out of time, the last score often is much lower because the
participant was mid-edit. We also made 11 additional efficiency tests
per problem. These consisted of inputs of increasing size (including
very large inputs), and were run separately from the correctness
tests to ascertain the run-time efficiency of correct solutions.

Manual Annotation: We qualitatively analyzed the 1D-array
problem solutions to permit a nuanced analysis of design and code
style factors that may differentiate high and sober programmers.
We annotate algorithmic method choices (e.g., brute force, dynamic
programming, etc.), and code style features (e.g., comments, helper
functions, etc.). To determine algorithmic method categories, one
author manually clustered the most up-voted Python solutions on
LeetCode. This initial set was validated by another author. A third
author manually assigned participant solutions into these clusters.
Solutions about which the annotator was unsure were shown to
the others and final categorizations were confirmed via consensus.

Problem Difficulty. We validated that the two alternate prob-
lems in each pairing had similar difficulties for our population,
regardless of LeetCode labels, as a potential source of bias. We used
a within-subjects t-test of participant scores. For the 1D-array and
recursive pairings, we find no significant differences in difficulty
(p = 0.82, 0.66 respectively). For the 2D-array problems, however,
there is a significant difference in difficulty (68% vs 34% on average,
p < 0.00001). We consider this discrepancy when interpreting our
results for the 2D-array problems in Sections 6.1 and 6.2.



High Expectations: An Observational Study of
Programming and Cannabis Intoxication

Table 1: Demographics and experience for n = 74 participants.

Gender
Man 53 (72%)
Woman 15 (20%)
Non-binary 6 (8%)
Age and Programming Experience (Average, (Min—Max))
Age 24, (20-49)
Programming experience (years) 5,2 (1-30)
Has 1+ years of professional programming experience 48 (65%)

Computing-related employment status (could select multiple)

Currently Employed at a CS-related job 28 (38%)
Undergraduate Student in CS related field 37 (50%)
Graduate Student in CS-related field 12 (16%)
Unemployed or N/A 3 (4%)

4 PARTICIPANT OVERVIEW

We overview our recruitment process and then describe the demo-
graphics, programming background, and cannabis usage history of
our final n = 74 participants to contextualize our results.

4.1 Recruitment Process

Participants were recruited via flyers posted around four American
metropolitan areas (San Francisco Bay Area, Ann Arbor, Seattle,
and New Haven). Each area is in a US state where recreational
cannabis is legal (California, Michigan, Washington, and Connecti-
cut). Within these areas, posters were primarily placed near the of-
fices of technology companies and on university campuses. Prospec-
tive participants were directed to an online pre-screening form for
eligibility requirements (Section 3.1). This verification included
eight programming questions to ensure sufficient Python perfor-
mance. Of the 640 who completed the pre-screening, 247 obtained
the perfect score required to participate. Participants were con-
tacted in batches on a first-come-first-serve basis, with preference
to those with more professional programming experience. In total,
we sent 205/247 invitation emails before closing recruitment.

Of the 205 invited, 85/205 finished the initial survey and sched-
uled programming sessions, a response rate of 42%. 74 attended at
least one session and 71 attended both, a study retention rate of
84%. This overall rate aligns with previous software engineering
studies with multiple sessions [16, 19]. Upon completion of the
study, participants were compensated with an 80 USD gift-card to
the company of their choice. All data collection occurred in 2023.

4.2 Population Contextualization

To better contextualize our results, we now describe the demograph-
ics, programming experiences, and cannabis use histories of our
population. A summary of these numbers is available in Table 1.
Participants ranged in age from 20 to 49 (average 24), with 72%
men, 15% women, and 8% non-binary. Our population had a mix of
students and full time professional developers. About half (37/74)
were undergraduates in a computing field. The remainder were
either graduate students (16%, 12/74) or professional programmers

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

(38%, 28/74). A few reported both student status and current pro-
gramming employment. This split between students and profession-
als is consistent with the locations we put up recruitment posters.
Participants reported a range of programming experiences. While
all had at least one year of programming experience (a requirement
to participate), eight participants had over 10 years of experience,
and the median was 5.2 As for professional programming experi-
ence, participants ranged between none and over 20 years. The ma-
jority of participants in our sample had professional programming
experience (94%), with the median participant reporting between 1
and 5 years: 65% had at least one year of professional experience.
Of those who had at least one year, the most common job titles
reported were “software engineer” or “software developer”.
Cannabis Usage History. All eligible participants had used
cannabis in the last year. Specific usage levels varied substantially,
ranging from once a year to more than once every day. The median
participant reported using twice a week. In addition, the majority
of our participants had experience programming while high (66%,
49/74). The frequency of this use ranged from under once a year to
five or more days a week. The wide array of cannabis usage histories,
both with programming and without, allows us to systematically
investigate if the magnitude of prior cannabis use mediates the
impacts of cannabis intoxication on programming performance.

5 RESEARCH QUESTIONS AND ANALYSIS

We structure our analysis in two parts: a primary hypothesis-driven
analysis and a secondary exploratory analysis. The primary hy-
potheses and analysis plan was preregistered to mitigate biases and
increase confidence in our results. However, as investigating the
impact of cannabis on programming is relatively novel, we perform
additional exploratory analysis to glean insights for further study.
In the rest of this section, we present our research questions for
both analysis parts, and outline our statistical methods.

5.1 Primary Analysis: Pre-registered Questions

Following more recent best practices in both software engineering
(e.g., the “Registered Reports” track of Mining Software Reposito-
ries [45]) and psychology and the social sciences (e.g., [47]), we
pre-registered our hypotheses before conducting our analysis.

In pre-registration, the “research rationale, hypotheses, design
and analytic strategy” are submitted before beginning the study [22].
As a result, biases associated with researchers choosing which re-
sults to present after the fact may be mitigated: “pre-registration can
prevent or suppress HARKing, p-hacking, and cherry picking since
hypotheses and analytical methods have already been declared be-
fore experiments are performed” [54]. Similarly, pre-registration
may mean that “researchers will not be motivated to engage in
practices that increase the likelihood of making a type I error” [22].

For this study, we pre-registered four research questions and as-
sociated hypotheses with the Open Science Framework (OSF), along
with our data collection strategy and statistical analysis methods:>

2 Estimate: Years of experiences was reported in ranges (e.g., 1-2, 3-5, 6-10, etc.)
30SF pre-registration is available here: https://osf.io/g6fds. We note that in the
pre-registration, RQ3 mentions creativity instead of program method divergence. As
suggested by our reviewers, we change the name in this paper to better match our
methods.


https://osf.io/g6fds

ICSE °24, April 14-20, 2024, Lisbon, Portugal

¢ RQ1—Program Correctness: How does cannabis intoxication
while programming impact program correctness?

— Hypothesis: Programs will be less correct when written by
cannabis-intoxicated programmers.

e RQ2—Program Speed: How does cannabis intoxication while
programming impact programming speed?

— Hypothesis: Cannabis-intoxicated programmers will take longer
to write programs.

e RQ3—Program Method Divergence: Does cannabis use in-
fluence programmer algorithmic method choice?

— Hypothesis 1: Correct programs by high participants will run
slower than those by sober participants (i.e. are less efficient
or have higher algorithmic complexity).*

— Hypothesis 2: Solutions to free-form programming problems
by cannabis-intoxicated programmers will exhibit greater
method choice divergence and diversity.

¢ RQ4—Cannabis Use History: Does cannabis usage history
mediate intoxication’s on programming outcomes?

— Hypothesis: The impact of cannabis use while programming
will be lessened for heavy vs. moderate users.

5.2 Exploratory Analysis
We also consider two exploratory research questions:

e E-RQ1—Code Style: Does cannabis intoxication impact stylis-
tic code properties (e.g., code comments, etc.)?

o E-RQ2—Self Perception: Are programmers able to accurately
assess how cannabis impacts programming performance?

5.3 Statistical Methods

Our analysis was primarily conducted in a Python Jupyter Notebook
using Pandas [52]. Some analyses, especially those informed by
data visualization, were done using Excel. For statistical tests, we
primarily used the SciPy [49] and Statsmodels [44] libraries.

Significance. We consider results significant if p < 0.05. When
testing for a significant difference between sober and cannabis-
intoxicated programming using continuous variables (e.g., percent
correctness scores or response time such as in RQ1 and RQ2), we
use a paired samples ¢-test unless otherwise noted. Assumptions of
normality are confirmed through inspection of histograms. While
we primarily use paired tests (as is appropriate with our within-
subjects design), in some cases (e.g., missing data, etc.) we use a
non-paired test and note the specific test used in the text.

For categorical values (e.g., program method choice in RQ3), we
use a y2-test. For the difference between two binary variables (such
as if a solution has comments or not in E-RQ1), we use the n-1
x2-test (i.e., the proportions z-test) [8]. We treat the responses to
Likert questions (e.g., self-perception of cannabis impact in E-RQ2)
as continuous variables.’ The Student’s ¢-test is thus appropriate.

Multiple Comparisons. We investigate multiple research ques-
tions and conduct multiple statistical tests per research question.
To avoid fishing or p-hacking, we pre-registered our primary hy-
potheses and analysis plan and report results for each. Within each

4In our pre-registered hypotheses, this was listed under RQ2. We present it under RQ3
for thematic and narrative clarity.

5 Although they are ordered categorical variables and normality cannot be assumed,
with large samples, parametric tests are sufficiently robust for analysis [37].

Trovato and Tobin, et al.

(a) Code produced by participant when sober

1 def is_sorted(integers):

2 for i in range(len(integers)-1):
3 if integers[i] > integers[i+1]:
4 return False

5 return True

(b) Code from same participant when intoxicated

1 def is_sorted(input_list):
2 return helper(None, input_list)

4+ def helper(min_val, input_list):

5 if len(input_list) == @: return True

6 if min_val > input_list[@]: return False

7 return helper(input_list[@],
input_list[1:])

Figure 3: Indicative example comparing code produced while
high vs. sober by the same participant for the same problem.
The intoxicated code is more complicated and contains a bug.

research question, we correct for multiple comparisons for all tests
used to accept or reject the null hypothesis. We use Benjamini-
Hochberg Correction, with a false discovery threshold of g = 0.05:
unless stated otherwise, all significant results pass this threshold.

Effect Size. We use Cohen’s d (with pooled standard deviation)
to assess the size of differences tested by ¢-tests. We consider d > 0.2
a small effect, and values above 0.5 a medium effect. For correlations,
we use Pearson’s r, with 0.1 < r < 0.3 a weak correlation, 0.3 <
r < 0.5 a moderate correlation and 0.5 < r a strong correlation.

6 RESULTS

We present the results of our pre-registered (RQ1-RQ4 Section 5.1)
and exploratory (E-RQ1, E-RQ2, Section 5.2) questions. Section 3.2
details experimental tasks, including the metrics used. A discussion
of the statistical our statistical methods is in Section 5.3.

6.1 RQ1 — Impacts on Program Correctness

We first investigate how programming while intoxicated impacts
program correctness. We do this by using paired t-tests to com-
pare sober vs. cannabis session percent correctness for each short
program comprehension task type and “interview style” coding
question. This results in six total significance tests.

At a high level, we find strong evidence supporting our hypoth-
esis that cannabis-intoxicated written programs are less correct.
For all correctness score comparisons, participants’ cannabis cor-
rectness scores were lower, on average, than sober scores. For four
out of the six comparisons, this difference was statistically sig-
nificant (0.0005 < p < 0.05) with small to small-medium effect
(0.28 < d < 0.44). Table 2 summarizes our top-level results.

Short Programming Problems. Participants completed sev-
eral Boolean logic problems, code-tracing problems, and code-
writing problems during each session. For the Boolean task, we



High Expectations: An Observational Study of
Programming and Cannabis Intoxication

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 2: The impact of cannabis intoxication on programming correctness (RQ1) and speed (RQ2). All significance tests are paired
t-tests, while effect size calculations use Cohen’s d. Cells that are bold and highlighted in green are those differences that are significant with
Benjamini-Hochberg correction (p< 0.05, g=0.05). Cells in italics and highlighted in yellow indicate a trend that did not reach significance.
Notice that all differences, even those that did not reach significant, indicate decreased performance while high: cannabis-intoxicated

programmers take more time to write more incorrect programs.

Sober High Diff

p BH-p

d | Sober High Diff p BH-p d

RQ1: Short Programming Problems, Correctness Scores

‘ RQ2: Average Stimulus Time (in seconds)

Boolean 81.5% 81.0% -0.5%
Code-tracing 62.3% 52.1% | -10.2%
Code-writing 56.9% 46.4% | -10.6%

0.846  0.846 0.03 14.2 147 +05 0310 0465 0.10
<0.001  0.003 0.42 31.7 321 +04 0.656 0.656 0.06
<0.001  0.003 0.44 67.4 704  +3.0 0.065 0.130  0.23

RQ1: “Programming Interview” Problems, Correctness Scores

‘ RQ2: Average Overall Time (in min)

Problem 1: Strings and 1D arrays 65.9% 56.4% | -9.5%
Problem 2: Recursive Lists and Trees ~ 48.5% 34.5% | -14.0%
Problem 3: 2D-arrays 53.9% 484%  -5.5%

0.033  0.049 0.28 9.7 11.1 | +14 0.012 0.039 0.32
0.012  0.024 0.35 11.8 13.0 | #1.2 0.013 0.039 0.33
0.383  0.460 0.15 16.2 16.8 +0.6 0.500 0.656 0.11

do not find evidence of cannabis intoxication impairing perfor-
mance (p = 0.85). However, for both the code-tracing task and
the code-writing task, we find that cannabis intoxication has a sig-
nificant negative impact on performance (p = 0.0009, p = 0.0005
respectively). For both of these tasks, the negative impact was of a
small-medium effect (d = 0.42, d = 0.44). To put this in perspective,
correctness scores were, on average, 10% lower when intoxicated
(52% vs. 62% for code-tracing and 46% vs. 57% for code-writing).
Cannabis impairment at ecologically-valid levels can have a nega-
tive impact on two fundamental software development tasks: code
reading via tracing and code writing. Additionally, the presence of
an effect for the two more cognitively-demanding tasks, but not for
the simpler Boolean task, may indicate that cannabis intoxication
impacts scale with task complexity; if so, this trend could relate to
known effects of cannabis on working memory [29].

To understand the factors driving this decreased performance, we
perform an informal qualitative analysis of the types of errors that
cannabis-intoxicated programmers are likely to make on the code-
tracing and code-writing tasks. We observe that high programmers
often complicate their solutions and add extraneous conditionals
while still missing edge cases. Figure 3 shows an indicative example:
code produced by the same participant for the same problem (on
different days) while high and sober. The code produced while
intoxicated features a more complicated structure (recursion via a
helper function) as well as more opportunities for simple mistakes
(e.g., three indexing operations vs. two, two conditional branches
vs. one, etc.). The intoxicated solution contains one such error,
comparing None with a number, which raises a TypeError.

“Interview style” Problems. While the short problems high-
light the impact of cannabis on specific programming aspects, for a
more holistic understanding we consider the three longer “interview
style” problems. Participants never completed the same interview
problem twice: problems were paired and counterbalanced across
sessions by algorithm type and difficulty to permit within-subjects
analysis. The first problem always involved 1D-arrays, the second
recursive trees or lists, and the third 2D-arrays.

We find that cannabis significantly impaired correctness for
the 1D-array problems and recursive problems. For the 1D-array
problems, participants passed 10% fewer correctness tests in the

cannabis-intoxicated session than in the sober session (56% vs 65%,
p =0.033,d = 0.28). For the recursive problems, participants passed
14% fewer correctness tests in the cannabis-intoxicated session than
in the sober session (34% vs. 48%, p = 0.012,d = 0.35).

For the 2D-array problems, while participants passed 6% fewer
correctness tests in the cannabis session, this trend did not rise to
the level of significance (48% vs 54%, p = 0.383,d = 0.15). We note,
however, that unlike the 1D-array and recursive problems, the two
2D-array problems that we chose were not of equivalent difficulty
for our population (Section 3.2.3). This confound may explain the
lack of an observed significant difference on this problem pair.

In our pre-registered analysis plan, we stated that “The null hy-
pothesis will be rejected if high programmers have lower scores
on the majority of interview-style® problems when high” As we
found a significant difference in 2/3 interview-style problems, we
reject the null hypothesis and conclude that cannabis intoxication
has a significant negative effect on program correctness. Specifi-
cally, this result shows that the impairment we observed on the
controlled short programming tasks persists when implementing
more complicated functions. We discuss implications in Section 7.

We find support for our hypothesis that cannabis use de-
creases program correctness with a small-medium effect
(0.0005 < p < 0.05,0.28 < d < 0.44, 10-14% fewer passed
tests). Cannabis impairs writing and tracing through programs.

6.2 RQ2 —Impacts on Programming Speed

We next investigate the impact of cannabis on programming speed.
We hypothesized that cannabis-intoxicated people will program
more slowly. For the short programming problems, we use a paired
t-test to compare the average stimulus completion time per task
type (Boolean, code-tracing, code-writing) per condition (sober or
intoxicated). For the “interview-style” questions, we compare each
problem type’s total completion time. Our results are in Table 2.
Short Programming Problems. We find no significant evi-
dence that cannabis intoxication impacts programming time for
simpler programming tasks. For the code-writing task (the most

®The original references LeetCode explicitly. We use interview-style in this paper.



ICSE °24, April 14-20, 2024, Lisbon, Portugal

complicated of the three), we observe a trend toward significance
with task completion taking longer when intoxicated with small
effect (p = 0.065, d = 0.23). However, this difference neither reaches
significance nor passes our multiple comparison threshold.

“Interview Style” Problems. In contrast, we do find a signif-
icant programming speed difference for 2/3 of the more complex
“Interview style” problems. For the 1D-array problems, high partici-
pants spent an average of 84 more seconds than sober participants
(11.1 minutes vs. 9.7 minutes, p = 0.01,d = 0.32). For the recursive
problems, high participants spent an average of 83 more seconds
than sober participants (13.0 minutes vs. 11.8 minutes, p = 0.01,
d = 0.33). We do not observe a significant difference between
completion times for the 2D-array problems. However, as with
correctness (Section 6.1), this lack of result may be attributable to
uneven difficulty matching for this problem pair (Section 3.2.3).

Why Are Programmers Slower? We investigate the factors
driving the difference for the “interview style” questions: are intox-
icated programmers slower because they physically type slower,
because they make more typing corrections, or because they have
less “active typing time” (time spent not actively programming, but
rather thinking or searching online for help)?

We find that all three factors contribute! We compared par-
ticipants’ overall typing speed in both sessions using a paired ¢-
test. Sober participants typed 6 more characters per minute than
cannabis-intoxicated participants on average (84 chars/min vs. 90
chars/min, p = 0.0004, d = 0.32). We excluded the time when partic-
ipants were not actively typing, defined as any period between two
keystrokes longer than 8s, from the total time used to calculate typ-
ing speed. For corrections, cannabis-intoxicated participants delete
more of their keystrokes than sober participants (20.9% vs. 18.5%,
p = 0.00003,d = 0.35). This result, along with the slower typing
speed, aligns with work on general cannabis impairment, which
finds a negative impact on fine motor control [29]. Finally, we find
that cannabis-intoxicated participants spend more of their total
time not actively typing code (64.9% vs. 60.6%, p = 0.003,d = 0.36).
We visualize these typing-related differences between the sober
and cannabis sessions for a single indicative participant in Figure 4.

For “interview-style” tasks, cannabis use impairs program-
ming speed (p < 0.04, d = 0.3, 10-14% slower). This decrease
in speed is associated with typing slower, deleting more char-
acters, and more time spent not typing.

6.3 RQ3 — Method Choice and Divergence

We now investigate if high and sober programmers choose to solve
the same programming problem in different ways. We consider both
the efficiency of solutions and also the algorithmic method imple-
mented. We have two hypotheses: first, correct programs by high
participants will be less efficient than those of sober participants.
Second, we hypothesize high participants will show more diver-
gence choices in algorithmic or methodological approaches (one
potential aspect of “creativity”), compared to sober participants.
We focus on the “interview-style” problems, as those tasks are
complex enough for a meaningful algorithmic analysis. For RQ3
we analyze all six problems separately (i.e., two 1D-array, two
recursion, and two 2D-array problems). This is done because the

Trovato and Tobin, et al.

1-D Array Problem (Sober)

Recursive Problem (Sober)

100
80 1
60 1
40 4

Keystrokes
Keystrokes
o
3

A RIRIRRNA NN
AAARRRNRNRNRNRNN

IS
S
AUNNNANNNAN NN

V
% % 9% %
% 3 %.%% %%
% 5 Yo% %% 9% %% %
20 2% %99%%% 20 7%3%% 99955 %% %
oL Philtn 2. 00004 o L 24%%% Yt v
0 - 10 15 0 5 10 15

Time(min) Time(min)

1-D Array Problem (High)
120 120

100 100
80
60 1
40 4

Recursive Problem (High)

Keystrokes
Keystrokes
o
3

% 3 Ty B 2
% v% % %%, %% % %
%% % %% P %% %9% %%%% % %07
20 %% %.%%%% 2.7 204 %999%% %555 5% 5 _ 9545 %
5 g %v@éﬁé?é z 259‘%9 2 A éé?g?é; é%:? W‘?,;% %,?5 ,,é
0 5 10 15 0 5 10 15
Time(min) ot Type Delete Time(min)

Figure 4: Histograms with typed characters (dark blue with
lines) and deletions (orange) over time for the same partici-
pant while sober and high. The high condition features longer
pauses and more deletions. The participant also had a higher max-
imum typing speed sober (120 keystrokes in 30 seconds vs. only
65 while high). This participant finished both problems early sober
(noted by the green box) but ran out of time when high.

running times of difficulty-paired problems may vary significantly.
For example, for the 1D-array problem type, one instance features a
1D-array as a Python list while the other uses a Python string. While
conceptually similar, Python treats these very differently from an
efficiency standpoint (e.g., list instances are mutable while strings
are not). The statistical comparisons in this research question thus
use non-paired tests unless otherwise noted.

Program Efficiency. We measure the efficiency of correct solu-
tions on very large program inputs (Section 3.2.3, average of three
trials). All program running times, were generated using the same
multi-core Linux server and were run sequentially. Despite gener-
ous timeouts for the efficiency tests, some particularly-inefficient
correct solutions failed to terminate for our biggest inputs. For these
problems, we assign them our maximum timeout of 60 seconds.

We compare the efficiency test runtimes for correct solutions
written while high to those written while sober for each of the six
“interview-style problems”. For 5/6 problems, the differences are
not significant. For one of the two 1D-array problems, the differ-
ence is significant before multiple comparison correction (p = 0.03,
d = 1.03). For this problem, the solutions by sober participants are
actually less efficient than those by high participants (5.0 seconds
vs. 21.7 seconds). While intriguing, this result does not survive cor-
rection for multiple comparisons (corrected p = 0.18). Additionally,
few high and sober participants correctly implemented the problem
(9 and 12 respectively), leading to low statistical power. We cannot
reject the null hypothesis regarding efficiency.

Solution Divergence. We manually annotate the solutions to
both 1D-array problems to obtain a more nuanced understanding of
method choice differences between high and sober participants. We
note that, unlike for our efficiency analysis, we manually annotate
the solutions for all participants, even those who did not arrive at
the correct solution. This is so because there is anecdotal evidence
that cannabis use might improve programming creativity [15, 35]. If



High Expectations: An Observational Study of
Programming and Cannabis Intoxication

this is the case, even if solutions produced by cannabis-intoxicated
programmers contain more bugs, other benefits may offset this
cost; informally, a developer might generate a solution while using
cannabis and then come back the next day to fix any errors.

To the best of our knowledge, while creativity is an important
aspect of the software development process, a robust metric for it re-
mains an open problem [24]. One approach used by prior work is to
measure divergence in computational patterns [3]. Divergence tests
have long been the basis of common creativity measurements [42].
We adapt this use of solution divergence to method choice.

The possible method choices were specific to the first or second
problem instance, and included categories such as brute force using
a loop, brute force using recursion, or a stack data structure. For
both problem instances, a couple of submissions did not fall into any
category and were labeled other, or were categorized as completely
incorrect. Section 3.2.3 overviews our method annotation process
in more detail. We applied a y? test with the groups as sober and
intoxicated and the categories as the different methods for each
problem. For the first problem instance, )(2 =1.68, p = 0.89. For the
second problem instance, y? = 8.44, p = 0.077. We find no evidence
that method choice differed significantly between high and sober
participants. As a result, it does not make sense to investigate if
methods chosen by high participants were more diverse because
there was no significant difference between the two distributions.
Overall, we find no evidence to support our hypothesis that high
programmers generate more diverse or more creative programming
solutions. We discuss implications in Section 7.

We found no statistically-significant evidence that
cannabis intoxication impacts solution efficiency or im-
plementation divergence (p > 0.08). We do not reject the
null hypothesis that programmers using cannabis exhibit the
same divergence of method choice as sober counterparts.

6.4 RQ 4 — Influence of Cannabis Use History

For our last pre-registered hypothesis, we investigate if cannabis
use history mediates the negative impact of cannabis intoxication
on program correctness. We hypothesize the impact of cannabis
use while programming will be lessened for those that are heavy
cannabis users vs. those that are moderate users.

We divide participants into two groups for analysis: heavy users
and light users, classified by if their aggregated z—transformed
scores on the DFAQ-CU use frequency questions are positive or
negative [14].7 38 participants are classified as light users while
33 are classified as heavy users (roughly, those participants who
use cannabis more than two times a week). We then calculate the
per-participant difference between high and sober sessions for all
correctness scores for which we observed significant general impair-
ment: code-tracing problems, code-writing problems, the 1D-array
problem type, and the recursive-data structure problem type. We
use an independent ¢-test to compare the performance differences

"In the pre-registered hypotheses, we said we would use three groups: light cannabis
users (at most 3—4 times per month), moderate cannabis users (1-2 times per week),
and heavy cannabis users (2+ times per week). We use an aggregated score instead
after a closer inspection of the DFAQ-CU assessment’s scoring instructions [13].

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

of light and heavy users on each test to see if one group experiences
significantly more cannabis-related impairment than the other.
We find no significant differences in cannabis-related impairment
between heavy and light users (0.35 < p < 0.88). To confirm this
null result, we additionally compute pairwise correlations between
inter-session performance correctness differences and two cannabis-
related features: self-reported current intoxication level and life-
time cannabis usage amount. We find no significant correlations
with these comparisons (—0.26 < r < 0.13 for all correlations).

We find no significant evidence that cannabis impacts
heavy users less than others (p > 0.35). We do not reject the
null hypothesis, and instead conclude that cannabis impairs all
programmers equally, regardless of cannabis use history.

6.5 E-RQ1 — Impacts on Code Style

We explore the impact of cannabis use on code style. While annotat-
ing participant method choices for the two 1D-array problems, we
also annotated responses for various stylistics features. In particu-
lar, we marked if a participant added comments, print statements,
helper functions, or additional test cases to their implementation.
We also counted the number and maximum nesting depth of loops
and conditionals to get a measure of branch and loop complexity
of the code. We compare proportions for stylistic features between
high and sober participants using the n-1 y?-test. This analysis
determines if the correctness impairment of cannabis extends to
stylistic properties which, while non-functional, facilitate software
readability and maintainability [18, 21].

We find no significant style differences between programs writ-
ten while high vs. sober (0.20 < p < 0.85). While exploratory, this
may mitigate concerns about cannabis substantially compromis-
ing code clarity and ease of understanding, which are critical for
successful collaboration and future program modifications.

We find no significant evidence that cannabis impacts
programming style (e.g., comments, helpers, etc.) (p > 0.20).

6.6 E-RQ2 — Self Perception of Impact

For our second exploratory analysis, we investigate if participants
are able to correctly perceive their relative programming perfor-
mance, even when intoxicated. We explore the answer to this ques-
tion because prior studies have reported that cannabis-using de-
velopers self-assess task contexts and potential impairment when
making usage decisions [35]. To answer this question, we first inves-
tigate how participants perceived their programming performance
while high vs. sober. At the end of their second sessions, we asked
all participants about their performance on the “interview style”
questions in that session compared to the previous one. 63% thought
they performed worse during their cannabis session, 20% could not
tell either way, and only 17% thought they performed better while
high. Figure 5 breaks down those reports.

While participants did, on average, have decreased performance
while high, this was not universal. We thus investigate if partic-
ipant perceptions of their performance while high is accurate: we
correlate perceived performance difference (a 7-point Likert scale)



ICSE °24, April 14-20, 2024, Lisbon, Portugal

Self-reported subjective programming performance when high (compared
to when sober)

Much better Extremely worse

Better

Much worse

Same/Cannot tell

Worse

Figure 5: Self-reported subjective programming performance
in cannabis-using sessions compared to sober sessions. Most
participants report perceiving decreased performance when high
(63%) compared to only 17% who perceived improvement.

with actual performance difference (average difference between
percent correctness scores for all three “interview style” problems).
We find a strong, positive correlation between self-reported rela-
tive performance while high and actual performance: r = 0.59. Of
the 49/75 participants who showed decreased performance on the
interview problems while high, only four of them (8%) incorrectly
perceived increased performance. Together, these results indicate
that programmers are generally able to accurately judge their rela-
tive programming performance, even when under the influence of
cannabis. This has implications for policy (see Section 7).

Most programmers can accurately judge relative program-
ming performance while high (r = 0.59).

7 DISCUSSION

We observe a significant impairment associated with ecologically-
valid cannabis use while programming (10% fewer correct tests,
10% slower programming). At the same time, we do not observe a
significant method divergence benefit. Previously, anecdotal evi-
dence (Section 2) was either conflicted or suggested that purported
creativity benefits were worth the impairment. Our results paint a
more nuanced picture, especially for situations without a robust mech-
anism to catch bugs or with deadline pressure. We thus consider what
motivates developers to use cannabis. After completing both ses-
sions, we asked participants what was different when programming
while high. The majority emphasized that it was harder to focus and
easier to get distracted, which is contrary to prior survey results
(i.e., improved focus [15, Tab. 3]). However, some participants did
indicate more enjoyment, fewer worries, and decent insight into
alternative perspectives. We note we only considered some soft-
ware solution divergence aspects (e.g., we do not assess architecture
or design creativity, etc.). “Interview-style” questions may be too
structured to admit certain creative freedoms. This is relevant as
programmers self-report self-regulating cannabis use by software
task, using more when tasks are open-ended [15]. Participants also
reported stress from timing and researcher observation.

Although the variance we observe in outcomes for cannabis in-
toxication is consistent and significant, we note that it is much less
than the productivity variance already found in new hires. A classic
study reported 16-25X% differences in coding times and 26-28x dif-
ferences in debugging times for programmers [43, Tab. IIT], with

Trovato and Tobin, et al.

no correlations to class grades or other hiring distinctions. This
general pattern has continued, with a recent Microsoft study report-
ing that the time to first code check-in (in weeks), a job-relevant
productivity metric, was 57% lower in some geographic locations
than others [39, Sec. 4.1]. A 10% difference is not large compared to
such already-existing variance. In addition, some programmers in
our sample received full correctness scores even while high, or per-
formed better when high. Most were able to accurately recognize
their own cannabis-related impairment or the lack of it. Blanket
employment policy may thus not be well-motivated.

While our study design features safeguards for the privacy and
safety of our individual participants (Section 3.1), following Robson
and McCartan [40, Ch. 10], we note that job-seekers may be con-
sidered a vulnerable group because of their economic situations.
Our research may have future implications for job-seekers (e.g.,
if it informs hiring policies), a risk the researchers, and the IRB,
weighed against the benefits of conducting the research. While we
believe that the results are supportive (i.e., restrictive job policies
may not be merited), we acknowledge that the situation is nuanced.

Anecdotally, we note that several participants reached out dur-
ing the study to reschedule because they had an upcoming drug
screening for a new job. This aligns with the qualitative results of
Newman et al. who found that developers view drug policies in
software as ineffective and easy to circumvent [35]. Additionally,
the mere existence of an anti-drug policy can serve as a deterrent
for hiring and retention [35]. This, combined with the low observed
magnitude of cannabis impairment, may indicate that strict drug
policies might not be optimal uses of resources.

8 THREATS TO VALIDITY

Although our observational results give confidence in our character-
ization of cannabis intoxication effects on programming, our results
may not generalize. We highlight a number of considerations.

First, our participants are not a random sample of the population.
Our selection may be biased to those interested in cannabis-related
studies or with a positive perception of cannabis. We partially miti-
gate this by assessing the cannabis usage history of our participants
(see Section 3.2). In addition, we are interested in understanding
how programmers who routinely use cannabis are affected by it
in development settings: in that context, a participant who has
not used cannabis before is less indicative of the daily impact on a
company. Similarly, the legal status of cannabis in some locations
may deter participation in our study. We partially mitigated this by
recruiting in four US states where this sort of cannabis use is legal.

Second, our larger programming tasks were taken the LeetCode
repository of skills-based interview questions. These questions may
not be indicative of industrial practice [2]. This is partially mitigated
by the fact that they are indicative of programming tasks people
carry out and study for in the hiring process.

Third, our notions of code quality and divergence may not gen-
eralize. We assess code correctness via tests and assess divergence
and style by expert annotation. There are other useful notions of
utility (e.g., formally proving correctness or using other static anal-
yses, measuring maintenance efforts, etc.) that we do not capture.
We partially mitigate this concern, noting that automated regres-
sion testing remains a dominant activity in SE and that manual



High Expectations: An Observational Study of
Programming and Cannabis Intoxication

assessment is relevant for both code reviewing and hiring decisions.
There are other indicators revealing creativity in software engineer-
ing problem solving [24], and other factors linked to programming
creativity (e.g., knowledge [25], personality [1, 24]), but we only
measure divergence in products.

Fourth, we are unable to control the amount of cannabis affecting
participants. Our IRB protocol did not permit dispensing cannabis,
directing participants to take a particular amount, or collecting
blood samples — instead, our observational study involves partici-
pants using cannabis anyway. We partially mitigate this via pho-
tographs of cannabis products used (and include these self-reported
amount of marijuana and THC in our replication materials), and
by restricting attention to one delivery method (smoking/vaping,
but not edibles). Experienced and novice cannabis users may make
different dosage decisions and have different tolerances (e.g., [5]),
something our approach does not capture.

9 CONCLUSION

In a controlled observational study with 74 participants, we find
that at ecologically-valid dosages, cannabis intoxication has
a significant small-medium impairment on both program
correctness and programming speed (p < 0.5,0.22 < d < 0.44).
We did not find evidence of cannabis increasing solution divergence.
We also did not find that past cannabis usage history significantly
mediates programming impairment. However, even when under the
influence of cannabis, programmers correctly perceive differences
in their programming performance (r = 0.59). We hope our results
contribute to the development of evidence-based policies and assist
software developers in making informed decisions.

ACKNOWLEDGMENTS

We gratefully acknowledge the partial support of the US National
Science Foundation (2211749) as well as the support of Dan Clauw
and Kevin Boehnke through the Michigan Psychedelic Center.

In addition, we thank Danielle Hu for her help in running a por-
tion of the experimental sessions, as well as multiple lab members
for acting as pilot participants. We also thank Li Morrow and other
members of Michigan’s IRB for their help in designing an experi-
mental protocol that prioritized participant safety and privacy.

REFERENCES

[1] Aamir Amin, Shuib Basri, Mobashar Rehman, Luiz Fernando Capretz, Rehan

Akbar, Abdul Rehman Gilal, and Muhammad Farooq Shabbir. 2020. The impact of

personality traits and knowledge collection behavior on programmer creativity.

Information and Software Technology 128 (2020), 106405.

Mahnaz Behroozi, Chris Parnin, and Titus Barik. 2019. Hiring is Broken: What Do

Developers Say About Technical Interviews?. In 2019 IEEE Symposium on Visual

Languages and Human-Centric Computing, VL/HCC 2019, Memphis, Tennessee,

USA, October 14-18, 2019, Justin Smith, Christopher Bogart, Judith Good, and

Scott D. Fleming (Eds.). IEEE Computer Society, 1-9. https://doi.org/10.1109/VL

HCC.2019.8818836

[3] Vicki E. Bennett, KyuHan Koh, and Alexander Repenning. 2013. Computing
Creativity: Divergence in Computational Thinking. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education. 359-364. https:
//doi.org/10.1145/2445196.2445302

[4] Marc Berman. 2020. How CBD Oil Can Help Programmers Focus. https://prog
ramminginsider.com/how-cbd-oil-can-help-programmers-focus/. Accessed:
2021-03-07.

[5] Kevin F. Boehnke, J. Ryan Scott, Evangelos Litinas, Suzanne Sisley, David A.
Williams, and Daniel J. Clauw. 2019. Pills to Pot: Observational Analyses of
Cannabis Substitution Among Medical Cannabis Users With Chronic Pain. The
Journal of Pain 20, 7 (2019), 830-841. https://doi.org/10.1016/j.jpain.2019.01.010

&2

=
=

(11]

[12

=
&

[14

[15

[16

[18

[19

[20

[21

[22

(23]

[24

~
2

[26

[27]

[28

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Samantha J. Broyd, Hendrika H. van Hell, Camilla Beale, Murat Yiicel, and
Nadia Solowij. 2016. Acute and Chronic Effects of Cannabinoids on Human
Cognition—A Systematic Review. Biological Psychiatry 79, 7 (2016), 557-567.
https://doi.org/10.1016/j.biopsych.2015.12.002 Cannabinoids and Psychotic
Disorders.

Thomas S. Burt, Timothy L. Brown, Gary Milavetz, and Daniel V. McGehee.
2021. Mechanisms of cannabis impairment: Implications for modeling driving
performance. Forensic Science International 328 (2021), 110902. https://doi.org/
10.1016/j.forsciint.2021.110902

Ian Campbell. 2007. Chi-squared and Fisher-Irwin tests of two-by-two tables with
small sample recommendations. Statistics in medicine 26, 19 (2007), 3661-3675.
https://doi.org/10.1002/sim.2832

Cisco. 2019. 2019 Code of Business Conduct. https://www.cisco.com/c/dam/en
_us/about/cobc/2019/english-2019.pdf. Accessed: 2021-08-09.

Broderick Crawford and Claudio Leén de la Barra. 2007. Enhancing Creativity
in Agile Software Teams. In Agile Processes in Software Engineering and Extreme
Programming, Giulio Concas, Ernesto Damiani, Marco Scotto, and Giancarlo
Succi (Eds.). 161-162.

Will Crichton, Maneesh Agrawala, and Pat Hanrahan. 2021. The Role of Work-
ing Memory in Program Tracing. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (Yokohama, Japan) (CHI "21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 56, 13 pages.
https://doi.org/10.1145/3411764.3445257

C. Cuttler, E.M. LaFrance, and A. Stueber. 2021. Acute effects of high-potency
cannabis flower and cannabis concentrates on everyday life memory and decision
making. Sci. Rep. 11, 13784 (2021).

Carrie Cuttler and Alexander Spradlin. 2017. Measuring cannabis consump-
tion: psychometric properties of the daily sessions, frequency, age of onset, and
quantity of cannabis use inventory (DFAQ-CU). PLoS One 12, 5 (2017), e0178194.
Carrie Cuttler and Alexander Spradlin. 2017. Measuring cannabis consump-
tion: psychometric properties of the daily sessions, frequency, age of onset, and
quantity of cannabis use inventory (DFAQ-CU). PLoS One 12, 5 (2017), e0178194.
Madeline Endres, Kevin Boehnke, and Westley Weimer. 2022. Hashing It out: A
Survey of Programmers’ Cannabis Usage, Perception, and Motivation. In Interna-
tional Conference on Software Engineering. 1107-1119.

Madeline Endres, Madison Fansher, Priti Shah, and Westley Weimer. 2021. To read
or to rotate? comparing the effects of technical reading training and spatial skills
training on novice programming ability. In Foundations of Software Engineering.
754-766.

Madeline Endres, Zachary Karas, Xiaosu Hu, Ioulia Kovelman, and Westley
Weimer. 2021. Relating Reading, Visualization, and Coding for New Programmers:
A Neuroimaging Study. In International Conference on Software Engineering. 600~
612.

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The Effect of Poor Source Code Lexicon and Readability on Developers’ Cognitive
Load. In International Conference on Program Comprehension.

Denae Ford, Margaret-Anne D. Storey, Thomas Zimmermann, Christian Bird,
Sonia Jaffe, Chandra Shekhar Maddila, Jenna L. Butler, Brian Houck, and Nachi-
appan Nagappan. 2022. A Tale of Two Cities: Software Developers Working from
Home during the COVID-19 Pandemic. ACM Trans. Softw. Eng. Methodol. 31, 2
(2022), 27:1-27:37. https://doi.org/10.1145/3487567

Daniel J. Fridberg, Sarah Queller, Woo-Young Ahn, Woojae Kim, Anthony J.
Bishara, Jerome R. Busemeyer, Linda Porrino, and Julie C. Stout. 2010. Cognitive
mechanisms underlying risky decision-making in chronic cannabis users. Journal
of Mathematical Psychology 54, 1 (2010), 28—38. https://doi.org/10.1016/j.jmp.
2009.10.002 Contributions of Mathematical Psychology to Clinical Science and
Assessment.

Zachary P. Fry, Bryan Landau, and Westley Weimer. 2012. A human study of
patch maintainability. In ISSTA. ACM, 177-187.

Joseph E. Gonzales and Corbin A. Cunninghham. 2015. The promise of pre
registration in psychological research. American Psychological Association (2015).
Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. 2014. Happy soft-
ware developers solve problems better: psychological measurements in empirical
software engineering. Peer] 2 (March 2014), e289.

Wouter Groeneveld, Laurens Luyten, Joost Vennekens, and Kris Aerts. 2021.
Exploring the Role of Creativity in Software Engineering. In 43rd IEEE/ACM
International Conference on Software Engineering: Software Engineering in Society,
ICSE (SEIS) 2021, May 25-28, 2021. IEEE, Madrid, Spain, 1-9. https://doi.org/10.1
109/ICSE-SEIS52602.2021.00009

Reshma Hegde and Gursimran Walia. 2014. How to enhance the creativity of
software developers: A systematic literature review. International Conference on
Software Engineering and Knowledge Engineering (2014), 229-234.

IBM. 2018. Business Conduct Guidelines. https://www.ibm.com/investor/att/pdf
/BCG_accessible_2019.pdf. Accessed: 2021-08-09.

Leo Kelion. 2014. FBI ’could hire hackers on cannabis’ to fight cybercrime.
https://www.bbc.com/news/technology-27499595. Accessed: 2021-03-07.
Mikael A Kowal, Arno Hazekamp, Lorenza S Colzato, Henk van Steenbergen,
Nic JA van der Wee, Jeffrey Durieux, Meriem Manai, and Bernhard Hommel.


https://doi.org/10.1109/VLHCC.2019.8818836
https://doi.org/10.1109/VLHCC.2019.8818836
https://doi.org/10.1145/2445196.2445302
https://doi.org/10.1145/2445196.2445302
https://programminginsider.com/how-cbd-oil-can-help-programmers-focus/
https://programminginsider.com/how-cbd-oil-can-help-programmers-focus/
https://doi.org/10.1016/j.jpain.2019.01.010
https://doi.org/10.1016/j.biopsych.2015.12.002
https://doi.org/10.1016/j.forsciint.2021.110902
https://doi.org/10.1016/j.forsciint.2021.110902
https://doi.org/10.1002/sim.2832
https://www.cisco.com/c/dam/en_us/about/cobc/2019/english-2019.pdf
https://www.cisco.com/c/dam/en_us/about/cobc/2019/english-2019.pdf
https://doi.org/10.1145/3411764.3445257
https://doi.org/10.1145/3487567
https://doi.org/10.1016/j.jmp.2009.10.002
https://doi.org/10.1016/j.jmp.2009.10.002
https://doi.org/10.1109/ICSE-SEIS52602.2021.00009
https://doi.org/10.1109/ICSE-SEIS52602.2021.00009
https://www.ibm.com/investor/att/pdf/BCG_accessible_2019.pdf
https://www.ibm.com/investor/att/pdf/BCG_accessible_2019.pdf
https://www.bbc.com/news/technology-27499595

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[29]

[30]

[31

o
A

[33

[34]

[35]

[36

[37]

[38]

[39

[40

[41]

[42]

[43]

[44]

[45

[46]

[47]

[48

[49

2015. Cannabis and creativity: highly potent cannabis impairs divergent thinking
in regular cannabis users. Psychopharmacology 232, 6 (2015), 1123-1134.

Emese Kroon, Lauren Kuhns, and Janna Cousijn. 2021. The short-term and long-
term effects of cannabis on cognition: recent advances in the field. Current Opinion
in Psychology 38 (2021), 49-55. https://doi.org/10.1016/j.copsyc.2020.07.005
Cannabis.

Ryan Krueger, Yu Huang, Xinyu Liu, Tyler Santander, Westley Weimer, and Kevin
Leach. 2020. Neurological Divide: An fMRI Study of Prose and Code Writing. In
International Conference on Software Engineering.

Emily M. LaFrance and Carrie Cuttler. 2017. Inspired by Mary Jane? Mechanisms
underlying enhanced creativity in cannabis users. Consciousness and Cognition
56 (2017), 68-76. https://doi.org/10.1016/j.concog.2017.10.009

John Markoff. 2005. What the dormouse said: How the sixties counterculture shaped
the personal computer industry. Penguin Group, New York, NY, USA.

Gayle Laakmann McDowell. 2015. Cracking the coding interview—189 program-
ming questions and solutions. CareerCup.

Rahul Mohanani, Prabhat Ram, Ahmed Lasisi, Paul Ralph, and Burak Turhan. 2017.
Perceptions of Creativity in Software Engineering Research and Practice. In 2017
43rd Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). 210-217. https://doi.org/10.1109/SEAA.2017.21

Kaia Newman, Madeline Endres, Westley Weimer, and Brittany Johnson. 2023.
From Organizations to Individuals: Psychoactive Substance Use By Professional
Programmers. In International Conference on Software Engineering. 665—677.
Lemai Nguyen and Graeme Shanks. 2009. A framework for understanding
creativity in requirements engineering. Information and Software Technology 51,
3 (2009), 655-662.

Geoffrey Norman. 2010. Likert scales, levels of measurement and the “laws” of
statistics. Advances in health sciences education : theory and practice 15, 5 (02
2010), 625-32. https://doi.org/10.1007/s10459-010-9222-y

Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.
2021. Program Comprehension and Code Complexity Metrics: An fMRI Study.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
524-536. https://doi.org/10.1109/ICSE43902.2021.00056

Ayushi Rastogi, Suresh Thummalapenta, Thomas Zimmermann, Nachiappan
Nagappan, and Jacek Czerwonka. 2017. Ramp-up Journey of New Hires: Do
Strategic Practices of Software Companies Influence Productivity?. In Proceedings
of the 10th Innovations in Software Engineering Conference. 107-111.

Colin Robson and Kieran McCartan. 2016. Real world research: a resource for users
of social research methods in applied settings. Wiley.

Ole Rogeberg and Rune Elvik. 2016.  The effects of cannabis intoxi-
cation on motor vehicle collision revisited and revised.  Addiction 111,
8 (2016), 1348-1359. https://doi.org/10.1111/add.13347
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/add.13347

M. A. Runco and S.M. Okuda. 1988. Problem discovery, divergent thinking, and
the creative process. Journal of Youth and Adolescence 17, 3 (06 1988), 211-220.
https://doi.org/10.1007/BF01538162

H. Sackman, W. ]. Erikson, and E. E. Grant. 1968. Exploratory Experimental
Studies Comparing Online and Offline Programming Performance. Commun.
ACM 11, 1 (jan 1968), 3-11.

Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference. SciPy, Austin, TX, US,
92-96.

Emad Shihab, Patanamon Thongtanunam, and Bogdan Vasilescu. 2023. Mining
Software Repositories. IEEE (2023).

Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the 36th International Conference on Software Engineering. 378~
389.

Joseph P. Simmons, Leif D. Nelson, and Uri Simonsohn. 2020. Pre-registration:
Why and How. J. Society for Consumer Psychology (Dec. 2020). https://doi.org/
10.1002/jcpy.1208

United Nations Press Team. 2020. UNODC World Drug Report 2020: Global drug
use rising; while COVID-19 has far reaching impact on global drug markets. United
Nations. https://www.unodc.org/unodc/press/releases/2020/June/media-
advisory---global-launch- of - the- 2020- world- drug-report.html

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antdnio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/541592-019-0686-2

Trovato and Tobin, et al.

[50] Charlotte Walsh. 2011. Drugs, the Internet and change. Journal of psychoactive

drugs 43,1 (2011), 55-63.

Mary Walton. 2019. Programming and Cannabis — 5 Things to Know. https:
//simpleprogrammer.com/programming-and-cannabis/. Accessed: 2021-03-07.

Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod
Millman (Eds.). SciPy, Austin, TX, US, 56-61. https://doi.org/10.25080/Majora-
92bf1922-00a

Laura Wood. 2021. Global Cannabis Market (2020 to 2026) - Emergence of Cannabis
Legalization in Asia-Pacific Presents Opportunities - ResearchAndMarkets.com.
Business Wire. https://www.businesswire.com/news/home/20210216005966/en
/Global-Cannabis- Market-2020-to- 2026- - - Emergence- of - Cannabis-Legalizati
on-in-Asia-Pacific-Presents-Opportunities---ResearchAndMarkets.com/

Yuki Yamada. 2018. How to Crack Pre-registration: Toward Transparent and
Open Science. Frontiers in Psychology 9, 1831 (2018). https://doi.org/10.3389/fp
syg.2018.01831


https://doi.org/10.1016/j.copsyc.2020.07.005
https://doi.org/10.1016/j.concog.2017.10.009
https://doi.org/10.1109/SEAA.2017.21
https://doi.org/10.1007/s10459-010-9222-y
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1111/add.13347
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/add.13347
https://doi.org/10.1007/BF01538162
https://doi.org/10.1002/jcpy.1208
https://doi.org/10.1002/jcpy.1208
https://www.unodc.org/unodc/press/releases/2020/June/media-advisory---global-launch-of-the-2020-world-drug-report.html
https://www.unodc.org/unodc/press/releases/2020/June/media-advisory---global-launch-of-the-2020-world-drug-report.html
https://doi.org/10.1038/s41592-019-0686-2
https://simpleprogrammer.com/programming-and-cannabis/
https://simpleprogrammer.com/programming-and-cannabis/
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.businesswire.com/news/home/20210216005966/en/Global-Cannabis-Market-2020-to-2026---Emergence-of-Cannabis-Legalization-in-Asia-Pacific-Presents-Opportunities---ResearchAndMarkets.com/
https://www.businesswire.com/news/home/20210216005966/en/Global-Cannabis-Market-2020-to-2026---Emergence-of-Cannabis-Legalization-in-Asia-Pacific-Presents-Opportunities---ResearchAndMarkets.com/
https://www.businesswire.com/news/home/20210216005966/en/Global-Cannabis-Market-2020-to-2026---Emergence-of-Cannabis-Legalization-in-Asia-Pacific-Presents-Opportunities---ResearchAndMarkets.com/
https://doi.org/10.3389/fpsyg.2018.01831
https://doi.org/10.3389/fpsyg.2018.01831

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Experimental Setup and Design
	3.1 Study Design
	3.2 Surveys and Stimuli: Content and Metrics

	4 Participant Overview
	4.1 Recruitment Process
	4.2 Population Contextualization

	5 Research Questions and Analysis
	5.1 Primary Analysis: Pre-registered Questions
	5.2 Exploratory Analysis
	5.3 Statistical Methods

	6 Results
	6.1 RQ1 — Impacts on Program Correctness
	6.2 RQ2 — Impacts on Programming Speed
	6.3 RQ3 — Method Choice and Divergence
	6.4 RQ 4 — Influence of Cannabis Use History
	6.5 E-RQ1 — Impacts on Code Style
	6.6 E-RQ2 — Self Perception of Impact

	7 Discussion
	8 Threats to Validity
	9 Conclusion
	Acknowledgments
	References

