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Abstract—Formal methods are used successfully in high-
assurance software, but they require rigorous mathematical and
logical training that practitioners often lack. As such, integrating
formal methods into software has been associated with numerous
challenges. While educators have placed emphasis on formalisms
in undergraduate theory courses, such courses often struggle with
poor student outcomes and satisfaction. In this paper, we present
a controlled eye-tracking human study (n = 34) investigating the
problem-solving strategies employed by students with different
levels of incoming preparation (as assessed by theory coursework
taken and pre-screening performance on a proof comprehension
task), and how educators can better prepare low-outcome stu-
dents for the rigorous logical reasoning that is a core part of
formal methods in software engineering. Surprisingly, we find
that incoming preparation is not a good predictor of student
outcomes for formalism comprehension tasks, and that student
self-reports are not accurate at identifying factors associated with
high outcomes for such tasks. Instead, and importantly, we find
that differences in outcomes can be attributed to performance for
proofs by induction and recursive algorithms, and that better-
performing students exhibit significantly more attention switch-
ing behaviors, a result that has several implications for pedagogy
in terms of the design of teaching materials. Our results suggest
the need for a substantial pedagogical intervention in core theory
courses to better align student outcomes with the objectives of
mastery and retaining the material, and thus bettering preparing
students for high-assurance software engineering.

Index Terms—formalism comprehension, student cognition,
eye-tracking, facial behavior analysis, human study

I. INTRODUCTION

Formal methods have long been used to provide rigorous

guarantees for software engineering [1] (e.g., ensuring that

executions of a program never reach an invalid state), and

have been incorporated into various core stages of the software

process. Successful applications of formal methods to software

include requirements elicitation [2], software specification

(e.g., design by contract [3]), software design (e.g., VDM [4]),

software verification [5, 6], testing [7], and maintenance (e.g.,

legacy code at Microsoft makes use of assertions [8]). Unfor-

tunately, many formal methods require advanced mathematical

training and theorem proving skills that practitioners typically

lack [9].

Given the extensive use of, and increased opportunities for,

formal methods in software engineering [10], educators have

been putting an increased focus on formalisms (e.g., proofs of

algorithmic properties, runtime complexity analyses, etc.) in

undergraduate computer science curricula to prepare future de-

velopers for logical algorithmic reasoning [11]. Unfortunately,

despite the emphasis placed on formalisms in undergraduate

computer science theory courses, students have historically

struggled with course outcomes (e.g., in terms of final grades,

mastery and retention of material, etc.). For instance, publicly-

available survey data from a university in the US highlight a

trend of dissatisfaction and low outcomes from core theory

courses focusing on formalisms [12, 13]. Given the difficulty

associated with having engineers integrate formal methods into

the software process [14], it remains important for educators to

ensure that future practitioners are trained in logical reasoning

skills, especially as they relate to code.

We hypothesize that understanding how people less familiar

with formalisms think about formal methods and proofs of

algorithmic properties is critical to how educators should teach

formalisms. For instance, since the most vulnerable population

groups with non-traditional backgrounds are also most likely

to drop the computer science major [12], educators need to

make sure the needs of such groups are not overlooked. It also

indirectly impacts how high-assurance software engineering

firms might train new workers. One way to acquire this

understanding is through the investigation of the cognition
(e.g., problem-solving strategies, cognitive load, visual atten-

tion, etc.) for computer science students while performing

formalism comprehension tasks.

Previous work has used methodologies like eye track-

ing, occasionally coupled with functional magnetic resonance

imaging or functional near-infrared spectroscopy [15, 16],

to investigate student cognition for computer science tasks

relevant to software engineering, including reading [17] and

writing code [18], manipulating data structures [19], and

reviewing code [20]. Researchers have also examined the

cognitive models associated with higher-level math tasks [21],

including number processing and arithmetic. However, since

formal methods fundamentally differ from other software engi-

neering processes in their focus on mathematical and logical

reasoning instead of coding, lessons learned from cognition

for coding tasks may not clarify how students comprehend

formalisms, what distinguishes an expert in formal reasoning

from a novice, and how educators can better train students for

formal reasoning for software.

We propose to use eye-tracking to gather insights into (i) the
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problem-solving strategies for such formalism comprehension

tasks employed by students with different levels of familiarity

with, or incoming preparation for, formal methods, and (ii)

how educators can better prepare struggling students for the

rigorous logical reasoning required by high-assurance software

engineering. We consider both prior coursework and current

performance in our definition of incoming preparation. We first

ask participants to outline the number of computer science

theory courses covering formalisms (e.g., derivations and

proofs) they have either completed with passing grades or are

currently taking. We then tested participants to identify the

mistake in a proof taken from an undergraduate textbook [22].

We partition our sample based on whether a participant has

taken more than the median number of courses in our sample

and passed the screening test (see Section V-A for a more in-

depth discussion on incoming preparation). Since eye-tracking

methods allow for the possibility of adding a webcam to

examine facial behavior as an additional information source

in the context of formalism comprehension, we also employ

facial behavior analysis to investigate behavioral differences

between students with different outcomes.
We performed a controlled experiment investigating how

students read and assess formal proofs about algorithms for

correctness. We recruited 34 participants with varying levels

of expertise with formalisms to perform these comprehension

tasks. Participants were presented with pseudocode algorithms

from a widely used undergraduate textbook [22], a theorem

about the algorithm with an accompanying formal proof, and

a graphical illustration of the algorithm or proof. Participants

were asked to evaluate the presented proofs for correctness.
Contrary to conventional wisdom suggesting that students

with greater incoming preparation achieve better outcomes for

STEM courses [23, 24, 25, 26], we found no evidence that stu-

dents with higher incoming preparation perform better at these

formalism tasks (p = 0.96, Cohen’s d = 0.007). We further

find no evidence that student experience reports are accurate

predictors of outcomes for formalism comprehension tasks

(τ = 0.21, p = 0.15), or that students are able to correctly

identify the parts of a formalism presentation most pivotal to

understanding a proof. Our results also indicate more-prepared

students employ different problem solving strategies, with an

increased visual attention on proof prose text (p = 0.005) and

correct (p = 0.03) and distractor (p = 0.038) answer choices,

but this ultimately does not affect task outcomes.
We do find, however, that higher outcome students demon-

strate significantly more attention switching behaviors (i.e.,

frequently going back and forth between presented materials)

(p = 0.002), and are more likely to perform better at proofs

by induction (p = 0.01) and recursive algorithms (p = 0.006)

compared to lower outcome students. Our results argue for the

need for pedagogical intervention in theory courses to ensure

student outcomes are aligned with the objectives of better

teaching formal reasoning to undergraduates and preparing

future software engineers for formal methods.
The main contributions of this paper are:

• A controlled experimental study investigating student

cognition for computer science formalisms.

• Experimental evidence that suggests incoming prepara-

tion does not predict outcomes for formalism comprehen-

sion tasks, and that students with higher outcomes employ

different problem-solving strategies and exhibit better

performance for certain types of proofs and algorithms.

• Recommendations for educators to better prepare future

software engineers for logical reasoning, including de-

signing teaching materials to facilitate going back and

forth between the presented content with ease, and em-

phasizing proofs by induction.

• An exploratory discussion on the use of objective facial

behavior metrics in the context of pedagogy.

• A publicly-available dataset for future studies investigat-

ing cognition for computer science formalisms.

II. BACKGROUND AND MOTIVATION

In this section, we summarize the techniques related to the

eye-tracking and facial behavior analysis measures for a gen-

eral software engineering audience, and provide a motivating

example for our work.

A. Eye-Tracking

Eye-trackers are non-invasive, cost-effective, and easy-to-

use devices that measure visual attention and effort in variety

of tasks, including human-computer interactions [27], software

engineering [28, 29, 30], and marketing [31].

Modern eye-tracking cameras measure and track a par-

ticipant’s eyes and use event detection algorithms to report

gaze data that is then analyzed with respect to pre-defined

areas of interest (AOIs) in a stimulus. AOIs are typically

manually defined by an experimenter based on the nature of

the study [32, 33].

Two aspects of gaze data, based on ocular behavior, can

clarify cognitive load and task difficulty. A fixation is an eye

gaze that lasts for approximately 200–300ms on a specific

AOI and results in the focus of visual attention on the AOI.

The majority of information processing for humans occurs

during fixations [34, 35] and a small number of fixations

usually suffices for a human to process a complex visual

input [32, 36]. As such, fixation data is widely used to

measure cognitive load for different tasks, with longer fixations

and higher number of fixations indicating higher cognitive

load [29, 30]. A saccade is a rapid eye gaze movement (40–

50ms) that occurs between fixations on AOIs, and often does

not correspond to cognitive processing [34, 36]. The regression
rate is the ratio of backward or regressive saccades (e.g.,

leftward in left-to-right text reading) to the total number of

saccades, and higher regression rates often indicate increased

difficulty in performing and completing a task [37].

Modern eye-trackers can also report the pupil diameter
of participants. Pupil diameter has widely been used in the

context of eye-tracking to approximate the cognitive load for

participants working on study tasks [38, 39, 40], with higher

pupil diameters indicating increased cognitive load [41].
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(a) Higher incoming preparation participant heatmap (b) Lower incoming preparation participant heatmap

Fig. 1: Visual eye-gaze heatmaps for a stimulus shown to two participants with different incoming preparations. The more-

prepared participant focuses visual attention primarily on the proof and answer choices, while the less-prepared participant

focuses on the algorithm and figure. Both participants choose the wrong answer.

B. Facial Behavior Analysis

Facial expressions constitute an important channel of non-

verbal communication in humans [42], and facial behav-

ior analysis has been increasingly used to facilitate human-

computer interactions in an array of applications [43], includ-

ing education [44, 45].

Facial behavior analysis often involves the detection,

via cameras and image processing, of facial Action Units
(AUs) [46] that correspond to individual components of facial

muscle movement. The Facial Action Coding System (FACS)

is an anatomically-based model used to describe any visually-

discernible facial movement in terms of AUs [47].

While care must be taken to avoid linking facial behaviors

directly to human emotions without considering context [48,

49], AUs hold the benefit of being objective measures of

facial muscle activity, and can be used independently of any

interpretation for higher-order modeling of facial expressions

and behavior [50].

C. Motivating Example

We desire a deeper understanding of the problem-solving

strategies for formalism comprehension tasks employed by

students with different levels of incoming preparation, and how

educators can better prepare struggling students for the use of

formal methods in software engineering. Traditional metrics,

such as evaluating student transcripts or self-reports, are not

as effective at teasing apart the problem-solving strategies

employed by higher performing students (e.g., [51]). We

hypothesize that eye-tracking can serve as a cost-effective,

insightful methodology to investigate the factors that result

in better outcomes for formalism comprehension tasks. For

instance, struggling students may demonstrate higher regres-
sion rate for (i.e., re-read text and figures more frequently), or

increased visual attention to, certain aspects of a formalism

presentation, suggesting greater difficulty completing the task.

As an indicative example, we present a snapshot of the

strategies (in terms of visual attention) employed by two

students with different incoming preparations for undergrad-

uate theory courses (Figure 1). Figure 1a shows the visual
heatmap, constructed from gaze data collected by an eye-

tracker, for a participant with higher incoming preparation for

theory courses. The heatmap indicates a significant proportion

of visual attention to the proof text and answer choices

(lower left and right quadrants respectively). By contrast,

the visual heatmap for a participant with lower incoming

preparation suggests a comparatively increased emphasis on

the algorithmic pseudocode and figures (upper left and right

quadrants respectively). While the increased focus by a less-

prepared participant on the algorithm and figures aligns with

instructor expectations, one would also expect a more-prepared

participant focusing attention on the proof text to achieve

better response accuracy. Quite surprisingly, we find that not

only do both participants fail at correctly identifying the

presence of mistakes in the proof, but also that this trend

of no correlation between traditional measures of incoming

preparation and task outcomes extends to the entirety of our

participants (see Section V-A for a discussion on preparation

and outcomes). Note that our use of heatmaps is intended to

present a snapshot of what participants focus on, and is not the

sole point of comparison between participants with different

outcomes. Our results in Section V incorporate eye-tracking

metrics better suited to understanding the complete picture.

Given that neither incoming preparation nor the strategies

employed by more-prepared students is sufficient at teasing

apart factors that result in better outcomes for such formalism

comprehension tasks, we turn to eye-tracking to clarify factors

correlated with student successes. Our results help us better

understand what makes students succeed, and how educators

can teach formalisms in a way that may potentially better

prepare future engineers to reason about formal methods.

III. EXPERIMENTAL METHODOLOGY

Our experiment centers on a human study in which par-

ticipants answered questions about computing formalisms (al-
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Fig. 2: A sample formalism comprehension stimulus for the Towers of Hanoi problem. The algorithm (upper-left), figure

(upper-right), theorem and proof (lower-left) and correct and distractor answer choices (lower-right) represent the six AOIs for

the stimulus. The correct answer is (2): the base case should apply when n = 1, and more reasoning is required to establish

the claim for the base case.

gorithms, theorems, proofs, and figures) while subjected to

eye-tracking and facial behavior measurement. We make the

replication materials for our study (including the pre- and post-

questionnaires, stimuli, and de-identified raw data) publicly

available at https://doi.org/10.5281/zenodo.7626901.

A. Participant Recruitment

We recruited 34 undergraduate and graduate computer sci-

ence students at the University of Michigan in an IRB-exempt

study. Of our 34 participants, 23 identified as men, while 11

identified as women. Breaking down our participants by class

standing, we recruited 5 first-year students, 10 sophomores,

12 juniors, 6 seniors, and one graduate student. We required

participants be over 18, have completed an undergraduate

discrete mathematics course, and be either enrolled in or have

completed an undergraduate data structures and algorithms

course. In addition, to reduce noise in the recorded gaze data,

we encouraged (but did not require) our participants to wear

contact lenses in lieu of glasses to the experiment session

where possible. Participants were compensated $25.

B. Materials and Design

Participants were asked to complete a sequence of for-

malism comprehension tasks. Each individual task stimulus

consisted of an algorithmic solution to a problem commonly

taught in core computer science undergraduate courses, a

theorem for that algorithm, an accompanying proof of that

theorem, and a relevant graphical illustration (or figure). Each

formalism comprehension task presented four multiple-choice

answers for the presence of mistakes in the proof, of which

only one was correct and three were distractors.

We seeded each proof with mistakes commonly made by

undergraduate students in discrete mathematics courses (e.g.,

incorrect base case for proof by induction, logical contra-

dictions in deductive reasoning, arithmetic errors leading to

incorrect conclusions, etc.), and asked participants to evaluate

each proof for correctness. For each algorithm, participants

were always given the option to indicate that a presented proof

contains no mistakes.

For our study, we presented 7 algorithms taken from

a commonly-used undergraduate discrete mathematics text-

book [22]: binary search, greedy change-making, merge-sort,

Towers of Hanoi, greedy job scheduling, in-order tree walk,

and the Halting Problem. Each algorithm was accompanied

by a theorem and a proof copied verbatim from the textbook

prior to mistake-seeding. Since the textbook is widely used by

educators for introductory computer science theory courses,

we are interested in evaluating the efficacy of the presented

material for student outcomes, and as such, do not alter the

proof to make the prose or logic more or less comprehensible.

Since figures are frequently used as an educational instrument

(e.g., [52]), we included, with each stimulus, a figure related

to that formalism comprehension task taken from the textbook

or instructor slides for the theory courses. Figure 2 shows a

sample stimulus for the Towers of Hanoi problem.

We make all of our stimuli publicly available in our repli-

cation package.

C. Experimental Protocol

We recruited participants via in-class invitations and online

class discussion forums. Participants were asked to read and

sign the general consent form prior to their scheduled 60-

minute experimental session. Each session had three compo-
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nents: pre-questionnaire survey, eye-tracking session, and post-

questionnaire survey and debriefing.

Pre-Questionnaire Survey. After participants re-affirmed

their consent, we administered a survey to collect basic de-

mographic data (e.g., gender, native language, class standing,

etc.). To measure the incoming preparation for participants,

we collected data on the theory-related courses they have

completed or are currently enrolled in, and asked participants

to complete a screening question from a widely-used under-

graduate discrete mathematics textbook [22].

Eye-Tracking Session. Participants were seated in front of

a computer screen with a Tobii Pro X3-120 eye tracker in a

quiet room with controlled ambient light and screen brightness

levels. Participants were encouraged not to look away from the

computer screen to help reduce noise in the gaze and facial

behavior data. We first calibrated the eye-tracker for each

participant. We then showed the participants training slides

explaining the study design and purpose. Participants were

informed they would be reading several algorithmic proofs

from an undergraduate textbook and determining whether or

not each proof is correct. Each participant was presented with

7 stimuli. All stimuli were presented within the interface

provided by Tobii Pro Lab [53], and participants selected their

answers via key presses.

Post-Questionnaire Survey. After the eye-tracking session,

we instructed participants to complete a post-questionnaire

survey and asked them to self-report (on a 1–5 Likert scale)

their prior perceived experience with computer science for-

malisms, difficulty of tasks they were asked to perform, and

helpfulness of different aspects of the formalism presentation.

Note that while it is common to ask participants to self-report

their experience prior to the start of the experiment, we include

such questions in the post-questionnaire to mitigate potential

decrease in performance due to stereotype threat [54]. This

is especially relevant for pedagogy since stereotype threat is

reported to disproportionately affect underrepresented groups

and students with non-traditional backgrounds [55] that may

already struggle with outcomes in theory courses. In addition

to the Likert scale data, we also collected qualitative responses

from participants on attributes that make a formalism compre-

hension task easier to complete.

D. Data Collection

We conducted all experiments on a 64-bit Windows 10

machine connected to a 27 inch monitor with a 1920x1080

resolution. To collect eye gaze data, we used the Tobii Pro

X3-120, a non-invasive eye tracker that can detect fixations at

the granularity of a single line of 10pt text. Our eye tracker

was set to sample readings at a frequency of 120hz (i.e., 120

times per second). We processed this raw data using Tobii Pro

Lab to generate analyzable gaze data.

To collect facial behavior data, we used the Logitech C920

webcam. Our webcam was set to record 1080p video at 30

frames per second. The high-definition recorded video was

then processed offline using OpenFace [56], an open source

toolkit capable of automatically detecting the presence of

facial AUs and reporting degrees of confidence.

IV. DATA ANALYSIS APPROACH

In this section, we present the mathematical analyses applied

to our eye-tracking and facial behavior data. We applied a

false discovery rate (FDR) threshold at q < 0.05 to correct

for multiple comparisons (i.e., to avoid false positives as a

result of repeated analyses). All reported measures of statistical

significance in Section V correspond to p-values corrected for

multiple comparisons.

A. Eye-Tracking Analysis Approach

To preprocess for data quality, we filter outlier data points

by removing the responses that were keyed in too quickly

(outside 1.5×SD of the mean response time) and therefore,

could not reasonably correspond to the participants reading

a formalism presentation entirely before selecting an answer.

We also filter out data points that correspond to noisy gaze

data [17, Sec. 7.1]. This filtering resulted in 191 out of

the original 236 data points being usable for experimental

analyses.

Following the Goldberg and Helfman guidelines [32] for

defining AOIs in terms of size and granularity, we manually

divide each presented stimulus into six AOIs: Algorithm,

Theorem, Proof, Figure, Correct Answer, and Distractors.

The Algorithm AOI represents the pseudocode algorithm of

interest, including the inputs and outputs of the algorithm and

any explanatory comments. The Theorem and Proof AOIs rep-

resent the prose text for the theorem and the proof respectively.

The Figure AOI corresponds to a graphical illustration of the

formalism comprehension task and includes relevant captions

and labels. Finally, the Correct Answer and Distractors AOIs

represent the multiple choice responses.

We analyzed raw eye-movement data to detect velocity-

based fixations (I-VT) [57], a commonly-used fixation ex-

traction method in the research community [58]. We use

the following standard metrics to analyze and compare the

strategies employed by participants for the formalism compre-

hension tasks. A strategy models gaze data and visual attention

trends over time for the duration of a task. The fixation time
corresponds to the total duration of all fixations on an AOI,

while the fixation count indicates the total number of fixations

on an AOI. Longer fixation times indicate either higher levels

of interest or increased difficulty, and as such, increased

strain on the working memory, in extracting information from

the AOI [30, 59]. The regression rate depends on saccadic

eye movements and indicates the percentage of backward

saccades [60], and higher regression rates indicate increased

difficulty in completing a task [35]. The attention switching
metric depends on fixation counts and measures the total

number of switches between AOIs, and can approximate the

dynamics of visual attention during a task [30].

Previous work has argued for the use of baseline pupil

diameters [39], and we used the training slides administered

after eye-tracking calibration to measure the baseline pupil
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TABLE I: The facial Action Units (AUs) in our study

AU Description AU Description
1 Inner brow raiser 14 Dimpler
2 Outer brow raiser 15 Lip corner depressor
4 Brow lowerer 17 Chin raiser
5 Upper lid raiser 20 Lip stretcher
6 Cheek raiser 23 Lip tightener
7 Lid tightener 25 Lips part
9 Nose wrinkler 26 Jaw drop
10 Upper lip raiser 28 Lip suck
12 Lip Corner Puller 45 Blink

diameter (and as such, approximate the cognitive load) for

participants prior to working on the formalism comprehension

tasks.

B. Facial Behavior Analysis Approach

We use the open-source toolkit OpenFace [56] to analyze

recorded webcam video from participants and automatically

detect the presence of facial action units (AUs).

During the preprocessing stage, since we intend to use facial

behavior analysis as exploratory research and wish to mitigate

threats to conclusion validity (given the lack of widely-

accepted metrics for analyzing facial behavior data [48, 49]),

we only use measurements reported by the OpenFace classifier

with the highest possible confidence value (98%). Addition-

ally, we also filter out facial behavior data for any timestamps

not corresponding to a fixation on an AOI in the gaze data,

since we wish to analyze facial behavior for different study

outcomes. After the preprocessing step, we are left with around

24 thousand high-quality data points (out of about 1.7 million

original) for facial behavior analysis.

We analyze facial data “as is” in terms of AUs without

attempting to link it to emotions. Using facial behavior data

to classify human emotions has been widely studied [42, 43,

44, 45] but remains controversial, given that emotions are

highly subjective and depend on the context [48, 49]. Even

a categorization of the valence of emotions (i.e., positive and

negative) has been met with skepticism by the research com-

munity recently. By contrast, facial AUs remain an effective

measure of the facial behavior, since they report the objective

physiological behavior of an individual’s facial muscles, not

obfuscated by machine-learned emotion classifications trained

on certain population demographics. As such, we consider

only the high-confidence values of 18 different facial AUs

reported by OpenFace (see Table I for the official anatomic

description of each AU [47]). To encourage conversations

about facial behavior analysis in the context of pedagogy, we

discuss exploratory results from our facial behavior analysis in

Section VI-B. We also make our de-identified facial behavior

data publicly available for researchers to replicate and build

on our work.

V. EXPERIMENTAL RESULTS

We consider the following research questions:

RQ1. What is the effect of incoming preparation on student

outcomes for formalism comprehension tasks?

RQ2. How do student self-reports of formalism comprehen-

sion tasks align with empirical results?

RQ3. What factors most distinguish higher-performing in-

dividuals from lower-performing ones?

Table II outlines the independent and dependent variables

for each RQ, including the metrics used for each variable. Ex-

planations of key terms and eye-tracking metrics in a software

engineering context follow in the relevant RQ subsections.

A. RQ1. Role of Incoming Preparation

We examine the relationship between incoming preparation

of participants and outcomes for the formalism comprehension

tasks. We consider two facets of preparation: coursework count

and performance. First, for coursework count, we enumerate

the number of computer science theory courses covering

formalisms (i.e., courses that include proofs and derivations

in their syllabi) that participants have either completed with

passing grades or are currently taking. Second, for screening
proof performance, we asked participants to identify a mistake

in a proof distinct from the stimuli used in the study, and note

whether the participant correctly identified the mistake. Both

facets we consider have been used previously in the context

of pedagogy to approximate incoming preparation [23, 25].

While we note that factoring in grades for the theory courses

would result in a more accurate approximation of incoming

preparation, instructors for upper-level courses typically only

require a student to pass the prerequisite courses, and do not

know how well students did in the core courses. As such, we

do not consider grades as a proxy for incoming preparation.

We classify a participant who has taken above the median

number of theory courses (i.e., coursework count > 4 for our

dataset) and passes the screening question as more-prepared.

Applying our approximations for incoming preparation re-

sulted in 16 out of 34 participants being classified as more-

prepared, with the remaining 18 deemed less-prepared.

The mean response accuracy (i.e., percentage of correct

answers) and response time (i.e, time taken to choose an

answer) for more-prepared and less-prepared participants is

shown in Table III. Surprisingly, we found no evidence of

a statistically-significant difference in the outcomes between

more-prepared and less-prepared students, both in terms of

response accuracy (two-tailed Mann-Whitney U-test with the

Benjamini-Hochberg [61] procedure to correct for false dis-

coveries, p = 0.96) and response time (p = 0.93). Notably,

while absence of evidence is not evidence of absence, the

effect sizes for both results were extremely small (Cohen’s

d = 0.007 for response accuracy and d = 0.08 for response

time), giving statistical confidence in the null result (i.e., even

if an effect were present, it would be of very low magnitude

and thus unlikely to influence outcomes).

We further found no correlation between the number of

theory courses taken and response accuracy (Pearson’s r =
0.036, p = 0.84), nor a correlation between participants’ self-

perceived experience with formalisms (on a 1–5 Likert scale)

and response accuracy (Kendall’s τ = 0.21, p = 0.18). Our

results indicate that, contrary to conventional wisdom [23, 24,
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TABLE II: Independent and dependent variables for each RQ, along with associated metrics. Descriptions of key terms follow

in the relevant RQ subsections.

Independent Variables Metrics: Independent Variables Dependent Variables Metrics: Dependent Variables

RQ1 Incoming preparation
Coursework count,

screening proof performance

Task performance Response times and accuracy
Visual attention Fixation times on AOIs
Task difficulty Regression rates for proof types

RQ2

Self-perceived experience

Likert scale
Task performance Response accuracy

Self-perceived task difficulty
Self-perceived helpfulness of figures
Self-perceived proof readability
Visual attention to pseudocode

Fixation time
Visual attention to figures and proofs

RQ3

Proof type Categorical (inductive, contradictive, and
direct proofs)

Task performance Response accuracy
Algorithm type Categorical (recursive, iterative, and non-

repeating algorithms)
Visual behavior Attention switching count
Cognitive load Pupil diameter

TABLE III: Mean response accuracy, response time, and

fixation times (FT) on different AOIs for more-prepared and

less-prepared participants. Response and fixation times are

given in seconds, while response accuracy is shown as a

percentage.

Mean (SD)
More-prepared Less-prepared p

Response Time 248.7(±109.6) 240.0(±105.3) 0.93
Response Accuracy 34.8(±17.3) 32.5(±16.1) 0.96

Algorithm FT 19.5(±16.2) 17.1(±17.4) 0.21
Correct Answer FT 1.3(±2.0) 0.8(±1.2) 0.038

Distractor Choices FT 14.6(±12.3) 11.1(±11.5) 0.03
Figure FT 11.0(±45.8) 10.9(±38.6) 0.88
Proof FT 66.8(±12.3) 46.1(±11.5) 0.005

Theorem FT 12.9(±2.0) 11.2(±1.2) 0.12

25, 26] and instructor expectations, students with greater in-

coming preparation perform no better at these formalism tasks,

on average, than students with lower incoming preparation.

Indeed, the two participants with the highest number of courses

taken had the lowest and second-lowest response accuracies.

These results have potentially major implications, both for

pedagogy and the training of new hires for formal software

engineering. On the pedagogy front, our results raise questions

about course design and undergraduate curricula: upper-level

undergraduate courses are often designed with the expectation

that students will have completed, and will be familiar with,

material covered in core courses. If students with more expo-

sure to the formal material do not show evidence of retention

over time, educators may need to reconsider upper-level course

design with more of an emphasis on reviewing relevant

material covered in lower-level courses. For high-assurance

software engineering, some managers may be tempted to

make hiring and training decisions based on the number of

theory courses taken (e.g., from a transcript or resume list).

Our results add confidence that regardless of the number of

relevant courses taken, new hires for high-assurance software

engineering should be put through the same level of training

to ensure that they are prepared for the challenges of the job,

and that managers should not default to “courses completed”

as a proxy of preparation for the job.

Even though participants have similar final outcomes, they

employ different strategies. An analysis of visual behaviors

between students with different incoming preparations reveals

that more-prepared students fixate longer on (i.e., spend more

time looking at) AOIs corresponding to the proof (two-tailed

Mann-Whitney U-test with the Benjamini-Hochberg proce-

dure, p = 0.005), correct answer (p = 0.038), and distractor

answer choices (p = 0.03). The mean fixation times for all six

AOIs for more- and less-prepared participants are included in

Table III. Our results suggest that while incoming preparation

teaches students to read a proof and the answer choices

thoroughly before selecting an answer, this increased attention

to the AOIs does not actually help students achieve better

outcomes.

Recall that regression rate is the ratio of backward or

regressive saccades to the total number of saccades. Quite

surprisingly, we observed that students with greater incoming

preparation show a higher regression rate (i.e., informally,

spend more time re-reading text and figures) — and as

such, increased difficulty [35] — while reading direct proofs

(p = 0.035). Given that we found no evidence of a statistically-

significant difference in the performance of students with

different incoming preparation for direct proofs, our results

suggest that, for our sample, students may be trained in

theory courses to default to induction or contradiction as proof

strategies, and may need to put in more mental effort when

analyzing a direct proof — a style that remains highly relevant

in formal methods for software engineering (e.g., [8]).

We found no evidence that students with higher incoming

preparation, as traditionally assessed, perform better at for-

malism comprehension tasks (p = 0.96). This suggests the

need for pedagogical intervention in core theory courses to

ensure student outcomes are aligned with course objectives

of having students master the material and better preparing

them for formal methods in software engineering.
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B. RQ2. Self-Reporting and Formalism Comprehension Tasks

To collect richer free-response data from our study, we

instructed all 34 participants to provide answers to a post-

questionnaire reflecting on their experiences with the study

and outlining what they thought to be the most important parts

of a formalism presentation. In addition to having participants

self-report (on a 1–5 Likert scale) the difficulty of tasks they

were asked to perform, the helpfulness different aspects of

the formalism presentation, and so on, we asked three free-

response questions:

1) Having completed the study session, would you do

anything different the next time around?

2) What is the most important thing that makes a proof

easier to understand?

3) What is the most important thing that makes it easier to

spot a mistake in the proof?

To better understand the relationship between participant

Likert scale responses and response accuracy, we use the

Kendall’s τ test to conduct a quantitative analysis of the data.

When analyzing participants’ self-reported experience with

formalisms, we found no evidence of a correlation between

experience and response accuracy (τ = 0.21, p = 0.18).

We also observed no correlation between self-reported task
difficulty and study outcomes (τ = 0.14, p = 0.35), nor a

correlation between the self-reported helpfulness of figures
for formalism comprehension tasks and study outcomes (τ =
−0.22, p = 0.13). Our results do not provide evidence that

students are accurate at self-reporting their experience with

formalism comprehension tasks.

To further investigate whether student self-perception is an

accurate predictor of factors associated with high outcomes,

we also performed a qualitative analysis on the participants’

self-reported free-response data. 26 out of 34 participants

indicated they would employ a different problem-solving

strategy if asked to do the study again. Tied for the most

common change in strategy were paying more attention to the

algorithmic pseudocode and reviewing the materials from core

theory courses prior to the study. Our experimental results, on

the other hand, do not indicate a relationship between fixation
time on algorithmic pseudocode (i.e., time spent reading

pseudocode) and higher response accuracy (p = 0.91, see

Section V-C). The desire to review materials from core theory

courses is aligned with our experimental results: students with

greater incoming preparation do not perform better, suggesting

a lack of retention of course materials over time, and hence,

preparation for high-assurance software.

When asked to describe the features that make a proof

easier to comprehend, about a third of the participants men-

tioned concise, easy-to-read English prose in the proof. The

second most popular answer (6/34 participants) corresponded

to the use of figures and visuals while reading the proof.

Interestingly, our empirical results do not show evidence of a

significant correlation between self-perceived proof readability
and outcomes for formalism comprehension tasks (Kendall’s

τ = −0.14, p = 0.32), or a statistically significant relationship

between increased fixation on (or attention to) figures and

response accuracy (p = 0.81).

In response to the traits that make a mistake in a proof

easier to spot, the most popular answer (7/34 participants)

focused on step-by-step logical reasoning. The second most

common answer themes (6/34 participants each) were logical

inconsistencies in the proof text and an understanding of the

proof strategy. By contrast, only one participant answered

“thinking through a different worked example”, a strategy

that is commonly taught in undergraduate theory courses. Our

results suggest that educators should put more of an emphasis

on providing students with effective tools for evaluating logical

deductions for correctness. The student-perceived traits (i.e.,

breaking down logical reasoning steps and evaluating the

reasoning for logical inconsistencies) remain effective strate-

gies for formalism comprehension tasks. However, the lower

outcomes for these tasks suggests that students are less able

to apply those strategies in a mistake-finding context.

We find no evidence that students experience reports are

accurate predictors of outcomes for comprehending for-

malisms (τ = 0.21, p = 0.18). We also find no evidence

that the factors identified by students are associated with

high outcomes for such tasks.

C. RQ3. Factors Associated with Higher Outcomes

Given the apparent lack of effect of incoming preparation on

the outcomes for our study, we are interested in investigating

the factors that cause students to perform better at formalism

comprehension tasks. To do so, we perform a sub-population

analysis of students with higher and lower outcomes. We

require a participant to have achieved above the median

response accuracy (i.e., ≥ 3/7 answers correct for our dataset)

to be classified as higher performing. Using this metric, we

classify 15 out of 34 participants as higher performing, with

the remaining 19 considered lower performing participants.

Only 7 out of the 16 more-prepared participants (Section V-A)

were classified as higher performing.

We examined the outcomes for higher and lower performing

students for different proof categories (inductive, contradic-

tory, and direct) and algorithm categories (recursive, iterative,

and non-repeating1). We found that, independent of algorithm

category, higher performing students are more likely to spot

mistakes in proofs by induction than the lower performing ones

(χ2 test with the Benjamini-Hochberg procedure, p = 0.01).

Endres et al. [62] have investigated student performance for

iterative and recursive problem formulations, and observed

poorer student performance for recursive algorithms involving

non-branching computation but better student performance for

recursive algorithms involving array manipulation. We find

that independent of problem or proof type, higher performing

students are more likely to get proofs for recursive algorithms

correct compared to lower performing students (p = 0.006).

1The only algorithm in our stimuli that does not involve loops or recursion
corresponds to a proof gadget used for the Halting Problem. For completeness,
we consider “non-repeating” a separate category of algorithms.
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(a) Higher-outcome participant gaze plot (b) Lower-outcome participant gaze plot

Fig. 3: Visual gaze plots for a stimulus shown to two participants. The higher-outcome participant (left) displays significantly

more attention switching behaviors, as indicated by the number of lines crossing between different AOI quadrants.

Our results have implications for both teaching formalisms

for improved outcomes and preparing students for formal

methods in software engineering. Previous work by Polycar-

pou [63] suggests that students who understand recursive or

inductive definitions can more successfully perform proofs

by induction, while students who do not are either not able

to perform proofs by induction, or do so mechanically. The

fact that students with higher outcomes in our study are not

necessarily those with greater incoming preparation suggests

that undergraduate theory courses taken by our participants

may not be putting emphasis on teaching and making students

comfortable with recursive or inductive definitions. In formal

verification for high-assurance software, there has been an

increasing interest in automated theorem proving (e.g., the

Z3 theorem prover [64]), an activity that often involves the

identification of an inductive invariant to prove that a certain

property holds at all time [65]. Finding an inductive invariant

has a direct parallel to correctly identifying an inductive

hypothesis for proofs by induction, suggesting that students

who are better trained to correctly establish inductive proofs

may be better equipped for automated theorem proving tasks.

Recall that attention switching measures the total number

of switches between AOIs, and can approximate the dynam-

ics of visual attention during a task. We found that higher

performing students demonstrate more attention switching
behaviors, or frequently go back and forth between AOIs on

the presented materials (two-tailed Mann-Whitney U-test with

the Benjamini-Hochberg procedure, p = 0.002). In particular,

we observed a statistically-significant difference in attention

switching for proofs by contradiction (p = 0.009) and iterative

algorithms (p = 0.007). We also observed trends for increased

attention switching for higher-performing students for proofs

by induction and recursive algorithms, but these trends did not

survive correcting for multiple comparisons. Figure 3 shows

two illustrative visual gaze plots for a higher outcome and an-

other lower outcome participant for a stimulus involving proof

by contradiction. The higher-outcome participant displays sig-

nificantly more attention switching behavior (as indicated by

the increased number of lines between the AOI quadrants,

see Figure 3a) compared to the lower-outcome participant

(Figure 3b). In the context of pedagogy, these results strongly

argue for the development of teaching materials, such as online

tools, lecture slides, and exams, that facilitate perusal with ease

(e.g., without requiring multiple page flips).
To estimate the cognitive load (i.e., increased strain on

the working memory) due to formalism comprehension tasks

(e.g., due to the need for remembering the theorem or vari-

able names while evaluating the proof for correctness), we

record the pupil diameters reported by the eye tracker for

each stimulus and obtain the pupil diameter delta against a

measured baseline (see Section IV-A). We found that students

with poorer performance also show increased cognitive load

when going over the figures in general (p = 0.012). In

particular, we saw trends for increased cognitive load for

lower outcome students looking at figures for inductive proofs

and recursive algorithms, though the latter did not survive

correcting for multiple comparisons (p = 0.032 and p = 0.06
respectively). These results indicate that students who got

inductive proofs incorrect more frequently (in a statistically-

significant manner) also had increased difficulty when going

over figures explaining the algorithm or proof strategy when

compared to their higher-performing peers, suggesting that

educators can make targeted efforts to have lower-outcome

students practice tracing through graphical illustrations of the

presented material.

Higher-performing students are more likely to get proofs

by induction (p = 0.01) and recursive algorithms cor-

rect (p = 0.006) compared to lower-performing students.

Higher-outcome students also demonstrate significantly

more attention switching behaviors (p = 0.002), suggesting

that students who frequently go back and forth between

presented materials are more likely to achieve better results.

VI. DISCUSSION AND IMPLICATIONS

In this section, we present a discussion of our results

and discuss several implications for pedagogy (and indirectly,
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preparing future software engineers for formal methods).

A. Eye-tracking Discussion and Implications for Pedagogy

The results from our study suggest that traditional metrics

for incoming preparation, like course counting and pretests,

are ineffective predictors of student performance with formal-

ism comprehension tasks, and that students across the board

are not well-trained to employ different tools for evaluating

presented logical deductions for correctness. Indeed, the two

most-prepared participants in our study had the lowest and

second-lowest response accuracies, and the highest-outcome

participants were more junior.

Our results provide confidence that students with more

exposure to the formal material may not show evidence of re-

tention over time. As such, it may benefit students if educators

focus on upper-level course design strategies that encourage

reviewing relevant material from lower-level undergraduate

courses. The trade-off between using a few lectures to ensure

students who took core courses several semesters ago still

remember key concepts and exposing students to novel topics

is worth considering.

Given that higher-outcome participants exhibited signifi-

cantly more attention switching, we consider whether cur-

rent educational materials admit this sort of problem-solving

strategy. For instance, our results argue against exams that

require page flips to get relevant information, since turning

or scrolling between pages is not conducive to going back

and forth between presented materials with ease (e.g., [66,

Sec. 6.2.1]). In an era of an increasing number of online exams

and teaching tools, similar concerns arise: while administering

online lectures, quizzes, and exams, educators should remain

wary of requiring significant page scrolling or user interface

navigation to gather information before answering a question,

and instead place relevant bits of information in a spatially-

proximate manner for a formalism comprehension task.

Additionally, since we observe differences in performance

depending on the type of algorithm or proof, we advocate for

increased emphasis on certain types of proofs. Notably, our

study shows that differences in outcomes can be attributed,

in a statistically-significant manner, to proofs by induction.

Previous work has shown that students’ performance with

proofs by induction improves after class instruction, but not

to the extent intended during course design [63], yet strategies

involving proofs by induction remain highly relevant in formal

verification of software (e.g., the use of inductive invariants

in automated theorem proving [65]). We encourage educators

to have students practice proofs by induction more, and

emphasize familiarity and comfort with recursive or inductive

definitions and data structures.

Note that while motivated by our experimental results, our

recommendations for educators (and, more indirectly, hiring

managers) are speculative and only intended for discussion

purposes: a controlled study would be required to assess any

interventions. We leave such studies for future work.

B. Facial Behavior Analysis Exploratory Results

We wish to analyze any differences in facial behavior

between participant interactions with different outcomes. We

note that, to the best of our knowledge, no widely-accepted

metrics for analyzing facial behavior data in the context of

pedagogy exist (e.g., previous use of facial behavior analy-

sis in a teaching setting [44, 45] involves the controversial

use of emotion detection [48, 49, 67]). We perform a sub-

population analysis of facial behavior data points correspond-

ing to participant correct and incorrect answers. 56% of the 24

thousand high-quality facial behavior data points correspond

to participant interactions getting the response correct, with

the remaining associated with incorrect answers. For each AU

(see Table I), we analyze the number of times the OpenFace

classifier detected its presence or absence. We compare this

AU activation metric for correct vs. incorrect interactions

(χ2 contingency test, corrected for false discoveries using the

Benjamini-Hochberg procedure). Our exploratory results in-

dicate a statistically-significant difference between participant

interactions for different response accuracies for 16 of the 18

AUs; only AU7 (lid tightener) and AU9 (nose wrinkler) were

not relevant. Differences in all but two AUs suggest an easy-

to-observe, robust effect.

While our exploratory results suggest the presence of

statistically-significant differences in many different facial

behaviors between participant interaction outcomes, there un-

fortunately remains a lack of metrics and analysis (other than

generic emotion classifications — see Section IV-B) methods

to help us interpret these results. A qualitative theory to

explain this difference in facial behavior is left as future work.

We present this discussion on the preliminary facial behavior

analysis results in the context of formalism comprehension

tasks to draw attention of the research community to a more

objective method of facial behavior analysis (that is also

observable and robust in this domain).

VII. THREATS TO VALIDITY

One threat to validity for our study is that our results

may not generalize to a wider population. To mitigate this

threat, we recruited participants from a large public university

with a wide array of different backgrounds (including native

language, incoming preparation, class standings, etc.). We also

note that the primary goal of our study is to understand how

to better teach formalisms at the undergraduate level (and

indirectly, to shed light on hiring considerations for certain

software engineering sectors), and thus, recruiting seasoned

industry professionals is less relevant.

Another threat to the generalizability of our study is that

our stimuli may not be indicative (e.g., all of the proofs are

in English). To mitigate this threat, we select our stimuli

from an undergraduate textbook widely used by educators,

and supplement any figures from undergraduate course lecture

slides serving thousands of students each year.

Finally, to mitigate threats to conclusion validity, we use

state-of-the-art software to calibrate the eye-tracker [53],

widely-used eye-tracking metrics and analyses [30], and
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present any facial behavior analysis conclusions as discussions

meant to stimulate conversations in the research community.

VIII. RELATED WORK

In this section, we discuss previous work related to eye-

tracking, student cognition, and facial behavior analysis in a

pedagogical context.

A. Eye-tracking and Cognition

Previous eye-tracking work investigating problem-solving

strategies employed by students has shown that differences

in search strategies can lead to significant differences in task

outcomes [68, 69, 70].

For instance, Netzel et al. found that high-accuracy stu-

dents were better able to use information in science-related

diagrams [68]. We similarly observed that high-performing

participants display reduced cognitive load when going over

figures related to formalism comprehension tasks. Hegarty et
al. [69] investigated arithmetic problem solving involving rela-

tional terms inconsistent with the required arithmetic operator

(e.g., the use of less than for tasks involving addition), and

found that low-accuracy students made more reversal errors for

inconsistent problems, and that high-accuracy ones required

more re-readings for previous text fixations. Our study does

not reveal a difference in response accuracy between high- and

low-outcome students for proofs by contradiction (that involve

logical inconsistencies in proof text). We do find, however, that

higher-outcome students display significantly more attention

switching as they assimilate presented information, a strategy

that is analogous re-reading text.

Figures are frequently used as educational instruments [52,

71, 72], yet their importance as a medium of instruction for

a particular field is not always well-understood. For instance,

Susac et al. [70] found that diagram were rarely helpful for

physics. By contrast, Yoon et al. [73] studied the importance

of figures for causal reasoning problems, and found that

even for questions missing a figure, 48% of the students still

frequently fixate on the area where the figure would have been,

indicating a relative higher importance for figures. For both

studies, however, the inclusion of diagrams did not affect the

participants’ time taken to respond or response accuracy. In

a mistake-finding context for formalism comprehension, we

similarly do not find a relationship between fixation on, or

perceived importance of, figures on task outcomes.

B. Facial Behavior Analysis

Previous work exploring facial behavior analysis in a ped-

agogical setting has analyzed videos of faces as they interact

with a teaching tool to assign general notions of affective

states (e.g., boredom, delight, surprise, etc.) during learning

tasks [44, 45, 74]. Such studies argue that highly-animated

affective states or emotions, such as delight or confusion,

are easily detectable and have numerous applications for

pedagogy, including real-time feedback for learners [44].

Crucially, while these studies use AUs as measures of facial

behavior, their assignment of affective states or emotions is

based on generic classifiers [75] and fails to account for

the context around the task, a feature considered imperative

for emotion recognition [48, 49]. Additionally, Alfenbein and

Ambady [76] show that the accuracy of facial emotion recog-

nition can depend on race and culture. As such, we argue that

emotion classifiers trained on certain population demographics

can inadvertently affect vulnerable student populations if used

without caution in a pedagogical setting.

We present our exploratory results from facial behavior

analysis independent of emotion classification to promote dis-

cussion in the research community for a less controversial use

of facial behavior data that could still yield benefits similar to

those of previous tools like AutoTutor [75] without potentially

negatively affecting minority or non-traditional students.

IX. CONCLUSION

Formal methods have been increasingly applied to software

engineering, but often require mathematical training and ad-

vanced logical reasoning abilities that software practitioners

often do not possess. Given the challenges associated with in-

tegrating formal methods into software, educators may increas-

ingly focus on formalisms in undergraduate theory courses that

already suffer from unsatisfactory student outcomes.

We propose to use eye-tracking to better understand the

problem solving strategies employed by students with different

levels of incoming preparation and task outcomes, and more

indirectly, gather insights into how educators can prepare

future software engineers for the rigorous logical reasoning

that is a core part of high-assurance software engineering. We

also provide an exploratory discussion on the use of facial

behavior analysis in a pedagogical context.

In a controlled human study involving 34 participants, we

find that incoming preparation is not an accurate predictor

of task outcomes, that student experience reports and self-

perceptions are not effective at predicting task outcomes, and

that the increased attention to proof text by more-prepared

students does not yield higher task outcomes. We instead find

that students who exhibit more attention switching behaviors

are more likely to succeed, and that differences in formalism

comprehension outcomes can be attributed to performance for

proofs by induction and recursive algorithms. Our results ad-

vocate for pedagogical interventions in theory courses to better

teach formalisms to students and prepare future developers for

formal reasoning for software. We make our datasets publicly

available for researchers to replicate or build on our study.
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